
Dynamic decision making and value computations in medial 
frontal cortex

Bilal A. Bari, Jeremiah Y. Cohen
The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli 
Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD

1 Introduction

Nervous systems evolved in highly dynamic environments. Adaptive behavior in the natural 

world requires not just learning which actions improve survival, but also changing behavior 

as the environment changes. This describes an active feedback process in which organisms 

interact with the environment through actions, learn from feedback, and adjust future actions 

adaptively. The ability to behave flexibly is a ubiquitous feature of life, ranging from flies 

(Ofstad et al., 2011) to humans1 Despite the ubiquity of flexible decision making, it is a 

historically understudied problem in systems neuroscience. Progress in reinforcement 

learning over the past two decades has provided a biologically-plausible and 

mathematically-sophisticated framework for studying these problems (Bertsekas and 

Tsitsiklis, 1996; Sutton and Barto, 1998). Parallel progress in tool development in mice has 

enabled the dissection of neural circuits needed for detailed biological insight (Luo et al., 

2018). The intersection of these two fields — reinforcement learning and neural circuit 

dissection — holds promise to further our algorithmic- and implementation-level 

understanding of cognition.

This chapter reviews behavioral assays for investigating value-guided behavior, explores 

biologically-plausible algorithms of value-based decision making, and ends with an 

overview of the neural systems thought to instantiate these functions. We highlight recent 

evidence demonstrating value computations in the medial prefrontal cortex (mPFC) and 

cortico-basal-ganglia loops. Given the myriad decision making dysfunctions seen in patients 

with mental illnesses, understanding its neural basis on multiple levels is crucial for 

developing targeted therapies (Cáceda et al., 2014).

2 Value-based decision making

Decision making is at the heart of many fields, including economics, political science, 

psychology, engineering, medicine, and neuroscience. A decision is defined as a deliberative 

process that results in commitment to a categorical proposition (Gold and Shadlen, 2007). 

Decisions are the result of integrating both external (e.g., sensory) as well as internal 

evidence (e.g., predictions). These two domains have largely been studied in the context of 

perceptual (i.e., external evidence) and value-based (i.e., internally-generated evidence) 

1It has even been observed in organisms without nervous systems (pea plants; Dener et al. (2016)).
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decision-making tasks (Gold and Shadlen, 2007; Yu, 2015). Within each domain, 

quantitative mathematical frameworks have provided semantically-meaningful 

interpretations of neural activity in key brain structures. A key concept is the decision 

variable, which “represents the accrual of all sources of priors, evidence, and value into a 
quantity that is interpreted by the decision rule to produce a choice” (Gold and Shadlen, 

2007). The decision variable represents the common currency used by the brain to generate a 

single categorical action among all possibilities.

Value-based decision making tasks require subjects to choose on the basis of expected utility 

or subjective value (Sugrue et al., 2005; Sanfey et al., 2006; Glimcher et al., 2005). 

Typically, sensory stimuli are salient, which minimizes perceptual uncertainty. Decisions are 

made on the basis of values learned over long time periods (Morris et al., 2006) or values 

learned over short timescales (Sugrue et al., 2004; Lau and Glimcher, 2005; Tsutsui et al., 

2016). Importantly, these values are not sensory properties of stimuli (like brightness or 

contrast) but are internal variables that must be learned through experience. Compared to 

perceptual tasks, the subjective nature of value-based tasks makes them much more difficult 

to control. However, rigorous formalisms from the fields of economics (Rangel et al., 2008) 

and reinforcement learning (Sutton and Barto, 1998) have greatly benefited the study of 

value-based decisions. As such, these tasks are well-poised to address questions about 

representations of cognitive information.

2.1 Pavlovian systems

Pavlovian behavior describes innate, reflexive behavioral responses to stimuli that have been 

assigned value (Rescorla, 1988). The phenomenon was discovered by Ivan Pavlov while 

conducting studies of the digestive system in dogs (Pavlov and Anrep, 1928)2. In the case of 

reward, the Pavlovian response is preparatory (e.g., approach) and consummatory. In the 

case of punishment, the Pavlovian response is avoidance (Rangel et al., 2008). These 

responses can be innate (e.g., avoidance of predator odors) or learned through experience. 

Owing to their simplicity, Pavlovian behavioral tasks have been invaluable in studying the 

neural basis of reward learning. One of the most celebrated examples at the intersection of 

reinforcement learning and neuroscience — that midbrain dopamine neurons encode reward 

prediction errors — was discovered in monkeys performing Pavlovian behaviors (Schultz et 

al., 1997). The simplicity of Pavlovian tasks is also limiting, particularly if there is a 

mismatch between the innate Pavlovian behavior and the response needed to obtain reward 

(e.g., withhold an action to obtain reward; Dayan et al., 2006).

