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Abstract

Objective: In tissue engineering, biomaterials create a 3D scaffold for cell-to-cell adhesion,
proliferation and tissue formation. Because of their similarity to extracellular matrix and
architectural adaptability, nanofibers are of particular interest in tissue engineering.
Electrospinning is a well-documented technique for nanofiber production for tissue engineering
scaffolds. Here we present literature on the applications of electrospinning in the field of
otolaryngology.

Review Methods: A PubMed database search was performed to isolate articles published about
applications of electrospun nanofibers for tissue engineering in otolaryngology. Study design, size,
material tested, site of application within the head and neck, and outcomes were obtained for each
study.

Results: Almost all data on electrospinning in otolaryngology was published in the last 6 years
(84%), highlighting its novelty. A total of 25 pre-clinical studies were identified: 9 in vitro studies,
5 in vivo animal studies, and 11 combination studies. Sites of application included: tracheal
reconstruction (n = 16), tympanic membrane repair (n = 3), cranial nerve regeneration (n = 3),
mastoid osteogenesis (n = 1) and ear/nose chondrogenesis (n = 2).
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Implications for Practice: Tissue engineering is a burgeoning field, with recent innovative
applications in the field of otolaryngology. Electrospun nanofibers specifically have relevant
applications in the field of otolaryngology, due in part to their similarity to native extracellular
matrix, with emerging areas of interest being tympanic membrane repair, cranial nerve
regeneration and tracheal reconstruction.
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Introduction

In tissue engineering, biomaterials are used to create synthetic 3-dimensional scaffolds for
cell-to-cell adhesion, proliferation and tissue formation. Because of their similarity to
extracellular matrix (ECM) and architectural adaptability, nanofibers are of particular
interest in tissue engineering.! Electrospinning has recently emerged as a well-documented
technique for nanofiber production for tissue engineered scaffolds.! It is a highly versatile
and robust technique in which fibers can be fabricated with diameters spanning from several
nanometers to tens of micrometers. Electrospun fibers can act a functional environment for
cells during tissue regeneration.?

The process of electrospinning for nanofiber production is relatively new, introduced in the
1990s.3 Since then, electrospun materials have shown promise in a range of tissue
engineering applications.3 Electrospinning is particularly appealing due to its relatively low
production costs and simple setup, in addition to the large amount of customizability.2 The
ability to manipulate various process parameters, including polymer choice, concentration of
polymer, flow rate, needle tip distance and temperature of the solution, can lead to subtle
alterations in nanofiber characteristics.® This allows precise control over scaffold
characteristics, such as pore size, fiber diameter, fiber alignment, as well as surface
chemistry.?

Tissue engineering is particularly germane to the field of otolaryngology, given the paucity
of existing tissue analogues for structures within the head and neck. Due to their
architectural adaptability and customizability, electrospun nanofiber scaffolds may be
uniquely applied to tissue engineering applications within otolaryngology. Maintaining
integral structure and function within the head and neck is imperative; thus the comparability
of electrospun nanofibers to the native extracellular matrix is ideal for the creation of tissue
engineered scaffolds that promote growth and regeneration of tissues within the head and
neck (Figure 1).

Here, we present a synopsis of the published literature regarding applications of tissue
engineered electrospun nanofiber scaffolds for tissue replacement and regeneration within
the head and neck. To date, a review of the applications of electrospinning for tissue
engineering applications within the head and neck has yet to exist. Our ultimate goal is to
elucidate nanofiber characteristics and polymer compositions that are most ideal for various
applications within otolaryngology.
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Review Methods

Results

A comprehensive search of the United States National Library of Medicine (PubMed) and
Scopus databases was performed to identify all publications about electrospinning with
applications in otolaryngology. Study design, study size, polymer choice, presence of seeded
cells or growth factors, site of application within the head and neck and outcomes were
recorded for each study.

Search terms “electrospinning,” “nanofibers,” “otolaryngology,” “head and neck and “tissue
engineering” were used to isolate pertinent studies. All studies were reviewed and narrowed
based on the following inclusion criteria: (1) in vitro studies, in vivo studies or a
combination of the 2 testing electrospun nanofibers scaffolds for applications within the
head and neck. Exclusion criteria included: (1) studies about electrospinning applications
outside the head and neck, (2) studies about nanofibers created from other tissue engineering
techniques besides of electrospinning and (3) studies about electrospinning applications
other than tissue engineering (ie, drug delivery).

