Table 3.
AUC (95% CI) | ACC | SEN | SPE | PPV | NPV | Cutoff | ||
---|---|---|---|---|---|---|---|---|
Training cohort (n=234) | ||||||||
Radiomics | Logistic | 0.847(0.796-0.898) | 0.791 | 0.809 | 0.783 | 0.604 | 0.909 | 0.287 |
Tree | 0.798(0.737-0.858) | 0.786 | 0.765 | 0.795 | 0.605 | 0.892 | 0.210 | |
SVM | 0.847(0.796-0.898) | 0.791 | 0.809 | 0.783 | 0.604 | 0.909 | 0.282 | |
Clinical | 0.775(0.709-0.841) | 0.752 | 0.691 | 0.777 | 0.560 | 0.860 | 0.309 | |
Comb | 0.876(0.828-0.924) | 0.816 | 0.779 | 0.831 | 0.654 | 0.902 | 0.275 | |
Testing cohort (n=100) | ||||||||
Radiomics | Logistic | 0.826(0.733-0.919) | 0.760 | 0.679 | 0.792 | 0.559 | 0.864 | 0.284 |
Tree | 0.696(0.591-0.801) | 0.730 | 0.643 | 0.764 | 0.514 | 0.846 | 0.200 | |
SVM | 0.826(0.733-0.919) | 0.760 | 0.679 | 0.792 | 0.559 | 0.864 | 0.281 | |
Clinical | 0.798(0.707-0.890) | 0.650 | 0.607 | 0.667 | 0.415 | 0.814 | 0.300 | |
Comb | 0.867(0.792-0.941) | 0.810 | 0.714 | 0.847 | 0.645 | 0.884 | 0.277 |
Logistic, logistic regression; Tree, decision tree; SVM, support vector machine; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value. Radiomics, radiomics model; Clinical, clinical model; Comb, combined model.