2.2 Habitual systems

Habitual behavior describes the mapping of a large range of arbitrary motor responses to 

stimuli, through repeated reinforcement. Habit systems in the brain learn through trial-and-

error over relatively long timescales (Balleine and O’Doherty, 2010). Once learned, values 

are thought to be cached and behavior can be carried out ‘automatically’. As such, habits are 

thought to be computationally cheap but inflexible (Daw et al., 2005). It can also be difficult 

2Although it is commonly stated that Ivan Pavlov used a bell as a stimulus, this story appears to be apocryphal (Cambiaghi and 
Sacchetti, 2015).
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to unlearn habitual behavior. This particular feature is the rationale for outcome devaluation, 

a gold-standard test of habitual behavior. In outcome devaluation experiments, animals are 

first trained to associate a stimulus with a response (e.g., pressing a lever in response to a 

tone) to receive a reward. Following training, the outcome is devalued either by pairing with 

sickness or making the outcome freely available before the task. Animals are then tested to 

see if they respond to the stimulus. Continued behavioral responses are consistent with 

habitual behavior (Balleine and O’Doherty, 2010).

2.3 Goal-directed systems

Goal-directed systems are responsible for flexible decision making. They are thought to 

compute the outcomes associated with particular actions on fast timescales. As such, they 

are sensitive to changes in environmental contingencies. Outcome devaluation is also used to 

test the contribution of goal-directed systems to behavior (Balleine and O’Doherty, 2010). A 

reduction in responding is taken as evidence that behavior was driven largely by goal-

directed systems. This chapter focuses on delineating the contributions of goal-directed 

systems to flexible decision making. We will focus largely on behaviors, primarily because, 

in contrast to studies of sensory decision making, it is paramount to have a controlled 

behavior, in which the experimenter can quantify hidden variables, such as value.

3 Matching behavior

Several behavioral tasks have been used to study flexible decision making: outcome 

devaluation, reversal learning, set shifting, foraging, ‘mixed-strategy’ games, and matching 

behavior. Matching behavior (or the matching law) is a type of behavior that we will argue 

provides excellent conditions to study continual value-based learning. In matching tasks, 

animals freely choose among two or more options to harvest reward (Herrnstein and 

Heyman, 1979). Matching describes the tendency of animals to ‘match’ the fraction of 

choices to a particular option with the fraction of rewards received from that option. 

Mathematically, matching describes the following relationship:

ci
∑i = 1

N ci
= ri

∑i = 1
N ri

(1)

where ci is the number of choices allocated to option i and ri is the number of rewards 

obtained from option i, given N possible options. Matching behavior was first observed in 

pigeons (Herrnstein, 1961) and has since been observed in mice (Fonseca et al., 2015; Bari 

et al., 2019), rats (Gallistel et al., 2001; Graft et al., 1977), monkeys (Sugrue et al., 2004; 

Lau and Glimcher, 2005; Tsutsui et al., 2016), and humans (Pierce and Epling, 1983). 

Matching behavior is typically highly dynamic, with animals switching between options on 

fast timescales. In trial-based tasks, animals typically switch from one option to another with 

a mode of 1 trial. However, animals remain reward sensitive, and repeat recently-rewarded 

choices. As such, it can be considered a form of goal-directed behavior.
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3.1 Task conditions

Experimental psychologists use tasks in which reward delivery is contingent on schedules of 

reinforcement (Ferster and Skinner, 1957). Two commonly-used schedules are called 

‘variable ratio’ and ‘variable interval.’ Matching behavior is classically observed in tasks 

with variable interval schedules.

Variable ratio schedules are intuitive — reward is simply delivered with a fixed probability, 

much like flipping a (biased) coin. If given the choice between two variable ratio schedules, 

the optimal policy is to choose the higher probability option exclusively. Note that 

exclusively choosing one option is trivially consistent with matching behavior since all 

choices are allocated to one option, and all rewards are received from that option. 

Variableratio-schedule tasks are typically called ‘two-armed bandit’ tasks and tasks with 

changing probabilities are called ‘dynamic two-armed bandit’ tasks or, if the probabilities 

reverse, ‘probabilistic reversal learning’ tasks. In variable interval schedules, reward is 

delivered after a fixed time has elapsed. Once the time has elapsed, that option is ‘baited,’ 

guaranteeing reward delivery once chosen. This feature is thought to make these tasks 

ethologically relevant to study foraging. Although this seems like a trivial change, it changes 

the optimal policy significantly, which will be expanded on below. Intuitively, if given the 

choice between two variable interval schedules, it does not make sense to choose one option 

exclusively. Instead, one should occasionally probe the lower-probability option, to not miss 

out on a baited reward. In these circumstances, matching behavior emerges. In modern, trial-

based tasks, discrete versions of variable interval schedules are used, to allow for 

independent control over inter-trial intervals.

Variable ratio and variable interval schedules are not necessarily different categories but may 

be thought of as two extremes of a competitive foraging environment (Sakai and Fukai, 

2008a). Under this interpretation, ‘baited’ rewards are withdrawn with a particular 

probability. Variable interval schedules describe environments where the withdrawal 

probability is 0, imitating herbivore foraging environments without competitors. 

Intermediate withdrawal probabilities between 0 and 1 imitate competitive foraging 

environments where food may be intercepted by competitors. Variable ratio schedules are 

ones where the withdrawal probability is 1, which may resemble the foraging of carnivores.

