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Abstract
Purpose of Review This review summarizes the investigational antifungals in clinical development with the potential to address
rising drug resistance patterns. The relevant pharmacodynamics, spectrum of activity, preclinical studies, and latest clinical trial
data are described.
Recent Findings Agricultural and medicinal antifungal use has been selected for inherently drug-resistant fungi and acquired
resistance mechanisms. The rates of fungal infections and immunocompromised populations continue to grow as few new
antifungals have hit the market. Several agents with the potential to address the emergence of multidrug-resistant (MDR) molds
and yeasts are in clinical development.
Summary Evolved formulations of echinocandins, polyenes, and triazoles offer less toxicity, convenient dosing, and greater
potency, potentially expanding these classes’ indications. Ibrexafungerp, olorofim, oteseconazole, and fosmanogepix possess
novel mechanisms of actions with potent activity against MDR fungi. Successful clinical development is neither easy nor
guaranteed; thus, perpetual efforts to discover new antifungals are needed.
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Introduction

Only five antifungal classes exist on the market. The polyenes,
which destabilize the cell membrane via ergosterol binding, are
limited by significant toxicities and intravenous (IV) only formu-
lations for now. Azoles block ergosterol production by inhibiting
lanosterol-14α-demethylase (LDM) but often create drug–drug
interactions and toxicities by cross-inhibition of mammalian cy-
tochrome P (CYP) enzymes. Echinocandins prevent the biosyn-
thesis of (1,3)β-d-glucan and are relatively safe but only exist in
IV formulations and lack central nervous system (CNS)

penetration, and their fungicidal spectrum is limited mostly to
Candida species. The pyrimidine analog, flucytosine, is indicated
only as a combination therapy [1, 2]. Finally, the allylamines are
only used in dermatophyte infections often requiring months of
use at the cost of many side effects [2].

Nearly 20 years have passed since the introduction of the
newest antifungal class to the market. The incidence of inva-
sive fungal infections (IFI) has since increased along with the
immunocompromised population carrying significant mortal-
ity rates and costs to healthcare systems [3, 4]. The estimated
annual costs of fungal infections in the USA have reached
$7.2 billion [5]. With the emergence of multidrug-resistant
(MDR) and pan-resistant fungi, there is a critical need for
novel antifungals to overcome therapeutic barriers and resis-
tance. In this article, we review fungal resistance patterns and
the investigational drugs in clinical development which may
rise to meet these challenges.

Epidemiology and Mechanisms of Antifungal
Resistance

The evolution of antifungal resistance is a multifactorial, glob-
al phenomenon. Antifungal pesticides in agricultural systems
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and widespread healthcare use have fueled acquired resistance
as well as shifted fungal prevalence toward species with in-
herent antifungal resistance [6]. Climate change and animal
reservoirs are also theorized to play an important role, namely,
with the global outbreak ofC. auris [7]. In this section we will
describe the known resistancemechanisms of yeast, mold, and
dimorphic fungi.

Yeast

Historically, candidiasis was most often caused byC. albicans
and was typically sensitive to most azole agents. Widespread
fluconazole use has promoted acquired resistance amongst all
Candida species and shifted the epidemiology of invasive
candidiasis (IC). WhileC. albicans remains the most common
cause of IC, non-albicans species are on the rise (C. glabrata,
C. parapsilosis, C. tropicalis, and C. krusei) [8]. C. krusei is
intrinsically resistant to fluconazole, and C. glabrata carries a
very high rate of resistance. Resistance in Candida species is
mediated by the amplification of zinc cluster transcription
factors such as UPC2, TAC1, MRR1, or CgPdr1 (particularly
inC. glabrata).UPC2 upregulation causes the overexpression
of the LDM gene ERG11, while mutations in TAC1, MRR1,
and CgPdr1 overexpress drug efflux transporters.
Additionally, resistance can occur via altered LDM structure
from point mutations in ERG11 [8, 9].

