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Abstract

This paper presents an algorithm to transform and reconstruct diffusion-weighted imaging (DWI) 

data for alignment of micro-structures in association with spatial transformations. The key idea is 

to decompose the diffusion-attenuated signal profile, a function defined on a unit sphere, into a 

series of weighted diffusion basis functions (DBFs), reorient these weighted DBFs independently 

based on a local affine transformation, and then recompose the reoriented weighted DBFs to 

obtain the final transformed signal profile. The decomposition is performed in a sparse 

representation framework in recognition of the fact that each diffusion signal profile is often 

resulting from a small number of fiber populations. A non-negative constraint is further imposed 

so that noise-induced negative lobes in the signal profile can be avoided. The proposed framework 

also explicitly models the isotropic component of the diffusion-attenuated signals to avoid 

undesirable artifacts during transformation. In contrast to existing methods, the current algorithm 

executes the transformation directly in the signal space, thus allowing any diffusion models to be 

fitted to the data after transformation.

Index Terms—

Diffusion-weighted imaging; reorientation; spatial transformation

I. Introduction

DIFFUSION-WEIGHTED imaging (DWI) [1] reveals spectacular details of brain tissue 

micro-structures through observation of water diffusion patterns, which are shaped by local 

tissue structures. It, therefore, captures vital information that is of paramount importance for 

in vivo investigation of white matter and connectivity alterations that are associated with 

brain diseases, development, and aging [2]–[5]. However, effective intra- and inter-subject 

comparisons of DWI data at a group or individual level cannot yet be performed without 

dedicated spatial normalization algorithms that ensure that the comparisons are executed 

based on matching structures.
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While spatial normalization algorithms that deal with anatomical T1- and T2-weighted 

images are plenty [6], spatial normalization based on DWI data [7]–[9] offers a more direct 

means of detecting correspondences in white matter micro-structures, information on which 

is often lost in the homogeneous white matter contrast of anatomical scans. Two essential 

components of diffusion-based spatial normalization algorithms are spatial coordinate 

mapping for matching of macro-structures and local diffusion profile reorientation for 

angular alignment of micro-structures. The need to meet both requirements makes designing 

such spatial normalization algorithms much more challenging compared with traditional 

scalar-based spatial normalization algorithms. The current work focuses on the latter 

component and aims to devise a reorientation algorithm that can be applied directly on DWI 

data, therefore allowing any diffusion models to be fitted after spatial transformation.

Due to its directional nature, spatial normalization of diffusion data often requires more than 

coordinate mapping between image domains. The diffusion-attenuated signal profile (DW 

signals represented as a spherical function) encapsulated by each image voxel has to be 

transformed appropriately for correct micro-structural alignment (see Fig. 1). For the case of 

diffusion tensor imaging (DTI) [10], this is reduced to reorientation based on the principal 

diffusion directions [11]. This approach, however, can be problematic in regions that are 

traversed in different directions by multiple fiber populations. Since the tensor model does 

not differentiate between diffusion components resulting from different fiber populations, 

the diffusion profile is often rigidly reoriented, resulting in inconsistency with respect to the 

geometry of the transformed fibers.

With appropriate higher-order diffusion models [12]–[17], performing diffusion imaging at a 

higher angular resolution than what is typically applied for DTI enables one to resolve the 

diffusion components that are associated with different fiber populations. This allows 

reorientation of the signal profile to be carried out more accurately. Fig. 1 illustrates that, to 

be consistent with the fiber geometry, diffusion profiles at fiber crossings should be 

reoriented with careful consideration of the constituent fiber populations. In this particular 

example, the diffusion component resulting from the fiber population in the horizontal 

direction should be minimally affected by the horizontal shearing, as opposed to the 

diffusion component associated with the fiber population in the vertical direction. Existing 

solutions to achieve this are discussed next.

A. Related Works

A number of methods for reorientation of diffusion data have been proposed in the literature 

[18]–[21]. Most revolve around reorienting a certain form of diffusion/fiber orientation 

distribution function (ODF). Hong et al.’s method [18], for instance, aims to maintain the 

volume fraction of the fiber ODF through each infinitesimal surface area element on the 

sphere as it is reoriented. In [19] and [20], Raffelt et al. present a reorientation framework 

where the fiber ODF [22], [23] is decomposed into a series of weighted spherical harmonic 

(SH) point spread functions (PSFs), which are then reoriented individually and composed to 

form the reoriented fiber ODF. This approach was later extended by Dhollander et al. in [21] 

for direct reorientation of DWI data in the Q-space. It is further demonstrated in [21] the 
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importance of taking into account the isotropic component in modeling the diffusion to 

avoid the danger of turning an isotropic signal profile into an anisotropic one.