3.2 Matching behavior is generally a suboptimal probabilistic policy

Given the task conditions that engender matching behavior, a natural question to ask is 

whether animals are matching because they are aware of baiting (i.e., accounting for 

environmental statistics) or are they agnostic to it? A key insight into this problem was 

developed by Sakai and Fukai (2008b), which we expand on below.

For simplicity, we will assume two choices (options a and b). Matching (equation 1) then 

reduces to the following form

ca
ca + cb

= ra
ra + rb

and cb
ca + cb

= rb
ra + rb

(2)
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Matching occurs when the relative fraction of choices to option i, ci, ‘matches’ the relative 

fraction of rewards, ri, from option i. Rearranging either equation gives 
ra
ca

=
rb
cb

. In other 

words, matching occurs when the mean reward from all options is equated. Written 

compactly,

ra = rb (3)

The average reward from both options can be written as

r = raπa + rbπb (4)

where πi is the probability of choosing option i. Because we have two options, πb = 1 − πa. 

We assume that the policy is controlled by a parameter x, yielding3

r (x) = ra(x)πa(x) + rb(x)πb(x) (5)

The parameter x explicitly influences the policy and implicitly influences the reward 

probabilities. Under variable-interval schedules, the longer one has stayed away from an 

option, the higher the probability of reward when that option is eventually selected4.

To maximize reward, we take the derivative of r (x) with respect to x and set it equal to 0.

dr (x)
dx = 0 = ra(x)dπa(x)

dx + rb(x)dπb(x)
dx + dra(x)

dx πa(x) + drb(x)
dx πb(x) (8)

This equation defines the optimal probabilistic policy. The first set of terms in parentheses is 

the explicit change in behavior when x is changed. The second set of terms is the implicit 

change in the environment brought about by the animal’s policy. One may hypothesize that 

this first computation (explicit change in behavior) is easy for the brain to perform while the 

second computation (implicit change in environment) is much more difficult. Sakai and 

Fukai’s critical insight was to recognize that the brain might ignore this second computation, 

which yields the reduced form

3For example, assume πa (x) is a softmax function: πa(x) = 1
1 + e−x .

4The mean reward obtained is a function of x. In variable-interval tasks, this is correct — the animal’s policy influences whether it is 
able to take advantage of the baiting rule. The longer the animal abstains from choosing an option, the greater the probability of 
reward when the animal chooses it. To express the baiting rule mathematically, we write the probability of reward from option i as

Pi(t) = 1 − 1 − pi
t + 1 (6)

where pi is the base reward probability and t is the number of consecutive trials since that option was last chosen. This equation states 
that the probability of reward asymptotically grows from pi to 1 the longer option i is unchosen. The mean return from option i can be 
written as

ri(x) = ∑
t = 0

∞
1 − πi(x) tπi(x)Pi(t) = ∑

t = 0

∞
1 − πi(x) tπi(x) 1 − 1 − pi

t + 1 =
pi

πi(x) + pi 1 − πi(x) (7)

These equations can be used to test whether matching is optimal, in closed form.
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dr (x)
dx = 0 = ra(x)dπa(x)

dx + rb(x)dπb(x)
dx (9)

It can be shown that solving equation (9) yields matching behavior. In other words, the 

solution is when ra = rb. Under what conditions is matching optimal?

Figure 1 provides a geometric intuition for how the policy influences reward in standard 

matching paradigms. Both options follow variable interval schedules (pa = 0.4; pb = 0.1). 

Light and dark blue illustrate ra and rb, respectively, as a function of the policy. The 

consequences of baiting are clear. The less often option a is chosen, the greater the 

probability of reward when it is chosen. The orange trace illustrates r  which, from equation 

(4), is the reward rate from both options, weighted by the probability of choosing each 

option. The optimal reward is at the maximum of this function, which occurs at P(choice to 

option a) ≈ 0.86. Matching behavior, when ra = rb (equation (3)), occurs when the two blue 

traces intersect one another. In standard matching paradigms, matching is the optimal 

probabilistic policy. However, in this circumstance matching can occur either if animals are 

aware of environmental statistics (equation (8)) or if they ignore it (equation (9)).

There is a strong-inference experiment that can test whether animals will continue to exhibit 

matching behavior, even when it is suboptimal. If they continue to show matching behavior, 

this is evidence that they likely do not take into account environmental statistics to make 

decisions. If they show optimal behavior, then they likely are. The key experiment is to only 

let one option follow a variable-interval schedule. The second option should deliver reward 

with a fixed reward probability (variable-ratio schedule). This example is illustrated in 

Figure 2 (pa = 0.3, variable-ratio option; pb = 0.24, variable-interval option). It is clear that 

option a, the variable ratio option, does not benefit from baiting. No matter how often it is 

chosen, the probability of reward is fixed. In this task, matching is not the optimal solution. 

When these types of tasks have been tested, matching behavior has been observed (Williams, 

1985; Herrnstein and Heyman, 1979; Vyse and Belke, 1992), including in humans 

(Savastano and Fantino, 1994). Under the theory proposed by Sakai and Fukai, these 

findings indicate that animals behave as if they are not aware of environmental statistics. 