Due to azole resistance, and better clinical outcomes,
echinocandins are now the initial drug of choice for IC.
Intrinsically elevated minimum inhibitory concentrations
(MICs) are present in certain species (C. guilliermondii and
C. parapsilosis), yet consistent treatment failures have yet to
be demonstrated. On the other hand, mutations in glucan syn-
thase subunits, FKS1 and FKS2, have demonstrated clinically
significant echinocandin resistant and MDR isolates [8].
These mutations are more likely to develop with repeated
and prolonged drug exposures, especially in those with GI
tract biofilm reservoirs [8]. C. auris has burst onto the scene
as a major cause of MDR, healthcare-associated candidiasis
with mortality rates ranging from 30 to 45% [10, 11]. Various
studies have reported fluconazole resistance 90–93%,
amphotericin B (AmB) resistance 15–30%, and echinocandin
resistance 2–10% [11].

Polyene resistance amongst yeast is uncommon and typi-
cally involves depletion of ergosterol from the cell membrane.
It has been seen in Trichosporon species, amongst Candida
species (notably C. lusitaniae and C. auris), and some reports
of C. neoformans with high MICs [8].

Molds

The most common mold-related IFI is invasive aspergillosis
(IA). Triazoles are the first-line therapy and prophylaxis.
While resistance rates remain generally favorable amongst

common Aspergillus species (A. fumigatus, A. flavus,
A. versicolor, etc.), pan-azole-resistant A. fumigatus is increas-
ingly reported in Europe and the USA, and intrinsic triazole
resistance is higher amongst cryptic species [12]. The most
prevalent azole resistance mechanisms are the overexpression
and alteration of the target enzyme gene, Cyp51A, and its
promoter region (TR46/Tyr121Phe/Thr289Ala; TR34/
Leu98His) [8]. Other mechanisms include biofilm formation,
drug efflux, and mutations in transcription factor, HapE [8,
13]. Polyene resistance amongst Aspergillus species typically
involves selection for inherently resistant species including
A. terreus, A. flavus, and A. nidulans [8].

Scedosporium and Lomentospora species are rare opportu-
nistic molds demonstrating broad and even pan-resistant ten-
dencies with mortality rates breaching 80%. Voriconazole and
surgical debridement remain first-line therapies [14].
Similarly, Fusarium species offer a broad spectrum of inher-
ent drug resistances to polyenes, azoles, and echinocandins
with variable MICs to triazoles. The mechanisms of this are
unclear but theorized to be related to multiple LDM
paralogues: CYP51A, B, and C [15].

Mucorales species possess baseline resistance to
echinocandins, itraconazole, and voriconazole via alterations
in LDM. AmB, posaconazole, and isavuconazole remain the
first-line agents, and there is limited data supporting combi-
nation therapies [16].

Thermally Dimorphic Fungi

Endemic fungal diseases such as histoplasmosis, coccidioido-
mycosis, and paracoccidioidomycosis are either increasing or
are underreported [17, 18]. They generally carry primary re-
sistance to echinocandins, and fluconazole resistance is noted
amongst histoplasmosis isolates. Thus, polyenes and azoles
remain the preferred agents. While drug resistance remains
uncommon, these diseases remain difficult to cure due to the
lack of oral polyenes, drug toxicities, and tissue penetration
[19].

Investigational Agents

Agents in Phase III Clinical Trials

Ibrexafungerp (SCY-078)

Ibrexafungerp (IBX) is a semi-synthetic derivative of
enfumafungin. Similar to echinocandins, IBX inhibits
(1,3)β-d-glucan synthase but via alternative binding sites ren-
dering it unaffected by FKS mutations. It is anticipated to
advance the treatment of highly resistant Candida infections;
however, its spectrum of activity also includes Cryptococcus
species, Aspergillus species, and endemic fungi (Fig. 1) [20].
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It is soluble at lower pH, enhancing its penetration into acidic
environments such as abscesses or vaginal tissue [21].
Although it is a CYP2C8 inhibitor, this effect is unlikely to
be clinically significant [22]. Additionally, IBX did not show
evidence of reproductive harm in animal models [23].

IBX maintains in vitro activity against fluconazole and
echinocandin-resistant Candida species including pan-
resistant C. auris [24•, 25, 26•]. It maintained an average
MIC50 of 0.5 μg/mL and MIC90 of 1 μg/mL against 100
C. auris isolates and demonstrated increased survival and de-
creased fungal tissue burden in mouse and guinea pig models
of C. auris infections [25]. Amongst 195 C. auris isolates
from an outbreak in New York City, 194 were susceptible to
IBX with a mean MIC of 0.407μg/mL, including five pan-
resistant isolates [26•].