B. Contributions

We introduce a reorientation algorithm that will work directly on the DWI data. This will 

allow any models to be fitted to the data after reorientation. Inspired by the works of Raffelt 

et al. [19], [20] and Dhollander et al. [21], the key idea of the proposed reorientation 

algorithm is to decompose the signal profile, a function defined on a unit sphere, into a 

series of weighted diffusion basis functions (DBFs), reorient these weighted DBFs 

independently based on the local affine transformation, and then recompose the reoriented 

weighted DBFs to obtain the final transformed signal profile. A DBF [24] represents the 

diffusion response function of a single coherent fiber population or a specific diffusion 

component, such as isotropic diffusion. In contrast to [19]–[21], our method presents the 

following distinctions.

1) Computation Complexity: Our method avoids the computation complexity of SHs 

especially that required by the associated Legendre polynomials. Reorientation of the signal 

profile involves reorienting and recomputing the DBFs. Since it is generally difficult to be 

certain in advance the exact transformation that will be applied, precomputing the DBFs for 

signal profile reconstruction is practically infeasible. Efficient computation of DBFs is very 

important for spatial normalization, since very often the DBFs have to be computed for a 

significant number of times as the spatial normalization algorithm iterates to refine 

correspondence matching. Computation burden grows drastically when the number of SH 

basis functions is increased for better approximation of the signal profiles.

2) Smoothing: Our method avoids the smoothing effect of SHs. When SH basis 

functions of insufficient order are used, loss of sharp directional information is inevitable. 

Although this can be partially alleviated by increasing the allowable maximum order of SH 

basis functions, the computation cost will rapidly increase by multiple folds—the number of 

SH basis functions increases in the order of the square of the maximum order. Both Raffelt 

et al.’s method [19], [20] and Dhollander et al.’s method [21] utilize certain forms of SH 

representation for the signal profile and the DBFs.

3) Artifacts: Our method avoids the artifacts associated with SHs. The negative-lobe 

artifacts caused by truncation of the SH series and the Gibbs phenomenon have been 

discussed extensively in [20]. Fig. 2 shows that the DBFs proposed by Dhollander et al. [21] 

exhibit similar artifacts that should be corrected for more accurate representation of the 

signal profile. Note that in our implementation of the Dhollander DBFs, we did not remove 

the zeroth-order SH term as was originally done in [21]. With this modification, each 

Dhollander DBF can now be used to represent the signal profile of a single fiber population. 

This allows a fair evaluation of the Dhollander DBFs with respect to the DBFs proposed in 

the present work.

4) Isotropic Diffusion: Our method explicitly models the isotopic diffusion so that the 

isotropic component of the signal profile will not be reoriented. The effect of this additional 
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component was discussed in [21]; but it is unclear in the paper how the weight of the 

isotropic component should be estimated. We will show that if the commonly used least-

norm estimation technique is employed to determine the weights associated with the basis 

functions, the outcome will be far from satisfactory.

5) Sparse Representation: Our method incorporates an efficient non-negative L1-

regularized least-squares solver, which is guaranteed to converge to the global solution in a 

finite number of iterative steps. This allows us to obtain a sparse representation of the signal 

profile, reflecting the fact that the diffusion-attenuated signals at each voxel are essentially 

generated by a limited number of fiber populations. While employing sparse representation 

for diffusion modeling has been well documented (see [25] for an excellent example), the 

application of such framework to DWI reorientation has not been sufficiently studied. We 

will demonstrate that sparse representation is essential for obtaining accurately reoriented 

signal profiles. Sparse representation was not considered in [19]–[21].

C. Paper Organization

In the upcoming sections of the paper, we will first detail in Section II the key components 

of the proposed algorithm. We will discuss a number of DBF options, how the weights with 

respect to these DBFs can be estimated in a sparse representation framework, and how 

reorientation can finally be performed. We will then demonstrate the effectiveness of the 

proposed algorithm in Section III with both synthetic and in vivo data, evaluating the 

reorientation accuracy as well as the preservation of diffusion properties (e.g., diffusion 

anisotropy) with reorientation. Additional discussion is provided in Section IV before 

concluding the paper.

II. Approach

The proposed algorithm entails first decomposing the signal profile into a series of weighted 

DBFs. Given a local affine transformation, which can be computed from a local Jacobian of 

a deformation field estimated by any deformable spatial normalization algorithms, the 

weighted DBFs are then independently reoriented and recomposed to obtain the final 

transformed signal profile.

