Skip to main content
. 2021 May 28;104(4):4117–4147. doi: 10.1007/s11071-021-06535-8

Table 12.

GARCH, GJR and EGARCH(1,1), persistence and half-life—NASDAQ

Full sample 27/07/1998 02/04/2003 12/09/2008 21/04/2009 20/02/2020 18/12/2020
ARCH-LM 2046.298* 1013.827* 116.000* 108.560* 33.232* 391.490* 40.722*
α 0.111* 0.115* 0.096* 0.038* - 0.090*** 0.131* 0.172**
β 0.889* 0.860* 0.866* 0.956* - 0.605** 0.846* 0.828*
α+β 0.999 0.975 0.962 0.994 - 0.695 0.977 1.000
Half-life 830.765 27.378 17.892 115.178 NA 29.802 1571.416
t-df 6.726* 5.588* 34.853* 18.935* 89.826* 5.247* 3.891*
γ GJR 0.120* 0.104* 0.178* 0.061* 0.229 0.303* 0.272*
γ EGARCH -0.087* - 0.079* - 0.125* - 0.050* - 0.316*** - 0.226* - 0.122
BIC GARCH 2.909 2.234 4.527 2.975 5.508 2.763 4.157
BIC GJR 2.900 2.231 4.496 2.964 5.557 2.723 4.156
BIC EGARCH 2.897 2.227 4.502 2.965 5.539 2.715 4.175

ARCH-LM test. *, **, ***Denote statistically significant at the 1%, 5% and 10% significance levels, respectively. α+β=1 is the measure of volatility persistence. Half-life gives the point estimate of the half-life in days given as HL=log(0.5)log(α+β). t-df represents the Student’s t degrees of freedom. GARCH, GJR and EGARCH are conditional heteroskedastic models defined in (4), (6) and (5), respectively