Advancing to human clinical trials, IBX has been studied in
IC, invasive pulmonary aspergillosis (IPA), and vulvovaginal
candidiasis (VVC) (Table 1). In a phase II study of IC in non-
neutropenic patients, oral IBX demonstrated similar safety
and efficacy compared to fluconazole as step-down therapy
following echinocandin treatment [27••]. Following a phase
IIb trial demonstrating efficacy and safety IBX 300 mg BID
for 1 day versus fluconazole for acute VVC, this dose was
carried over to phase III VANISH 303 and 306 trials which
established efficacy over placebo with a 50–65% cure rate
determined by test-of-cure cultures [28, 29••]. CANDLE is a
phase I I I t r i a l s tudying IBX in recur ren t VVC
(NCT04029116).

Oral IBX is currently involved in several active phase
III trials. The CARES study is a single-arm, open label
s tudy of IBX for invas ive C. aur i s i n fec t ions

(NCT03363841). SCYNERGIA is investigating the com-
bination of IBX and voriconazole versus voriconazole
monotherapy in IPA (NCT03672292). Finally, FURI stud-
ies the drug for various fungal infections refractory to other
therapies (NCT03059992). Positive preliminary data has
been released from this study reporting clinical improve-
ment in 17 of 20 patients with esophageal or oropharyngeal
candidiasis and intra-abdominal abscesses with the pre-
dominant pathogens being C. glabrata and C. krusei
[30••].

Rezafungin (CD101)

Rezafungin (RZF), developed by Cidara Therapeutics, is the
latest echinocandin. Structural modifications have enhanced
its chemical stability and solubility granting a long half-life
enabling once-weekly IV dosing [31]. This is its greatest nov-
elty as it shares the tissue distribution, favorable safety and
drug–drug interaction profiles, and spectrum of activity as
other echinocandins (Fig. 1).

Like other echinocandins, RZF demonstrates potent
in vitro activity against wild-type and azole-resistant
Candida species [32, 33]. FKS1 mutations raise its MIC, al-
though to a lesser degree compared to anidulafungin and
micafungin [34]. In mice with invasive FKS mutant C. auris,
RZF improved survival and reduced fungal tissue burden
compared to micafungin and AmB [35]. Translating RZF to
humans with IC has demonstrated safety and efficacy as seen
in the phase II STRIVE trial in which the weekly dosing
regimen of 400 mg IV for the first week, followed by
200 mg thereafter demonstrated equal, if not slightly better

Fig. 1 Spectrum of activity of investigational antifungals organized by their respective phase of clinical development
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efficacy compared to caspofungin (71% vs 63%). Species
included C. albicans, C. glabrata, C. tropicalis, and
C. parapsilosis [36••]. Now RZF has advanced to phase III
trials (Table 1). ReSTORE is a multicenter, double blinded,
randomized control trial actively recruiting patients with IC to
compare weekly IV RZF versus IV caspofungin and step-
down oral fluconazole (NCT03667690).

RZF has been studied in the treatment of other yeasts and
molds. Like other echinocandins, it lacks adequate activity
against C. neoformans [33]. Echinocandins are not used to
treat pneumocystis infections due to inactivity against trophic
forms [37]. However, RZF has shown activity against
Pneumocystis, reducing biofilm mass and inhibiting its pro-
duction as well as preventing pneumocystis pneumonia (PJP)
in immunocompromised mice [38•].

Against Aspergillus species, RZF has not only exhibited
in vitro activity against A. fumigatus and cryptic species, but
also azole-resistant species recovered from the lungs of lung
transplant recipients who were taking triazole agents for pro-
phylaxis [39, 40•]. Moreover, extended interval dosing of
RZF increased survival in a mouse model of azole-resistant
disseminated IA [41]. Although these results are encouraging,
further phase II and phase III trials are needed to determine its
efficacy and safety in human subjects for the prevention and
treatment of IA. A phase III trial, ReSPECT, is actively
recruiting patient to study RZF’s efficacy in the prevention
of IFI in allogeneic blood and bone marrow transplant recip-
ients (NCT04368559).