A. Single Tensor Model

We first consider the single tensor model, with which ellipsoidal, planar, and spherical 

directional functions can be reasonably approximated. A diffusion tensor D can be 

decomposed as D = UKUT, where U is a rotation matrix and K is a diagonal matrix 

consisting of eigenvalues {λ1, λ2, λ3}. The shape of the tensor is determined by its 

eigenvalues. For instance, if λ1 > λ2 ≥ λ3, the shape is ellipsoidal with the major axis of the 

ellipsoid pointing in the direction of the eigenvector corresponding to λ1. This indicates 

preferential diffusion of water molecules along a particular direction. For λ1 = λ2 ≫ λ3, the 

shape is planar, indicating diffusion along directions orthogonal to the eigenvector 

corresponding to λ1. For λ1 = λ2 = λ3, the diffusion is isotropic, resulting in a tensor with a 

spherical shape.
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For principal diffusion along a particular direction μ and λ1 > λ2 = λ3, one can rewrite the 

tensor as

D = λ1 − λ2 μμT + λ2I (1)

where I is the identity tensor. If we further assume that λ1 ≫ λ2 = λ3, the equation above 

can be further simplified to become

D ≈ λ1μμT . (2)

With this simplified form, the single tensor model

S g = S0exp −bgTDg (3)

where S(g) is the diffusion-attenuated signal in direction g and S0 is the baseline signal 

without diffusion sensitization, is in fact identical in form to the Watson distribution function 

[26]. This is apparent if we approximate, by using (2), the exponent as 

−bgTDg ≈ − bλ1gT μμT g = − bλ1 μTg 2 and rewrite the model (3) as

S g = S0exp −bλ1 μTg 2 . (4)

Comparing this with the probability distribution function (PDF) of the Watson distribution 

[26], which is defined as

f g ∣ μ, κ = C κ exp κ μTg 2
(5)

we can see that in fact μ is precisely the mean orientation and –bλ1 = κ is the concentration 

parameter of the Watson distribution function. C(κ) is a normalizing constant to ensure that 

the density function integrates to unity over the unit sphere. The Watson distribution 

function corresponds to the “stick” model in [27].

B. Decomposition of the Signal Profile

In a diffusion-weighted experiment with typical acquisition parameters, it is unlikely that 

water molecules will be able to traverse regions separated by more than a few tens of 

microns over the diffusion time. We, therefore, posit that there is no effective exchange 

between spatially distinct fiber bundles. For this reason, the diffusion-weighted signals 

resulting from different fiber populations can be assumed to add independently to generate 

the total measured signals [22].

Denoting the diffusion-attenuated signal measured in direction gi (i = 1, …, M) as S(gi), the 

collection of signals forms a spherical function that can be decomposed into a series of 

weighted DBFs. In our case, the DBFs consist of a set of single tensor models with principal 

diffusion directions uniformly distributed on a unit sphere. That is
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S gi = ∑
j = 0

N
wjfj gi ∣ λ1, λ2 (6)

where wj is the weight for the jth DBF, which is defined as

fj gi ∣ λ1, λ2 = exp −bgiTDjgi . (7)

Tensor Dj is defined according to (1). For 1 ≤ j ≤ N, the principal diffusion direction is set to 

μj. The set of principal diffusion directions should ideally be uniformly distributed on a unit 

sphere. For j = 0, we set λ1 = λ2 so that f0(gi | λ1, λ2) = f0(λ1) = exp(−bλ1) can be used to 

model the isotropic diffusion of free water [27]. Note that we have dropped since it is 

constant for each voxel and can be taken as absorbed by the weights. In matrix form, (6) can 

be rewritten as

S = Fw (8)

where

S =

S g1
S g2

⋮
S gM

, w =

w0
w1
⋮

wN

(9)

and

F =
f0 λ1 f1 g1 ∣ λ1, λ2 … fN g1 ∣ λ1, λ2

⋮ ⋮ ⋱ ⋮
f0 λ1 f1 gM ∣ λ1, λ2 … fN gM ∣ λ1, λ2

. (10)

Assuming M < N + 1, (8) represents a set of underdetermined linear equations, a possible 

solution to which involves solving a least-norm problem

Least Norm min
w

w
2
s . t . Fw = S (11)

where ‖ · ‖p denotes the p-norm. The solution can be obtained analytically as

w = FT FFT −1S . (12)

In the presence of noise, the equality in (6) can be relaxed by solving a Tikhonov-regularized 

least-squares problem

Tikhonov min
w

S − Fw 2
2 + γ w 2

2
(13)
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where γ is a tuning parameter that controls the relative weighting between the two terms. 

We shall however show with empirical evidence that both the least-norm and Tikhonov-

regularized least-squares formulations do not work well for the purpose of reorientation. The 

proposed solution is discussed next.