This should not be taken as evidence that animals are unable to calculate these 

environmental statistics — simply that under these task conditions, they behave as if they do 

not. Manipulations designed to encourage optimal behavioral can be successful — for 

example, rewards that differ in magnitude rather than probability, and allowing practice 

without reinforcement (Tunney and Shanks, 2002).

Animals do not adopt deterministic switching policies—One limitation of the 

argument above is that it is limited to probabilistic policies. Deterministic switching policies 

(i.e., sample the other arm every n choices) are the true optimal policies. For example, if 

given two variable-interval options in which the base probabilities are pa = 0.4 and pb = 0.1, 

the optimal policy is to choose option a four times and choose option b once. This is 

because, according to equation (6), after not being selected for four consecutive trials, the 

probability of reward from option b has climbed from 0.1 to 0.4095, at which point the 

probability of reward is greater than option a, and it should be chosen. After option b has 
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been chosen, the probability of reward drops again to 0.1, the probability of reward on 

option a is now 0.64 (since it has not been chosen for one trial), and option a should be 

chosen.

These policies are easy to diagnose, since stay duration histograms will not display a 

characteristic exponential shape. Under the hypothesis that animals are adopting a 

deterministic switching policy, stay durations should instead display a bimodal shape. We 

are not aware of any human or animal studies demonstrating such behavior, although a 

computational study trained artificial neural networks which exhibited these switching 

policies in certain conditions (Wang et al., 2018).

Matching behavior vs. probability matching—Matching behavior should not be 

confused with probability matching. Matching behavior and probability matching are 

observed in very different task conditions. Probability matching refers to the tendency of 

subjects to match the relative fraction of choices to the probability of reward in two-armed 

bandit tasks (Mongillo et al., 2014). In two-armed bandit tasks, unlike matching behavior 

tasks, reward probability does not depend on past choices - the options follow variable-ratio 

schedules. For example, if pa = 0.75 and pb = 0.25, probability matching occurs when 

subjects choose option a 75% of the time and option b 25% of the time. This is clearly a 

suboptimal policy, since the subject should choose option a 100% of the time.

Mathematically, probability matching can be written as

ca
ca + cb

= pa
pa + pb

(10)

where pi is the probability of reward associated with option i. Unlike matching behavior, 

there is no circumstance in which probability matching is optimal. Intuitively, in a two-

armed bandit task, the optimal policy is to exclusively choose the high-probability option. To 

see more rigorously how matching behavior and probability matching are incompatible, note 

that the actual reward received from option i is ri = pi · ci. Matching behavior is therefore

ca
ca + cb

= ra
ra + rb

= pa ⋅ ca
pa ⋅ ca + pb ⋅ cb

(11)

With fixed reward probabilities, matching behavior is obtained when ca = 0 or cb = 0, which 

is incompatible with probability matching. In two-armed bandit tasks, matching behavior is 

(trivially) to exclusively choose one option - the optimal policy.

Interestingly, probability matching and undermatching, the tendency to behave more 

randomly than perfect matching behavior, may share the same underlying mechanism. If 

subjects believe the world is more unstable or prone to change than it truly is, both of these 

phenomena can emerge (Shanks et al., 2002; Yu and Cohen, 2009; Yu and Huang, 2014).
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3.3 Dynamic foraging tasks

In addition to the ethological relevance of matching behavior, a useful feature is the 

tendency of animals to exhibit highly flexible behavior, switching from one option to 

another on short timescales. However, one limitation of classic matching paradigms is 

reward contingencies are typically fixed within sessions and varied across sessions. 

Practically, both trial-by-trial algorithmic studies of behavior and neurophysiologic studies 

of flexible behavior benefit from task designs that better capture the full dynamic range of 

matching within session. Take the example in Figure 3. Matching behavior is typically 

illustrated in these types of plots, with the relative reward ratio on the x-axis and choice ratio 

on the y-axis. Imagine a single session with fixed reward contingencies that yield a reward 

ratio of ~ 0.8 and a choice ratio of ~ 0.6. This single data point would be consistent with 

both undermatching (the blue curve; tendency to behave more randomly than perfect 

matching) and biased matching (the orange curve; tendency to prefer one choice more than 

another). Since these two hypotheses have very different algorithmic and neural 

underpinnings, it is useful to use a task design that allows one to measure along multiple 

choice/reward ratios. Dynamic foraging tasks are variable-interval/variable-interval tasks 

with multiple reward contingency changes in one session (Sugrue et al., 2004; Lau and 

Glimcher, 2005; Tsutsui et al., 2016; Gallistel et al., 2001). This task variant elegantly solves 

this problem.

4 Algorithms underlying matching behavior

Matching is a description of macroscopic, averaged behavior. An important question 

therefore is how does matching behavior emerge from trial-by-trial behavior?

4.1 Melioration

Melioration is among the earliest trial-by-trial algorithms developed to solve this problem 

(Herrnstein and Vaughan, 1980). This algorithm states that behavior should tend towards the 

option with the highest local rate of reinforcement (the highest 
ri
ci

 ratio), which yields 

matching behavior in the limit. This algorithm was studied extensively by Herrnstein and 

others, largely to contrast with theories of optimal decision making (Herrnstein, 2000).