Given the lack of statistically robust studies, we did not factor in meaningful statistical
analysis into our inclusion criteria. We included studies assessing the addition of seeded
cells or growth factors to the tissue engineered scaffold. We isolated a total of 25 studies
about applications of electrospinning for tissue engineering within the head and neck.

A total of 25 studies were identified, with almost all data on electrospinning applications in
otolaryngology being published in the last 6 years (84%), highlighting the novelty of this
data. All studies were pre-clinical: 9 in vitro studies, 5 in vivo animal studies, and 11
combination studies. Approximately 80% (20 of 25) of studies tested electrospun nanofiber
scaffolds with the addition of seeded cells or growth factors. Anatomic sites of application
are represented in Figure 2. Table 1 contains a brief synopsis of each study, broken down by
anatomical site.

Tracheal reconstruction

Sixteen studies were isolated pertaining to the application of electrospun nanofibers as tissue
engineered tracheal grafts (TETG) for reconstruction of long segment tracheal defects.1:4-18
Although the specifics of scaffold design and fabrication vary for each study, Clarke and
colleagues describe a representative process: First a custom mandrel was created from
stainless steel with dimensions matching those obtained from native juvenile sheep tracheas.
16 Once the desired polymer blend was selected, this solution was electrospun using a
custom designed apparatus comprised of 20 gauge blunt tip needles and a high voltage direct
current (DC) power supply (Figure 3). The scaffold was modeled using a stainless steel
template.16 A medical grade polycarbonate sheet was cut to create C-rings, which were
manually embedded into the graft during the electrospinning process.1® Grafts were then
washed in deionized water and sterilized.16
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The combination of polymers polyethylene terephthalate (PET) and polyurethane (PU) in
various ratios has been explored for use in TETGs.>7:9-11.13.16 CJark and colleagues tested
70:30 PET:PU grafts seeded with bone marrow-derived mononuclear cells in an ovine
model.1® Three centimeter TETGs were surgically implanted into the mid-cervical trachea

of juvenile sheep.16 Bronchoscopy was used to evaluate TETG healing at 7 and 14 days after
implantation, and at the study endpoint sheep were autop-sied and TETGs explanted.16 No
cases of acute TETG failure were noted, and graft stenosis was noted in 2/2 unseeded
scaffolds and 1/3 seeded scaffolds.16 Best and colleagues produced electrospun nanofiber
scaffolds constructed of PET:PU in mixtures of 20:80 percent by weight and found that these
TETGs closely approximate the compliance of native ovine trachea.ll Additionally, grafts
comprised of this polymer ratio had superior cell seeding capacity compared to ratios of
80:20 PET:PU.1! Implantation of these scaffolds revealed graft stenosis within several weeks
that ultimately required graft stenting.13 Despite significant improvement of respiratory
symptoms and overall survival with endoscopic intervention and graft stenting, PET:PU
TETGs demonstrated chronic inflammation, foreign body reaction, and poor
epithelialization.” Subsequent studies in a mouse model of tracheal replacement using a
representative scaffold has demonstrated that PET:PU is capable of supporting a functional
epithelium; however, graft epithelialization occurs in the presence of chronic inflammation.®

Both poly(L-lactic) acid (PLLA) and poly(L-lactide-co-caprolactone) (PLCL) have been
preliminarily explored in tracheal reconstruction; in a rat model, pre-vascularized PLCL/
collagen grafts demonstrated reduced immunogenicity in addition to tracheal tissue
regeneration.8-14 Electrospun polycaprolactone (PCL) scaffolds have also been explored in
TETGs.6121517.18 Townsend et a/ studied TETGs derived from PCL in an ovine model and
showed that these grafts were suturable, airtight and durable.12 However, an overgrowth of
fibrous tissue around the site of reconstruction was noted.12 Further, these grafts showed
poor tissue integration, likely contributing to the rate of fibrous tissue overgrowth and
stenosis.12