C. Sparse Representation

Since most white matter voxels are expected to contain contributions from relatively few 

fiber populations, we expect a relatively small number of DBF weights to have positive 

values; the vast majority of the weights should be zeros. This requirement can be met by 

taking a sparse signal representation approach [28] in estimating the weights. In this 

approach, a given signal profile is represented by a set of weights associated with elements 

of a dictionary (or base) of functions. The elements of such a dictionary are called atoms (or 

Yap and Shen Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



basis functions). The idea is to select from the dictionary the atom decomposition that best 

match the signal structure, using a sparsity criterion for selecting among equivalent 

decompositions. Essentially, this approach aims to represent the signal profile with as little 

number of atoms as possible.

In our case, (6) represents the decomposition of the signal profile S gi i = 1
M  as a linear 

combination of atoms fj gi ∣ λ1, λ2 j = 0
N  in the dictionary F. Based on the basis pursuit 

(BP) framework [28], we compute a solution to (6), taking into account the possible 

presence of noise, by means of a non-negative L1-regularized least-squares problem

Sparse min
w

S − Fw 2
2 + β w 1 s . t .  w ≥ 0 (14)

where β ≥ 0 is a tuning parameter. The non-negative constraint imposed on the DBF weights 

is included to suppress spurious negative lobes, which can occur due to imaging noise. The 

sparse representation problem can be solved by using an active-set-based algorithm (see 

Algorithm 1), which is modified from the feature-sign algorithm presented in [29] to 

incorporate the non-negative constraint. The algorithm can be proven to always converge to 

the global optimum in a finite number of iterations [29]. Note that when β = 0, (14) reduces 

to the non-negative least squares (NNLS) problem

NNLS min
w

S − Fw
2
2s . t . w ≥ 0. (15)

For all four methods (least norm, Tikhonov, non-negative least squares, and sparse), the 

diffusion-attenuated signals S and the DBFs F are normalized to unit norm prior to 

estimating the weights w. The weights are then re-scaled based on the scaling factors used 

for the normalization of the signals and the DBFs so that the original unnormalized signals 

can be represented using the unnormalized DBFs.

D. Reconstruction of the Transformed Signal Profile

For reorientation of a signal profile, the directions of the DBFs, μj, are reoriented 

independently based on a local affine transformation matrix A, i.e., μ′j = Aμj/Aμj. Based on 

the reoriented DBFs, a new matrix in replacement of F can be computed as

F′ =
f0 λ1 f1′ g1 ∣ λ1, λ2 … f′ g1 ∣ λ1, λ2

⋮ ⋮ ⋱ ⋮
f0 λ1 f1′ gM ∣ λ1, λ2 … f′ gM ∣ λ1, λ2

. (16)

The transformed signal profile is S′ finally obtained as

S′ = F′w . (17)

Note that the isotropic component is not reoriented.
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E. Estimation of the Orientation Distribution Function

Upon fitting the model (6) to the signal profile, the corresponding ODF can be computed. 

Assuming no net motion of spin population, the PDF of the displacements of water 

molecules p(x) is related to the DW signals by [30]

S g
S0

= ∫
ℝ3

p x cos bτ−1g ⋅ x dx
(18)

where τ is the diffusion time. Using this relationship and (6), the displacement PDF can be 

written as

p x = 1
S0

∑
j = 0

N
wj 4πτ 3 Dj

− 1
2 exp − xTDj

−1x
4τ . (19)

Expressing x = ru, where u is a unit vector, the ODF can be computed with [31]

ODF u = ∫
0

∞

p ru r2dr (20)

giving

ODF u = 1
S0

∑
j = 0

N
wj 4π Dj

1
2 uTDj

−1u
3
2

−1
. (21)

F. Estimation of Local Fiber Orientations

To extract the orientations associated with the ODF peaks, which represent the local fiber 

orientations, the following steps are performed.

1. Sample the ODF with sufficient angular density at orientations u1, …, uL.

2. Remove orientations associated with ODF values less than the mean ODF value.

3. Locate orientations with ODF values greater than those of their neighboring 

orientations.

4. Compute the mean orientations of the orientations in the neighborhood of the 

orientations with the maximal values. This can be done by computing the 

eigenvector corresponding to the largest eigenvalue of dyadic tensor

Ddyadic ui =
∑v ∈ N ui ODF v vvT

∑v ∈ N ui ODF v

for ui satisfying ODF(ui) > ODF(v), ∀v ∈ N ui . N ui  denotes orientations in 

the neighborhood of.
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5. Return the mean orientations as the output.