4.2 Local matching

Local matching is another algorithm designed to yield matching behavior (Sugrue et al., 

2004). Under local matching, the agent exponentially integrates reward from each option 

and maps the local reward ratio to a probability of choice.

ra
ra + rb

= P ca (12)

where r i is the local estimate of reward. For example, r i can be updated as

r i = r i + α R − r i (13)
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each time option i is chosen (where R is reward). Although melioration and local matching 

both do a reasonable job describing behavior, deep insight is limited since both of these 

algorithms were designed to exhibit matching behavior.

4.3 Covariance-based update rules

A general insight into this problem was developed by Loewenstein and Seung (2006). 

Assume a change in synaptic weights ΔW is given by the following form

ΔW = α ⋅ cov(R, N) (14)

where α is a plasticity rate, R is reward, and N is neural activity. It can be shown that 

synaptic plasticity update rules of this form converge to matching behavior. Examples of 

these update rules include

ΔW = α ⋅ (R − E(R))N (15)

ΔW = α ⋅ R(N − E(N)) (16)

ΔW = α ⋅ (R − E(R))(N − E(N)) (17)

where E(X) is the expected value. These particular update rules are equivalent to the 

learning rules in the direct actor and actor-critic reinforcement learning algorithms (Dayan 

and Abbott, 2001; Sakai and Fukai, 2008a,b). These results demonstrate that matching 

behavior can be the outcome of very simple learning rules, a remarkably deep insight and 

one that makes it possible to more confidently interpret neural correlates of value-based 

decision making in these behaviors.

4.4 Logistic regressions

One of the most common means of analyzing behavior in dynamic foraging tasks is to 

calculate logistic regressions to predict choice as a function of reward history and choice 

history (Lau and Glimcher, 2005; Fonseca et al., 2015; Sul et al., 2011; Tsutsui et al., 2016). 

These models take the following form

log P ca(t)
1 − P ca(t) = ∑

i = 1

N
βi

R Ra(t − i) − Rb(t − i)

+ ∑
i = 1

N
βi

c ca(t − i) − cb(t − i) + β0

(18)

where

Ra(t) = 1, if option a was rewarded
0, if either option was not rewarded (19)
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ca(t) = 1, if option a was chosen
0, if option b was chosen (20)

and vice versa for Rb(t) and cb(t).

These particular models are powerful since they can capture arbitrary linear combinations of 

reward and choice history (up to N trials into the past) to predict upcoming choices. A 

frequent observation is that choices have a positive dependence on reward history (βi
R

coefficients), often multiple trials into the past. The interpretation is that previous rewarded 

choices reinforce future choices to that option. Previous choices (generally 1–2 trials) tend to 

have negative coefficients (βi
c coefficients), meaning animals tend to switch their choices 

over short timescales, regardless of reward history. Interestingly, negative βi
c coefficients are 

generally not seen in tasks without baiting (Parker et al., 2016). Given the arguments above 

suggesting that animals behave as if they are not aware of the baiting rule, one potential 

explanation is that animals are implementing a simple ‘switch’ heuristic to increase reward 

rate.

A major limitation of the logistic regression formulation is that only linear combinations of 

the input can be used. An immediate consequence of this can be seen by observing that 

when Ra(t) − Rb(t) = 0, the model cannot discriminate whether it was option a that was not 

rewarded or option b. A solution to this problem may exist, since it has been shown that the 

logistic regression model is identical to an action-value reinforcement learning model with 

identical learning and forgetting rates (Katahira, 2015). This suggests that the action-value 

reinforcement learning model may be a suitable template to build interpretable algorithms 

that capture the essence of matching behavior.

4.5 Action-value reinforcement learning algorithm (Q-learning)

The action-value reinforcement learning (or Q-learning) algorithm is a general-purpose 

learning algorithm that keeps track of the values (i.e., expected future reward) of available 

actions and makes decisions based on the difference between action values (Watkins and 

Dayan, 1992). It has been widely applied both in neuroscience (Samejima et al., 2005; Sul et 

al., 2010; Li and Daw, 2011; Akam et al., 2017) and machine learning (Mnih et al., 2015). If 

we assume a task with two actions, a common implementation is to assume a single state 

and update the Q-values as follows. If action on trial t = a

Qt + 1(a) = Qt(a) + α r − Qt(a) (21)

Qt + 1 b = Qt b (22)

The difference between Q-values is used as an input into a softmax function to produce the 

probability of a choice.
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P (action on trial t = a) = 1
1 + e−β Qt(a) − Qt(b) (23)

P (action on trial t = b) = 1 − P (action on trial t = a) (24)

Forgetting can be introduced as (where action on trial t = a)

Qt + 1(a) = ζQt(a) + α r − Qt(a) (25)

Qt + 1(b) = ζQt(b) (26)

Forgetting can be applied to just the unchosen action or both actions (Katahira, 2015; 

Farashahi et al., 2018; Bari et al., 2019; Hattori et al., 2019).