In fact, the most frequently reported issues with TETGs in the literature are stenosis and
delayed epithelialization.>7:10-12 Some evidence indicates TETGs seeded with bone
marrow-derived mononuclear cells exhibit delayed stenosis and increased epithelial
migration.” Seok Jang et a/studied a PCL and collagen nanofiber TETG seeded with human
umbilical cord serum and found that it promoted the growth of cartilage and epithelial cells
in guinea pigs without a simultaneous increase in inflammation.! TETGs that are
supraphysiologic in compression tests compared to native in vivo models may confer higher
rates of graft stenosis; non-resorbable grafts may also contribute to more frequent stenosis
(Table 1).10.11

Tympanic membrane repair

We isolated 3 studies pertaining to the application of electrospun nanofibers for tympanic
membrane (TM) repair.1%-21 A representative model of scaffold production described by Li
and colleagues is as follows: The desired polymer solution was loaded into a plastic syringe
with copper needle tip, which was connected to a high voltage DC generator (Figure 3).20
An aluminum foil collector plate was placed 10 cm from the tip of the needle.29 Once the
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web of fibers was created, it was vacuum dried, and a 5 mM glutaraldehyde solution was
used to crosslink the fibers, maintaining morphology and preventing dissolution.20

Seonwoo and colleagues created an electrospun 8% PCL nanofibrous scaffold containing
epidermal growth factor (EGF) and applied it in a rat model of chronic TM perforation.1®
Perforation closure rate was observed weekly for 8 weeks in each of the study groups:
random fibers with EGF, radially aligned fibers with EGF and a control group. Radially
aligned nanofibers combined with EGF led to the quickest regeneration rates, with TM
thickness approximating that of normal TMs.1 Two in vitro studies were also identified,
showing promise for gelatin/genipin nanofibrous scaffolds and poly(lactic-co-glycolic) acid
and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) nanofibrous scaffolds.
20.21 Both of these grafts were seeded with stem cells and showed appropriate mechanical
characteristics for TM repair (Table 1).20.21

Cranial Nerve Regeneration

Three studies were isolated assessing the application of electrospun nanofibers for cranial
nerve regeneration. Previous studies have shown efficacy of electrospun nanofiber scaffolds
for peripheral nerve regeneration.28 Here we identified two studies assessing facial nerve
regeneration and 1 study assessing auditory nerve regeneration. Each of the 3 studies had an
in vivo component, although the 2 facial nerve studies had more robust sample sizes (n = 16
and n = 30) compared to the auditory nerve study with a sample size of 2.22-24

Hackleberg et a/used a PCL-based scaffold comprised of a blend of 4:1 PCL:PLLA (poly
(L-acetic) acid) to assess auditory nerve recovery in a sample size of 2 guinea pigs.22
Nanofibers were collected on a rotating disc placed 30 cm away from the tip of the needle,
allowing the creation of a hollow PCL tube.?2 Both with the addition of neural precursor
cells and without, auditory nerves showed partial recovery.22 Hu and colleagues assessed
silk fibroin scaffolds, which showed no sign of inflammatory response in the host Sprague
Dawley rats with facial nerve regeneration activity comparable to nerve autografts.24 Jang
and colleagues assessed various nanofibrous tube-shaped scaffolds and found that those
created from the combination of PCL/collagen and human umbilical cord serum most
successfully promoted facial nerve regeneration in rats (Table 1).23

Osteogenesis and Chondrogenesis

Applications of electrospinning for osteogenesis and chrondrogenesis have been explored in
depth outside the head and neck. Germane to the field of otolaryngology, we identified one
study assessing the application of electrospun nanofiber scaffolds for mastoid osteogenesis,
and two studies pertaining to nasal and auricular chondrogenesis, respectively.2>-27 Jang and
colleagues studied a PCL/collagen and beta tri-calcium phosphate (B-TCP) electrospun
nanofiber scaffold for mastoid bone regeneration in an in vivo guinea pig model.2> The
scaffolds in which type 1 collagen was embedded within layered PCL/B-TCP struts
displayed broader cell attachment sites and increased osteogenesis compared to scaffolds
without collagen.25 Dahl and colleagues found that human umbilical cord mesenchymal
stem cells (hUMSCs) grown on PLGA scaffolds had higher rates of auricular cartilage
expression in an in vitro model.26 San Marina and colleagues constructed electrospun
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scaffolds of 5 different polymer blends, with preliminary findings suggesting polydioxanone
(PDO) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), with and without the
addition of PCL, showed the greatest amount of matrix deposition when a nasal
chondrogenic supplement was applied in an in vitro model (Table 1).27