III. Experimental Results

In this section, we will report the results of our evaluations of the proposed method based on 

synthethic and in vivo data. For all experiments, we set β = 0.01. The tuning parameter for 

the Tikhonov-regularized least-squares solver γ was set to be equal to β. Unless otherwise 

specified, the DBFs were composed of tensor models [i.e., (1) and (7)]. For the synthetic 

data, λ1 and λ2 = λ3 were set according to the parameters used for generating the data. For 

the in vivo data, λ1 and λ2 = λ3 were estimated from the corpus callosum (using a region 

consisting of 130 voxels). A total of 321 orientations, generated by subdividing the faces of 

an icosahedron three times and discarding antipodal symmetric directions, were used as the 

principal diffusion directions of the DBFs. L = 1281 orientations, generated by subdividing 

the faces of an icosahedron four times, were used to locate the ODF peaks.

A. Parameters

The parameters that affect the performance of the proposed reorientation strategy are the 

regularization parameter β, the number of acquisition gradient directions, and the number of 

principal directions used to generate the DBFs. To quantitatively evaluate the effects of these 

parameters on reorientation performance, we randomly generated 100 sample signal profiles, 

reflecting two fiber populations with crossing angles varying between 30° and 90°, and 

partial volume fractions ranging between 0.25 and 0.75. Each fiber population is modeled by 

a tensor with λ1 = 1.5 × 10−3 mm2/s, λ2 = λ3 = 3 × 10−4 mm2/s, and b = 2000 s/mm2. The 

baseline non-diffusion weighted signal was set to 150. The (120) gradient directions were 

taken from the in vivo dataset. Note that these diffusion parameters were carefully chosen to 

mimic the in vivo data. For each sample signal profile, a corresponding post-reorientation 

ground truth signal profile was generated by first reorienting the directions of the two fiber 

populations using a randomly generated transformation. The proposed reorientation 

algorithm was applied to the sample signal profile using the same transformation, and the 

reorientation accuracy was then evaluated with respect to the ground truth by computing the 

root mean square (RMS) error. The transformations were composed of random rotation 

(between −45° and 45°), scaling (0.75–1.25) and shearing (−0.5 to +0.5). That is, the 

transformation matrix is defined as A = HSR, where

H =
1 ℎ 0
0 1 0
0 0 1

, S =
sx 0 0
0 sy 0
0 0 sz

(22)

and R = Rx Ry Rz with

Rx =
1 0 0
0 cosθx −sinθx
0 sinθx cosθx

(23)
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Ry =
cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy

(24)

Rz =
cosθz −sinθz 0
sinθz cosθz 0

0 0 1
(25)

The transformation parameters were drawn uniformly from the following ranges: −0.5 ≤ h ≤ 

0.5, 0.75 ≤ sx, sy, sz ≤ 1.25, −45° ≤ θx, θy, θz ≤ 45°.

In addition, various levels of Rician noise was added to each sample signal profile for 

evaluation of the parameters in relation to noise. We generated the Rician-corrupted signal 

S gi  as

S gi = S gi + n1
2 + n2

2 (26)

where η1 and η2 are independently sampled from a normal distribution with zero mean and 

variance σrician 
2 . The value S gi  is a realization of a random variable with a Rician PDF of 

parameters S(gi) and σrician. The parameter σrician was set according to the required signal-

to-noise ratio (SNR), which is defined as

〈 S gi 〉 i
σrician 

. (27)

Results for SNR = 5, 10, 15, 20 are shown in Fig. 3 with discussions in the following 

subsections.

1) Regularization Parameter β: Fig. 3(a) shows that the reorientation performance is 

relatively insensitive to the variation of β from 1 × 10−5 to 1 × 10−2. The parameter value β 
= 1 × 10−2 was chosen for the rest of the experiments to ensure reasonably small 

reconstruction error and at the same time sufficient sparsity of the estimated DBF weights.

2) Number of Data Gradient Directions: Fig. 3(b) shows the variation of the 

reorientation accuracy with respect to the number of data gradient directions. The directions 

here were generated by subdividing the faces of an icosahedron. Unsurprisingly, 

reorientation accuracy increases with the number of data gradient directions. In the 

upcoming experiments involving synthesized data, we set the gradient directions to match 

those from the in vivo dataset for consistency. The RMS errors associated with the gradient 

directions used for the in vivo dataset are 2.82 ± 0.80, 1.36 ± 0.39, 0.90 ± 0.30, and 0.69 ± 

0.29, respectively, for SNR = 5, 10, 15, 20.

3) Number of DBF Directions: Fig. 3(c) shows that increasing the number of DBF 

directions will generally increase the reorientation accuracy (except for the case of SNR = 5, 
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where the effect of noise is greater). Consistent with previous work [18], [20], we chose for 

the rest of the experiments a total number of 321 DBF directions (three icosahedron 

subdivisions).