Oteseconazole

Oteseconazole (VT-1161), developed by Mycovia
Pharmaceuticals, belongs to the tetrazole class, a new genera-
tion of oral lanosterol 14⍺-demethylase inhibitors which boast
higher specificity for fungal CYP51 and therefore theoretical-
ly less cross-inhibition of mammalian CYP enzymes leading
to fewer drug–drug interactions and adverse effects [42].

Preclinical studies show VT-1161 possess a wide spectrum
of activity including Candida species, Rhizopus species,
Trichophyton species, and coccidioidomycosis (Fig. 1)
[43–46, 47••, 48•]. It exhibited potent in vitro activity against
most fluconazole-resistant C. albicans and C. krusei isolates
(mean MIC ≤ 0.15 μg/mL) as well as echinocandin-resistant
C. glabrata [44, 49]. This effect was demonstrated in a mouse
model of VVC which included fluconazole-resistant Candida
species [50]. Additionally, VT-1161 has demonstrated in vivo
efficacy as prophylaxis against Rhizopus arrhizus infections
and coccidioidomycosis treatment [45, 46]. There is early ev-
idence of possible cross-resistance between triazoles and
tetrazoles mediated by target enzyme modification or overex-
pression, as well as PDR1-mediated drug efflux transporters
[44, 49].

While VT-1161 is currently in early clinical phases for the
treatment of IFIs, it has advanced to phase II and III trials for
recurrent VVC and onychomycosis (Table 1). Current treat-
ment options for onychomycosis carry a low success rate. Oral
terbinafine or itraconazole offer better efficacy than topical
antifungal but at the cost of added toxicities. In a phase II
randomized, blinded, placebo-controlled trial of adults with
moderate-to-severe onychomycosis, treatment with VT-1161
saw a 42% cure rate without hepatotoxicity or cardiac toxicity
[47••]. The agent’s safety and efficacy were also demonstrated
in a phase IIb trial for recurrent VVC [48•]. Three phase III
clinical trials of VT-1161 for recurrent VVC are underway
(NCT03561701, NCT02267382, NCT03562156).

Agents in Phase II Clinical Trials

Fosmanogepix

Fosmanogepix, a prodrug of manogepix, is a first-in-class
Gwt1 inhibitor developed by Amplyx Pharmaceuticals.
Gwt1 is an inositol acyltransferase which catalyzes post-
translational modification of glycosylphosphatidylinositol
(GPI), creating mannoproteins which are anchored into the
fungal cell wall, covalently linked to β-1,3-glucan [51].
These mannoproteins maintain cell wall integrity while facil-
itating mucosal surface adhesion, biofilm formation, and host
invasion. When GPI anchoring is disrupted, β-1,3-glucan is
exposed to the host immune system. It has no activity against
the closest mammalian Gwt1 ortholog, GIPW, implying fun-
gal specificity [52]. It has acquired QIDP, orphan drug, and
fast track designations for invasive candidiasis, aspergillosis,
scedosporiosis, fusariosis, mucormycosis, cryptococcosis,
and coccidioidomycosis (Table 1).

Fosmanogepix possesses broad in vitro activity against
many genera of fungi: Candida (excluding C. krusei),
Trichosporon, Coccidioides, Cryptococcus, Aspergillus
(A. fumigatus, A. flavus, A. niger), as well as AmB-resistant
strains of Fusarium and Scedosporium (Fig. 1) [51, 53–55].
Amongst Candida species, it maintains activity against
echinocandin-resistant FKS mutants; however, elevated
MICs were seen with some fluconazole-resistant isolates im-
plicating potential efflux transporter-mediated cross-resis-
tance [56]. Against C. auris, fosmanogepix possesses potent
in vitro and in vivo activity [54, 57•]. In neutropenic mice with
disseminated C. auris, this agent increased survivability and
lowered fungal tissue burdens compared to echinocandins [54,
58•]. This agent also demonstrates effectiveness against high-
ly resistant mold species. In mouse models of pulmonary
scedosporiosis, disseminated fusariosis, and pulmonary
mucormycosis, it extended median survival time and de-
creased fungal burden in lung and brain tissue [59•, 60•].