4.6 Bayesian inference

Bayesian inference algorithms use Bayes rule to iteratively update estimates of reward 

probability. They are powerful since they estimate full probability distributions, allowing 

them to make decisions that take into account uncertainty in their estimates, as well as 

higher-order moments. For example, if the algorithm estimates both options to have a mean 

reward probability pa = pb = 0.5, but the uncertainty of pa > pb, then it is adaptive to choose 

pa since the true mean reward rate might be higher, increasing reward in the long term 

(Sutton and Barto, 1998). These algorithms have been used to argue that matching might 

occur due to uncertainty about changing reward dynamics (Yu and Huang, 2014). In general, 

they have seen limited use for quantifying matching behavior, since simpler models often do 

well enough.

5 Movement vigor during flexible decision making

Decisions are much more complex than just discrete choices. Behavior occurs in real-time 

and the nervous system must finely calibrate the vigor of movements. Vigor, often defined as 

reaction time plus speed of movements, has long been studied in the context of motor 

control (Choi et al., 2014; Rigas et al., 2016; Reppert et al., 2018). Recently, vigor has been 

appreciated as a reflection of value (Shadmehr et al., 2019). Vigor is increased by increasing 

reward (Summerside et al., 2018), decreased by increasing effort (Stelmach and 

Worringham, 1988), and modulated on short, individual-decision timescales (Reppert et al., 

2015).

From a normative perspective, modulating vigor in relation to value/effort is an appropriate 

computation (Niv et al., 2007; Yoon et al., 2018). Because increased vigor requires greater 

energy (Selinger et al., 2015; Hoyt and Taylor, 1981; Ralston, 1958), it is not always 

appropriate to move with high vigor. However, in the context of a highly rewarding 

environment, it can be worth increasing vigor to increase reward rate, since slow movements 

necessitate a longer time between movement initiation and receipt of reward. It is clear that 

the brain modulates movement vigor to maximize reward rates (Haith et al., 2012).
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In the context of flexible decision making, moment-to-moment vigor has been shown to be 

as flexible as choice-based behavior. One study employed a dynamic two-armed bandit task 

in rats and found that latency of task initiation was highly correlated with instantaneous 

probability of reward (Hamid et al., 2016). Movement vigor was most strongly modulated by 

the reward rate of the environment (how much reward can be expected regardless of action), 

and much less so by relative reward rates (how much better one option is relative to another). 

A number of studies have demonstrated that recent reward history modulates movement 

vigor (Del Arco et al., 2017; Simon et al., 2015; Bari et al., 2019; Ottenheimer et al., 2020).

6 Brain structures underlying flexible behavior

Extensive work, most of it in humans, has correlated changes in activity in multiple brain 

regions with variables from reinforcement-learning models (e.g., Daw et al., 2006; Doya, 

2008). The vast majority of these studies have focused on brief changes in activity of 

neurons or fMRI signal (seconds or less) and model variables that change on similar 

timescales.

One key variable, common to many algorithms, is the reward prediction error, the difference 

between actual and predicted reward. We know much about these signals, especially in the 

context of foraging (Morris et al., 2006; Parker et al., 2016). However, we know much less 

about the representations of the decision variables updated by these reward prediction errors. 

In particular, all algorithms of flexible behavior require memory: a summary of previous 

interactions with the environment that allows for adaptive behavior in the future. Whereas 

this memory signal — typically in the form of action values or their arithmetic combinations 

— has been observed in several brain structures, most notably the dorsal striatum (e.g., 

Samejima et al., 2005), it is largely transient and occurs around the time of cues and actions. 

It is less clear where these memory signals reside in between bouts of interaction with the 

environment.

6.1 Cortico-basal-ganglia loops: medial prefrontal cortex and dorsomedial striatum

The medial prefrontal cortex (mPFC) and its downstream target, the dorsomedial striatum, 

have long been studied as critical components for generating flexible behavior5. One view of 

this circuit is that cortex provides signals to bias action selection (Murakami et al., 2017) 

and the striatum is responsible for action selection itself. Cortical circuitry is predominantly 

recurrent, which is hypothesized to allow for integration of information which can be routed 

to striatum to bias action selection. Striatal circuitry, in contrast, is predominantly inhibitory 

and weak, with lateral inhibition motifs, facilitating a winner-take-all operation (Morita et 

al., 2016). The classic view of the striatum considers two parallel cortico-striato-cortical 

loops, operating to initiate and inhibit actions (Figure 4). The ‘Direct’ or ‘Go’ pathway, 

consists of cortical inputs to D1-expressing medium spiny neurons in the striatum, which 

synapse onto globus pallidus pars interna (entopeduncular nucleus in the rodent (Grillner 

5In rodents, mPFC typically refers to (from dorsal to ventral) the anterior cingulate cortex, the prelimbic cortex, the infralimbic cortex, 
and the medial orbital cortex. Dorsal mPFC usually means anterior cingulate cortex and prelimbic cortex, and ventral mPFC usually 
means infralimbic cortex and medial orbital cortex. In general, since the study of mPFC is still nascent, especially in mice, stereotactic 
coordinates are useful for comparing studies.
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and Robertson, 2016; Wallace et al., 2017)) and the substantia nigra pars reticulata. These in 

turn synapse onto the thalamus, and back to the cortex, completing the loop. The ‘Indirect’ 

or ‘No-Go’ pathway consists of cortical inputs synapsing onto D2-expressing medium spiny 

neurons, which in turn synapse onto the globus pallidus pars externa → subthalamis nucleus 

→ globus pallidus pars interna and substantia nigra pars reticulata → thalamus, and finally 

back to cortex (Shipp, 2017).

