Skip to main content
. 2021 May 14;11:644165. doi: 10.3389/fonc.2021.644165

Table 3.

Diagnostic performance of individualized prediction models.

AUC (95% CI) ACC SEN SPE PPV NPV Cutoff
Training cohort (n=234)
 Radiomics Logistic 0.847(0.796-0.898) 0.791 0.809 0.783 0.604 0.909 0.287
Tree 0.798(0.737-0.858) 0.786 0.765 0.795 0.605 0.892 0.210
SVM 0.847(0.796-0.898) 0.791 0.809 0.783 0.604 0.909 0.282
 Clinical 0.775(0.709-0.841) 0.752 0.691 0.777 0.560 0.860 0.309
 Comb 0.876(0.828-0.924) 0.816 0.779 0.831 0.654 0.902 0.275
Testing cohort (n=100)
 Radiomics Logistic 0.826(0.733-0.919) 0.760 0.679 0.792 0.559 0.864 0.284
Tree 0.696(0.591-0.801) 0.730 0.643 0.764 0.514 0.846 0.200
SVM 0.826(0.733-0.919) 0.760 0.679 0.792 0.559 0.864 0.281
 Clinical 0.798(0.707-0.890) 0.650 0.607 0.667 0.415 0.814 0.300
 Comb 0.867(0.792-0.941) 0.810 0.714 0.847 0.645 0.884 0.277

Logistic, logistic regression; Tree, decision tree; SVM, support vector machine; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value. Radiomics, radiomics model; Clinical, clinical model; Comb, combined model.