Safety, pharmacodynamics, and drug–drug interactions
were studied in phase I trials both in healthy individuals and
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patients with acute myelogenous leukemia (NCT02957929,
NCT03333005, NCT02956499, and NCT04166669).
Fosmanogepix has a higher barrier to acquired resistance,
and Gwt1 enzyme mutations do not seem to cause cross-
resistance amongst other classes [61].

Data from a phase II clinical trial of fosmanogepix for the
treatment of invasive candidiasis in non-neutropenic patients
reported an 80% treatment success rate without serious side
effects. Additionally, the drug exhibited in vitro activity
against all Candida isolates recovered in the study [62••].
Additional phase II trials are currently underway, studying
efficacy for IC caused by C. auris (NCT04148287) and IFIs
caused by Aspergillus species and other rare molds
(NCT04240886).

Olorofim (F901318)

Olorofim, developed by F2G, is a first-in-class orotomide
which affects pyrimidine synthesis via reversible inhibition
of dihydroorotate dehydrogenase (DHODH) [63]. This agent
has been developed in IV and oral formulations. It possesses
time-dependent fungicidal activity and exhibits wide tissue
distribution (including the CNS), with enterohepatic recircu-
lation. Many molds and endemic fungi are within its spectrum
of activity, but it lacks reliable activity against yeast (Fig. 1)
[64]. It has been granted QIDP and orphan drug status for the
treatment of coccidioidomycosis, invasive Aspergillus,
Scedosporium, and Lomentospora species infections
(Table 1).

Olorofim shows great promise for the treatment of resistant
mold infections. It possesses activity against highly resistant
and cryptic Aspergillus species including A. lentulus,
A. fumigatiaffinis, and A. calidoustus [65•]. In vitro activity
has been demonstrated against triazole-resistant A. fumigatus
(MIC ≤ 0.008–0.03 mg/L), L. prolificans (MIC 0.03–0.5mg/
L), Scedosporium species (MIC 0.03–0.5mg/L), Rasamsonia
argillacea (MIC ≤0.008 – 0.03 mg/L), and certain Fusarium
species (F. oxysporum complex but not F. solani) [66•, 67].
Against Lomentospora prolificans biofilms, this agent dem-
onstrates greater penetration than AmB and micafungin [68•].
In vivo studies of olorofim in neutropenic mouse models of
IPA (wild-type and triazole-resistant mutants), sinopulmonary
A. flavus, and chronic granulomatous disease-related IPA (
included resistant cryptic species A. nidulans and A. tanneri)
demonstrated efficacy with reductions in galactomannan and
mortality which were predicted by Cmin/MIC values [68•, 69,
70]. It is important to note this drug lacks activity against
Mucorales species or Exophiala dermatitidis due to phyloge-
netically different DHODH target enzymes [63, 65].

Regarding endemic fungal diseases, olorofim exhibits low
MICs for Histoplasma capsulatum, Blastomyces species,
Coccidioides species, and Talaromyces marneffei [71]. In a
murine model, olorofim demonstrated increased survival of

mice with CNS coccidioidomycosis, a clinical entity notori-
ously difficult to completely cure [72, 73].

Nine phase I clinical trials of olorofim have been complet-
ed. Tolerability, safety, and pharmacodynamics have been
assessed for single and multiple ascending doses of oral and
IV formula t ions (NCT02142153, NCT0239448,
NCT02342574, NCT02737371, NCT02808741). Olorofim
exerts a mild inhibitory effect on CYP3A4 (NCT02680808,
NCT04171739).

A phase IIb trial is currently underway enrolling patients
with invasive fungal infections which are refractory or resis-
tant to standard therapy (NCT03583164; FORMULA-OLS).

Encochleated Amphotericin B

Encochleated amphotericin B (CAmB), developed by
Matinas Biopharma, is a novel oral polyene formulation in
which AmB and calcium are encased within a cochleate
(spiraled, negatively charged lipid bilayer). The cochleate sta-
bilizes, protects, and delivers the drug into reticuloendothelial
cells. Thus, low levels of active drug circulate in plasma mit-
igating the adverse effects commonly seen in AmB toxicities.
As the compound is phagocytosed, calcium gradients facili-
tate the release of AmB into phagocytes and the extracellular
space. This agent demonstrates broad tissue penetration in-
cluding the brain, kidney, lung, and bone with a spectrum of
activity akin to AmB (Fig. 1) [74].