B. The Necessity of Sparse Representation and the Isotropic Component

We will demonstrate in this section that both sparse representation and the isotropic 

component are essential for accurate reorientation of the signal profile.

1) Sparse Representation: To demonstrate the necessity of sparse representation, we 

show in Fig. 4 the typical distributions of weights estimated by solving the least-norm 

problem (11), the Tikhonov-regularized least-squares problem (13), the non-negative least-

squares problem (15), and the sparse representation problem (14). Results for an anisotropic 

signal profile of two crossing fibers and an isotropic signal profile are shown for SNR = ∞ 
(noiseless) and SNR = 10. It can be observed from the figures that by taking the sparse 

representation approach the true constituents of the signal profiles can be estimated more 

accurately with less distraction from nonrelated DBFs. We note in particular that, for the 

sparse representation approach, the weights of the DBFs that truly represent the constituents 

of the signal profile (e.g., w0 for the isotropic case) are much higher than the nonrelated 

DBFs. Observe that in the presence of noise, the weights estimated via solving the least-

norm problem are unrealistically large. Solving the non-negative least-squares problem 

results in weights that are much more reflective of the true constituents of the anisotropic 

signal profile, but not the isotropic signal profile, particularly when noise is present. We will 

demonstrate with experimental results that correct modeling of the diffusion-attenuated 

signals is crucial for generating correct reorientation results.

2) The Isotropic Component: Determining the weight for the isotropic term by 

solving the least-norm problem, the Tikhonov-regularized least-squares problem, and the 

non-negative least-squares problem is susceptible to ambiguity. When the DBFs are 

distributed densely and uniformly on a sphere, giving equal weights to all DBFs can result in 

an isotropic signal profile, hence defeating the purpose of including an isotropic term in (6) 

to model the isotropic diffusion. The sparse representation problem (14) helps avoid this 

pitfall by choosing the sparsest representation. For an isotropic signal profile, the typical 

distributions of weights estimated by solving the least-norm problem, Tikhonov-regularized 

least-squares problem, non-negative least-squares problem, and sparse representation 

formulation are shown graphically in Fig. 4(a), (e), (i), and (m), respectively. Fig. 4(m) 

indicates that the sparse representation approach gives a peak with huge amplitude for w0 

and zeros for all other weights. Fig. 4(a) and (e) shows that the amplitude of the w0 peak is 

much reduced in favor of weights of other nonrelated DBFs. A non-negative constraint 

improves the results when the SNR is high [Fig. 4(i)] but falls short for noisy situations [Fig. 

4(k)]. Failure to capture the isotropic diffusion component will adversely affect the outcome 

of reorientation—an isotropic signal profile will end up being anisotropic after reorientation.

Fig. 5 shows typical reorientation results for the tensor DBFs generated (a) using the sparse 

representation framework, (b) without the isotropic component, and (c) using the Tikhonov-

regularized least-squares solver. The corresponding ODFs, computed using the method 
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described in Section II–E, are shown in Fig. 6. Note that trilinear spatial interpolation was 

performed on the weights of the DBFs. The figures illustrate that if no isotropic component 

is included in the model or if a non-sparse method is used, isotropic profiles will be 

inappropriately reoriented.

C. Evaluation—Synthetic Data

In this section, we report the results of our evaluation of the proposed framework based on 

synthetic data. For comparison, we applied the proposed sparse representation-based 

reorientation framework utilizing various DBFs, generated using the tensor models, the 

Watson distribution functions (also known as the “ball-and-stick” model [27]) as well as the 

method proposed by Dhollander et al. [21]. Results using the tensor DBFs with the 

Tikhonov-regularized least-squares method, the non-negative least-squares method, and with 

the isotropic component excluded were also generated.

To the best of our knowledge, the Dhollander method [21] is currently the only other 

existing method that performs reorientation directly on the diffusion-attenuated signals. The 

DBFs used by the Dhollahder method are generated by inverse-transforming the SH point-

spread functions (PSFs) of Dirac delta functions, which were proposed in [19]. The inverse 

transform is composed of the inverse Funk-Radom transform (FRT) [16] and the inverse 

spherical deconvolution transform (SDT) [32]. We adapted the Dhollander DBFs to the data 

by setting the eigenvalues λ1 and λ2 = λ3 associated with the SDT [32] to be exactly the 

same as those used in generating the synthetic data. SHs up to order of 6 were used, as in 

[21], to generate the DBFs. The zeroth-order SH term was retained and the negative lobes 

were truncated before applying the Dhollander DBFs for reorientation. Note that instead of 

using the least-norm solver, we used the sparse solver to obtain more reliable estimates of 

the weights for the Dhollander DBFs. The estimation was done in the signal space instead of 

using the SH coefficients as done in [21]. This is to avoid information loss due to truncation 

of the SH series.