Implications for Practice

Tissue engineering is a burgeoning field, with recent innovative applications in the field of
otolaryngology. Particularly in the past 6 years, electrospinning has been explored as a
means of producing nanofiber scaffolds for tissue regeneration within the head and neck.
Electrospinning is a highly adaptable method of producing 3-dimensional fibrous scaffolds
that can be tailored to have structural similarity to organ or tissue specific extracellular
matrixes.*

Electrospun nanofibers are ideal for replicating the basement membrane of structures.1-3
The large specific surface area of electrospun nanofiber scaffolds can also be used to
accommodate bioactive molecules, helping to further promote cellular responses.? In fact,
the majority of studies within the scope of this review assessed a uniquely constructed
electrospun nanofiber scaffold with the addition of bioactive molecules for tissue
regeneration (80%).

Electrospinning is relatively inexpensive, and the basic set up is straightforward compared to
other methods of nanofiber and biomaterial manufacturing.3 The primary components
include a high voltage power supply, a pump with a syringe attached and a grounded
collector plate (Figure 3).13 The syringe is loaded with a natural or synthetic polymer
solution.3 When voltage is applied at the needle tip, a droplet of solution will then form at
the tip of the spinneret, forming a Taylor cone. As the solution passes through the electric
field and makes its way to the collector plate, volatile components evaporate quickly. The
end result is a scaffold of nonwoven fiber mesh, the geometry of which dictated by the
collector and electrospinning setup.l-2 Fiber morphology depends on intrinsic properties of
the solution, processing conditions and environmental conditions.?

A distinct advantage of the electrospinning process is the ability to manipulate process
parameters.3 Based on these subtle variations, scaffold properties can be customized, making
them particularly suited to promote tissue regeneration in challenging anatomical regions
within the head and neck. Recent investigation has focused on extending the capabilities of
electrospinning to produce scaffolds with more complex geometries and fiber morphologies.
1-3 For example, the diameter of the fibers produced is primarily determined by the flow rate
(Q), while the strength of the electric field is determined by voltage (V) and distance (D)
between the spinneret and collector and is integral in tuning the morphology of the end
product.12 Polymer concentration can be adjusted to modulate the viscosity of the solution,
with increased viscosity resulting in larger fiber diameters and decreased bead formation
along the fiber.2

Electrospun nanofiber scaffolds have relevant applications in the field of otolaryngology, due
in part to their similarity to native ECM. Notable areas of application include TM repair,
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tracheal reconstruction and cranial nerve regeneration. The 25 studies presented in this
review were all pre-clinical in nature, the majority of which were published within the last 6
years, highlighting the novelty of this data.

Long segment tracheal defects can result from con genital defects, trauma, infection or
malignancy.1116 Once >50% of the tracheal length is compromised due to diseased tissue or
absence, it can no longer be reconstructed surgically.1118 Accordingly, tissue engineered
tracheal grafts (TETG) have been explored as an option for reconstruction.11:16 The first
implantation of a tissue-engineered trachea was in 2008, with the appeal being that they are
readily available, customizable and spare donor site morbidity.12 An ideal tracheal scaffold
for the management of long segment tracheal defects is biocompatible, with low
complication risk and comprised of a material that seamlessly integrates with the host.10 To
date, PET:PU and PCL scaffolds have been the most rigorously studied for regeneration of
tracheal defects, though complications of stenosis and delayed epithelialization have posed a
challenge to broader application of such scaffolds.57:11-13.16 | cases of tracheal graft
stenosis in scaffolds comprised of PET:PU nanofibers, Pepper and colleagues identified that
tracheal stents were superior to dilation for the maintenance of graft patency, with 100% of
dilations and 29% of stent placements requiring urgent follow up bronchoscopy.1?