The safety and efficacy of CAmB have been demonstrated
in murine models of IA, IC, and cryptococcal meningitis
[75–77]. One hundred percent of mice with IC treated with
CAmB at doses ranging from 0.5 to 5 mg/kg/day survived
with a dose-dependent decrease in kidney and lung fungal
tissue burden [76]. CAmBwas found to be equally efficacious
as AmBwith superiority over oral fluconazole in cryptococcal
meningoencephalitis [77].

In a recent phase I study, HIV patients with prior history of
cryptococcosis were administered different dosing regimens of
CAmB: single administrations of ascending daily doses (1.0 g,
1.5 g, or 2.0 g) split into 4–6 divided doses and recurrent doses of
1.5 g daily split into 4–6 divided doses over 7 days. Excellent
tolerability (98–100%) and improved safety compared to AmB
were demonstrated. No nephrotoxicity was reported [78•].

Preliminary results of a phase IIa trial investigating CAmB in
refractory mucocutaneous candidiasis demonstrated tolerability
and improvement in symptoms without drug-related toxicities
outside of nausea or dizziness [79]. Another phase II trial com-
pared safety and efficacy of single doses of CAmB 200 mg,
CAmB 400 mg, and fluconazole 150 mg for moderate-to-
severe VVC. There were no serious adverse events reported,
but clinical cure rates favored fluconazole over CAmB 200 mg
andCAmB400mg (75%, 52%, and 54%, respectively) [80]. An
additional phase II clinical trial studying CAmB in cryptococcal
meningitis is underway (NCT04031833).
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PC945

PC945 is the first topical, inhaled triazole. Developed by
Pulmocide, this drug is designed primarily for the treatment
of IPA, boasting prolonged lung tissue retention without sig-
nificant systemic absorption. Its antifungal spectrum is analo-
gous to systemic triazoles but with significantly greater poten-
cy maintaining activity against posaconazole and pan-azole-
resistant A. fumigatus, as well as C. auris (Fig. 1) [81, 82].
Synergy with systemic triazoles was demonstrated in murine
IPA models [83]. Following successful phase I clinical trials,
phase II trials for IPA in patients with cystic fibrosis, chronic
lung disease, and lung transplants have been terminated early
due to the COVID-19 pandemic. A phase III trial with PC945
in combination with systemic antifungals for patients with
IPA and no other treatment options planned (Table 1) [84].

Antifungals in Phase I and Preclinical Development

ATI-2307

ATI-2307 was originally developed by the FUJIFILM
Toyama Chemical Co. under the name T-2307 until
November 2019 when Appili Therapeutics Inc. acquired the
development rights and renamed it. It is a first-in-class
arylamidine with a novel antifungal mechanism: the disrup-
tion of yeast cellular respiration via inhibition of mitochondri-
al respiratory chain complexes III and IV. This is speculated to
be a fungal-specific effect [85]. Preclinical studies have dem-
onstrated potent, fungicidal in vitro and in vivo activity
against azole and echinocandin-resistant C. glabrata,
C. auris, C. neoformans, C. gattii, and A. fumigatus (Fig. 1)
[86–90, 91•]. Its application to human subjects has been
targeted at cryptococcosis and invasive MDR candidiasis.
Phase I clinical trials to determine safety, efficacy, and optimal
human doses are currently underway with preliminary reports
from a trial with cryptococcal meningitis indicating superior
potency and acceptable safety compared to standard-of-care
therapies (Table 1). Phase II clinical trials are anticipated to
begin in 2022 [91•].

Quilseconazole (VT-1129)

VT-1129 is an oral tetrazole being studied for the treatment of
cryptococcal meningitis. The FDA has granted it orphan drug
status and QIDP designation for this purpose. Preclinical stud-
ies have demonstrated robust in vitro and in vivo efficacy
against C. neoformans and C. gattii, notably maintaining ac-
tivity (mean MIC 0.027 μg/mL) against fluconazole-resistant
or dose-dependent C. neoformans isolates (Fig. 1) [92–94]. In
mice treated with doses ≥ 3mg/kg daily, there was virtually no
evidence of fungal burden in CNS tissues at the day of med-
ication cessation or 20 days later, a finding not seen in

fluconazole-treated mice [94]. Additionally, in vitro studies
denote activity against Candida species isolated from patients
with chronic mucocutaneous candidiasis as well as
C. glabrata and C. krusei isolates resistant to azoles and
echinocandins [44, 95].