To evaluate how the reconstruction error varies with the extent of transformation, we 

quantified the reorientation RMS error with respect to different amount of shearing, i.e., we 

set the transformation matrix to

A =
1 ℎ 0
0 1 0
0 0 1

(28)

where the shearing factor h varies from 0 to 1. This was applied to a signal profile that was 

generated using two equally-weighted tensors; one tensor was oriented in the horizontal (x-

axis) direction and the other in the vertical (y-axis) direction. The parameters for the tensors 

were identical to those described in Section III–A. The experiment was repeated 100 times 

for each noise level.

The results for various SNRs, shown in Fig. 7, indicate that the tensor DBFs give the least 

reorientation errors when evaluated against the ground truth. The mean signal value for the 

ground truth profile is indicated in the figure caption to help gauge the significance of a unit 
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change in the RMS value. Unsurprisingly, the error generally increases with the extent of 

transformation. The tensor DBFs, however, yield consistent reorientation accuracy 

throughout different degree of shearing. It can be also observed that in this experiment the 

isotropic component is not essential since the data were generated with no isotropic 

diffusion.

In Fig. 8, we show typical ODFs of the signal profiles that were reoriented using the tensor, 

Watson, and Dhollander DBFs. The ground truth ODFs were generated from the noiseless 

(SNR = ∞) signal profile. The reorientation results for the various methods are shown for 

case of SNR = 10, an SNR that is typical of the in vivo data. It can be observed from the 

figure that reorientation using the Dhollander DBFs causes significant distortion to the ODF.

We also generated an isotropic signal profile with constant signal magnitude S0 exp(−bλ), 

where b = 2000 s/mm2, λ = 2.5 × 10−3 mm2/s, and S0 = 1500. These parameters were 

chosen to simulate the profile of a typical cerebrospinal fluid voxel. The same 

transformations above were applied to the profile, giving the results shown in Fig. 9, 

demonstrating that the tensor, Watson, and Dhollander DBFs give comparable results when 

sparse representation is employed. Non-sparse solvers, however, do not give satisfactory 

results. Example ODFs, shown in Fig. 10, again demonstrate that, without explicitly 

modeling the isotropic diffusion or when the Tiknonov-regularized least-squares or non-

negative least-squares solver is used, reorientation of an isotropic profile will result in an 

anisotropic profile that is inconsistent with the ground truth.

D. Evaluation—In Vivo Data

1) Data Acquisition: Diffusion-weighted images were acquired for an adult subject 

using a Siemens 3T TIM Trio MR Scanner with an EPI sequence. Diffusion gradients were 

applied in 120 noncollinear directions with diffusion weighting b = 2000 s/mm2, repetition 

time (TR) = 12,400 ms, and echo time (TR) = 116 ms. The imaging matrix was 128 × 128 

with a rectangular FOV of 256 × 256 mm2. The slice thickness was 2 mm.

2) Method of Evaluation: The effectiveness of the tensor, Watson, and Dhollander 

DBFs in reorientation was evaluated by applying 10 random transformations (see Section 

III–A) to the in vivo data and then computing a number of metrics to quantify the 

performance. We measured the change in anisotropy, the change in mean signal, as well as 

the accuracy in reorienting the local fiber orientations.

The anisotropy of a signal profile is defined as the standard deviation to RMS ratio of the 

signal values

anisotropy = STD S gi
RMS S gi

. (29)

The mean signal value is computed as

mean = 〈 S gi 〉 i . (30)
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We measured the change of these quantities in association with reorientation. The values of 

these quantities should ideally be preserved; failure to do so will cause ambiguity in 

identifying the white matter, grey matter, and cerebrospinal fluid voxels after reorientation. 

The changes in these quantities were measured using

ϵanisotropy  = ∣ Δanisotropy ∣
anisotropy (31)

and

ϵmean  = ∣ Δmean ∣
mean (32)

where Δ(·) denotes the difference of the quantity estimated with and without reorientation. 

The difference was normalized with respect to the mean value of the quantity (before 

reorientation) throughout the brain region.

We also evaluated the accuracy of the various DBFs in reorienting the local fiber 

orientations. Local fiber orientations were detected before and after reorientation using the 

method described in Section II–F. The orientations detected before reorientation were 

reoriented using the generated transformations so that they can be compared with the 

orientations that were estimated from the signal profiles after reorientation. Assuming that U 
is the set of transformed orientations and V is the corresponding set of orientations estimated 

after profile transformation, the orientational discrepency is defined as

Λ = 1
2

1
U ∑

u∈U
min
v∈V

dθ u,v + 1
V ∑

v∈V
min
u∈U

dθ v,u (33)

where dθ (u, v) gives the angle difference between u and v, i.e.,

dθ u, v = cos−1 u ⋅ v . (34)

The absolute value is taken since diffusion is assumed to be antipodal symmetric. In cases of 

multiple local maxima, the term

min
v ∈ V

dθ u, v (35)

returns the angle difference between u and a direction v in V that is most closely aligned 

with u.