Chronic TM perforations can lead to recurrent otitis media, development of cholesteatoma
and conductive hearing loss.1® Conventional treatment is tympanoplasty or myringoplasty:;
however, the requirement for general anesthesia and specialized surgeons make this a costly
and sometimes unattainable option.1® More recent research has explored the role of
biomaterials in the creation of tissue engineered scaffolds for TM repair in chronic
perforations. To date, Seonwoo and colleagues have published the only combined in vitro
and in vivo study assessing electrospun nanofiber scaffolds for TM repair, showing promise
for radially aligned electrospun PCL nanofiber scaffolds containing EGF in effective repair
of chronic TM perforations.19

Three studies assessed the role of electrospun nanofiber scaffolds in cranial nerve
regeneration, where they are used to mimic the architecture of an acellular nerve graft and
enhance neurite outgrowth.28 Success with this technique in peripheral nerve regeneration
suggests it may be applied to cranial nerve regeneration.?8 Grafts comprised of silk fibroin
and PLLA (poly (L-acetic) acid) combined with PCL showed no overt signs of an
inflammatory response in the host.22:24 PLLA has been explored in primary motor and
sensory neurons.28:29 PCL is suggested to be an ideal scaffold given its biocompatibility and
slower rate of degradation.23 PCL/collagen nanofibers have been shown to be efficacious in
bone regeneration, as well.23.25

Electrospun nanofiber scaffolds show promise for the field of otolaryngology, particularly
given the lack of existing analogues for tissue replacement. Its relatively simple and
adaptable set up allows this technique to be utilized for a wide variety of applications.
Further, numerous studies have utilized materials that are already FDA-approved for
biomedical applications, such as polycaprolactone and EGF.1® Nevertheless, data regarding
this new technology has several shortcomings, primarily due to the novelty of this technique.
First, while existing research shows promise for feasibility of tissue regeneration, long-term
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data about the reproducibility of such grafts as well as the durability of the regenerated
tissue is lacking. Regarding tracheal reconstruction, electrospun nanofiber grafts displayed
excess fibrous and inflammatory tissue overgrowth, impacting the longevity of such
scaffolds. Despite the ability of electrospinning to create ECM-like architecture, scaffolds
may require additional modifications to fully recapitulate the biophysical and biochemical
cues needed to represent a true analogue for biologic grafts. Further research assessing
specific polymer and fiber coating combinations, as well as the ideal porosity of tracheal
grafts, is necessary. Many of these studies are preliminary in nature and, accordingly, have
relatively small sample sizes. Larger studies, with both in vitro and in vivo components, are
necessary to further understand the physiologic reactions that take place once these grafts
are introduced.

Biomaterials and tissue engineering research is a burgeoning field. Electrospinning is a
relatively straightforward, well-described process by which fibers of nano- and micrometer
size are constructed and can be used in the creation of scaffolds for tissue engineering. The
customizability of electrospinning process parameters allows subtle alterations to both the
mechanical and bioactive properties of scaffolds constructed.? Electrospun nanofiber
scaffolds are particularly suited for the unique anatomical and functional challenges within
the head and neck, owing primarily to their architectural adaptability and customizability.
Further preclinical studies of electrospun nanofiber scaffolds for tissue regeneration within
the head and neck are warranted. In particular, in vivo models with a focus on methods of
reducing host inflammatory response are crucial before these promising substrates can be
tested in humans.

The author(s) received no financial support for the research, authorship, and/or publication of this article.
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Figure 1.
Scanning electron microscope images showing the similarity of electrospun nanofibers to

native extracellular matrix. (A) 600x magnification, (B) 1200x magnification, (C) 2400x
magnification, (D) 5000x magnification.
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Number of Studies by Anatomic site of Application
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Figure 2.
Proportion of studies by anatomic site of application.
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<@

Mandrel

Syringe Pump

o Ground

Figure 3.
Depiction of the electrospinning process for nanofiber creation. The principle components

are an injection pump with a syringe, which is attached to a high voltage power supply. An
electric field is created between the tip of the needle and the grounded collector plate or

mandrel, which is positioned a fixed distance away from the syringe tip. Once the polymer
solution is injected, nanofibers are created as the solution passes through the electric field.
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