Lesions of either the medial prefrontal cortex or the dorsomedial striatum are known to 

abolish goal-directed behavior and render behavior under the control of sensorimotor 

associations (Balleine et al., 2007; Kennerley et al., 2006). Neurons in rat dorsal mPFC 

predict upcoming outcomes, before they have been presented (Del Arco et al., 2017), and 

monitor action/outcome contingencies (Simon et al., 2015; Hyman et al., 2013; Sul et al., 

2010). Neurons in primate medial frontal cortex signal prediction errors of action values 

(Matsumoto et al., 2007) and those in anterior cingulate cortex encode reward history as well 

as reward prediction errors6 (Seo and Lee, 2007). In humans, fMRI studies have revealed a 

role for medial frontal regions in encoding reward magnitude and value of chosen actions 

(Daw et al., 2006). Higher network coordination between cortex and striatum predicts 

changes in learning and decision making (Gerraty et al., 2018).

Recordings in the primate caudate, a homolog of the rodent dorsomedial striatum, have 

demonstrated encoding of action values and chosen values, key signals in reinforcement 

learning models of behavior (Samejima et al., 2005; Lau and Glimcher, 2008). Later studies 

discovered preferential encoding of the difference of temporally-discounted values, and 

encoding of future actions (Cai et al., 2011). Recordings in the dorsomedial striatum of the 

rat have confirmed these findings (Ito and Doya, 2009, 2015; Kim et al., 2013; Seo et al., 

2012), and extended them by demonstrating encoding of total value, necessary for 

modulating vigor (Wang et al., 2013). Manipulation of striatal subpopulations modulates 

choice-based behavior in a manner consistent with changes in action values (Tai et al., 

2012). Unilateral activation of D1-expressing medium spiny neurons in the dorsomedial 

striatum bias animals to make more contralateral actions. Conversely, unilateral activation of 

D2-expressing neurons in the dorsomedial striatum bias animals to make more ipsilateral 

actions. Similar results were obtained with pharmacological manipulation of D1/D2 

receptors in the primate putamen (Ueda et al., 2017). These findings align with the classic 

view that D1-expressing neurons are organized into the ‘Go’ pathway to initiate behavior, 

and D2-expressing neurons are organized into a ‘No-Go’ pathway to inhibit behavior.

Recent work has focused on mouse mPFC, a structure known to have persistent working-

memory-like neural correlates (Liu et al., 2014), as the potential site where decision 

variables are maintained in between bouts of interaction with the environment. Persistent 

activity is a viable network mechanism for maintaining representations of decision variables 

in the times between choices. Persistent activity, defined here as activity that lasts longer 

than the time constants of synaptic inputs, was first described in the prefrontal cortex and 

6Comparisons between rodent and primate frontal structures should be taken with a grain of salt, as anatomical homologies between 
these orders is weak (Uylings et al., 2003).

Bari and Cohen Page 13

Int Rev Neurobiol. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mediodorsal thalamus of primates and is thought to be a critical component of working 

memory (Fuster and Alexander, 1971).

We recently recorded from mPFC neurons, including those that projected to dorsomedial 

striatum, in mice performing a matching task (Bari et al., 2019). Individual mPFC neurons 

showed persistent representations of two key decision variables for matching behavior: 

relative value — used to bias choices — and total value — used to bias response time (or 

“vigor”). Remarkably, these two forms of persistent activity showed different rates of decay, 

that matched the behavior they supported. Relative-value activity did not appear to decay 

during long inter-choice intervals (tens of seconds); neither did the mouse’s memory of its 

choice policy (Figure 5). In contrast, total-value activity decayed slowly over long inter-

choice intervals; likewise, mice made slower choices after long waiting times. These 

variables did not appear to be robustly encoded by tongue premotor neurons. These data 

suggest that cortico-basal-ganglia-thalamo-cortical loops maintain value-based decision 

variables, and that information flow in the circuit is not a simple linear flow of 

computations.

Tool development has allowed for precise pathway-specific modulation. In our recent study, 

we found that inactivation of the mPFC → dorsomedial striatal pathway disrupted choice 

behavior and slowed vigor, consistent with a disruption of cognitive variables necessary for 

value-based decision making (Bari et al., 2019). This is similar to a recent study which 

demonstrated that the mPFC → striatum and mPFC → thalamus pathways were necessary 

for choice behavior, but not the mPFC → mPFC pathway (Nakayama et al., 2018). Another 

group demonstrated that the mediodorsal → mPFC pathway, but not the mPFC → 
mediodorsal thalamus, is necessary for updating understanding about the causal structure of 

actions, although both were necessary for goal-directed behavior (Alcaraz et al., 2018). This 

is consistent with the notion that the cortico-basal ganglia system is critical for flexible 

behavior, since the former, but not the latter, pathway is part of this system.