VT-1598

VT-1598, another oral tetrazole, boasts a wide antifungal
spectrum including yeast, molds, and dimorphic fungi. It has
been granted FDA fast track status for the treatment of coc-
cidioidomycosis (Table 1). It is currently in phase I trials for
potential use in C. auris infections, cryptococcosis, and coc-
cidioidomycosis (NCT04208321).

In preclinical studies, VT1598 effectively inhibited
Candida species (C. glabrata, C. parapsilosis, C. krusei,
C. auris, and azole-resistant C. albicans), Cryptococcus spe-
cies, Aspergillus species (A. fumigatus, A. flavus, A. niger, and
A. terreus), Rhizopus arrhizus (except R. arrhizus var.
delemar strains), Coccidioides species, B. dermatitis, and
H. capsulatum (Fig. 1) [49, 96–98]. Like VT-1161, it is im-
pacted byUPC2- and PDR1-mediated resistance mechanisms
seen in triazole cross-resistant C. glabrata [97]. Efficacy and
safety were seen in mouse models studying VT-1598 for in-
vasive C. auris infections, cryptococcal meningitis, and CNS
coccidioidomycosis [98–100].

Miscellaneous Agents Not in Active Clinical Trials

Nikkomycin Z

Nikkomycin Z is a first-in-class chitin-synthase inhibitor devel-
oped by Valley Fever Solutions as a targeted approach against
endemic fungi, including Coccidioides species [101].
Additionally, it found a synergistic role in treating resistant
Candida species. Preclinical studies showed efficacy in canine
pulmonary coccidioidomycosis and murine echinocandin-
resistant FKS mutant invasive candidiasis [102, 103]. While the
initial phase I trial exhibited adequate safety, additional phase I and
phase II trials were unable to recruit patients and lacked sufficient
funding to continue [104]. With renewed interest and support, this
agent could recrudesce into clinical development again.

MGCD290

MGCD290 is an inhibitor of fungal histone deacetylase. It
showed early promise in preclinical trials as a synergistic
agent restoring triazole susceptibility in Candida, Fusarium,
and Zygomycetes species as well as echinocandin susceptibil-
ity in resistant Candida species [105, 106]. However, a phase
II study of MGCD290 plus fluconazole in VVC did not show
superiority compared to fluconazole alone (NCT01497223).
Presently, there are no active clinical trials.
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Conclusions

This arsenal of agents offers hope for the future. The rise ofMDR
and pan-resistant Candida species has been met with advanced
stage investigational agents such as IBX, VT-1161, and RZF.
IBX introduces a novel mechanism, potent broad spectrum of
activity and a safe oral formulation, while VT-1161 is poised to
treat recurrent VVC and onychomycosis with potential to garner
other indications as clinical development progress. RZF offers
convenient, once-weekly dosing for echinocandin for the treat-
ment or prophylaxis in immunocompromised patients.

Perhaps the brightest future for the future of invasive mold
infections lie in stage II and I agents fosmanogepix and olorofim,
both first agents in their respective classes. Fosmanogepix has
displayed efficacy in IC and is currently involved in trials for
invasive C. auris and mold infections. Fosmanogepix and
olorofim also possess activity against notoriously MDR pan-
resistant mold genera, Lomentospora and Scedosporium.
Currently, infections by these organisms have few, if any, reliable
therapeutic options.

The reformulation of existing classes into new delivery
systems will change the treatment of IFIs. CAmB offers safe
oral administration of AmB, and PC945 is a potent inhaled
topical triazole with minimal systemic absorption.

From conceptualization to proof of efficacy in humans, anti-
fungal development is an expensive and protracted challenge.
Many promising antifungals never reach the market due to poor
recruitment, lack of funding, or trial failures. While these agents
are a great start, with the rising immunocompromised population
and perpetual evolution of antifungal resistance, it is essential that
continual efforts aremade toward the discovery of new therapies.
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