Taken together, these results highlight the key concept that the brain has dedicated circuitry 

for different behavioral strategies, and that the rodent dorsal medial prefrontal cortex and 

downstream dorsomedial striatum are important structures for driving flexible behavior.

6.2 Neuromodulatory systems

Neuromodulatory systems are remarkably unique. These systems are each composed of very 

small numbers of cells, yet have outputs that arborize to span large volumes of tissue. This 

feature makes them poised to exert global control over neural states and computations.

Midbrain dopamine is a particularly well-studied neuromodulator. Dopamine neurons in the 

midbrain encode reward prediction errors, a critical variable in reinforcement learning 

models of flexible behavior (Schultz et al., 1997; Bayer and Glimcher, 2005; Morris et al., 

2006; Roesch et al., 2007; Cohen et al., 2012). Manipulation of the dopamine system 

profoundly affects learning, for both Pavlovian associations (Steinberg et al., 2013) and for 

flexible decisions (Parker et al., 2016; Hamid et al., 2016). Dopamine densely innervates the 

striatum, where it bidi-rectionally modulates the plasticity of corticostriatal synapses, 

depending on the downstream receptor (Reynolds and Wickens, 2002). This feature makes 
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dopamine an integral component that enables the cortico-basal ganglia system to modulate 

flexible behavior.

Serotonin is comparatively less-well understood, in large part to substantial heterogeneity in 

this system relative to midbrain dopamine. In large thanks to tool development (Lima et al., 

2009), extracellular recording of single cell-type-identified serotonin neurons has allowed 

for inroads to be made. Recent work has shown that a subset of serotonin neurons in the 

dorsal raphe nucleus encodes value over very long timescales (Cohen et al., 2015), which 

may relate to the encoding of background reward rate, a key variable in models of optimal 

foraging behavior (Charnov et al., 1976). Activation of dorsal raphe serotonin neurons in 

mice performing a dynamic foraging task leads to increases in learning rates (Iigaya et al., 

2018) and promotes persistence in mice performing a patch foraging task (Lottem et al., 

2018). These findings must be interpreted with caution, however, since serotonin 

manipulation can have opposite effects on behavior, depending on the outputs of distinct 

subpopulations of neurons (Ren et al., 2018).

Norepinephrine produced by neurons in the locus coeruleus is thought to be critical for 

behavioral flexibility. These neurons respond to salient events, which has led to the 

hypothesis that norepinephrine is critical for arousal and attention (Kety, 1970; Carter et al., 

2010; Aston-Jones et al., 2000; Harley, 1987). Classic work demonstrated that activation of 

locus coeruleus norepinephrine can alleviate forgetting in a complex maze task (Devauges 

and Sara, 1991) and facilitate attentional shifts (Devauges and Sara, 1990). Formal theories 

of norepinephrine suggest that the system encodes unexpected uncertainty (Dayan and Yu, 

2006; Yu and Dayan, 2003, 2005) and facilitate exploitation/exploration of task 

contingencies (Aston-Jones and Cohen, 2005).

6.3 Other structures

Although we have focused heavily on cortico-basal ganglia systems and neuromodulatory 

systems, flexible behavior relies on a much larger network of structures. The orbitofrontal 

cortex, and its upstream/downstream structures, are critical for flexible behavior. Examples 

include the orbitofrontal cortex → submedius nucleus pathway (Fresno et al., 2019) and the 

amygdala → orbitofrontal cortex pathway (Fiuzat et al., 2017). The orbitofrontal cortex 

encodes reward magnitude (Simon et al., 2015) and codes for chosen value and reward 

prediction errors more strongly than mPFC (Sul et al., 2010). Other important structures 

include the posterior parietal cortex and posteromedial cortex (Funamizu et al., 2016) and 

the ventral hippocampus (Yoshida et al., 2019). This list is by no means exhaustive and 

serves simply to indicate that large portions of the brain are critical for flexible decision 

making.

7 Future directions

Despite sophisticated theoretical and modeling insight about flexible decision making, there 

remains a gap in our knowledge of how the entire loop — sensory signal to discrete action 

— is instantiated in neural circuitry. One direction that we believe is due for further study is 

expanding action space to more than two discrete actions, especially using continuous action 
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space. This is likely to enhance our theories of value representation in the mPFC, extending 

beyond the relatively impoverished regime of binary choices.
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Figure 1: 
Matching is the optimal probabilistic policy in variable-interval / variable-interval tasks.
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Figure 2: 
Matching is not optimal in variable-interval / variable-ratio tasks.
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Figure 3: 
Dynamic foraging tasks allow for better characterization of behavior
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Figure 4: 
Classic view of the ‘Direct’ and ‘Indirect’ striatal pathways. Figure adapted from Shipp 

(2017).
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Figure 5: 
(A) Reinforcement-learning model (left) and fit to example mouse behavior (right). (B) 

Persistent activity representing relative (left panel) and total (right panel) value. (C) 

Schematic of variables from the model represented in mPFC. Figure adapted from Bari et al. 

(2019).
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