3) Results: The values for ϵanisotropy, ϵmean, and Λ, averaged over all transformations, are 

shown visually in the form of colored maps in Fig. 11. It can be observed that the tensor and 

Watson DBFs are more capable than the Dhollander DBFs in preserving the anisotropy of 

the signal profiles after reorientation. All three types of DBFs preserve the mean signal 

values very well. Not altering these quantities is important for voxel-based morphometry 

[33]. Using the tensor and Watson DBFs for reorientation also results in more accurate 
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reorientation of local fiber orientations, which is essential for studies involving white matter 

tractography [34]–[39].

Fig. 12 shows via box plots the distributions of the brain-region-averaged ϵanisotropy, ϵmean, 

and Λ over all the applied transformations. The results here are consistent with that shown in 

Fig. 11, again validating that the tensor and Watson DBFs are able to preserve the anisotropy 

and the mean signal better than the Dhollander DBFs, and at the same time reorient local 

fiber orientations with greater accuracy. Paired t-tests indicate that all differences are 

statistically significant with p < 0.005.

To show that the isotropic component in the model is indeed effective, we show in Fig. 13 a 

typical spatial map of the weights associated with the isotropic term. The tensor DBFs are 

used for the computation of the map. It can be observed that the isotropic diffusion is 

significant mainly for the gray matter and cerebrospinal fluid voxels, as expected.

To assure that the proposed reorientation algorithm produces results that are consistent with 

brain anatomy, we demonstrate in Fig. 14 that, after reorientation (using the tensor DBFs), 

the orientations corresponding to the ODF peaks are indeed aligned with the white matter 

structures.

IV. Discussion and Conclusion

In this work, we introduced a sparse representation-based DWI data reorientation algorithm. 

We showed that the decompose-reorient-recompose approach using the tensor DBFs yields 

the best performance in various aspects, including the preservation of the anisotropy and the 

mean signal of the diffusion-attenuated signal profile as well as the reorientation accuracy of 

the local fiber orientations. The Watson DBFs, as approximations of the tensor DBFs, give 

slightly decreased reorientation performance, but offer the advantage of having a lesser 

number of parameters to be estimated. The Dhollander DBFs, however, are significantly less 

effective than the tensor and Watson DBFs.

Generating the Dhollander DBFs involves applying the inverse FRT and the inverse SDT to 

the SH PSFs of Dirac delta functions [19]. However, since the FRT of the diffusion-

attenuated signals gives only an approximation to the ODF, the involvement of the inverse 

FRT in the process will result in only a set of approximated DBFs. This is aggravated by the 

fact that the DBFs have to be reconstructed using a truncated SH series. On top of causing 

approximation error, this will cause artifacts, as shown in Fig. 2. Although this artifact can 

possibly be reduced by adapting the method described in [20], the accuracy of the resulting 

DBFs remains uncertain.

The experimental results indicate that good signal representation does not necessarily imply 

good reorientation performance; methods with similar representation accuracy may result in 

vastly different reorientation performance. Fig. 9 for example shows that all methods give 

reasonable representation of the data (see left-most results for no transformation); but as the 

degree of transformation increases, we can start to observe the inadequacy of some methods 

in properly reorienting the signal profile.
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The current framework can be extended by using multi-compartmental diffusion models that 

allow for a more elaborate description of the anisotropic and isotropic diffusion contents of 

tissue micro-structures [40]. Appropriate considerations can then be made for hindered 

diffusion in the extra-axonal space and restricted diffusion in the intra-axonal space [41]. 

This will also enable more accurate treatment of the cerebral cortex and subcortical gray 

matter structures, which are characterized by dendritic processes sprawling in all directions.

In conclusion, we have presented in this paper a novel algorithm for the direct 

transformation of DWI data. The algorithm takes into account the isotropic diffusion 

component and can therefore be applied to any voxels without requiring explicitly masking 

out gray matter and cerebospinal fluid voxels. The ability of the algorithm to work directly 

with the diffusion-attenuated signal profiles implies that the myriad of existing diffusion 

models can be fitted to the transformed data for multi-faceted analysis. It is not difficult to 

envision that future works involving registration, segmentation, and voxel-based analysis 

using diffusion-weighted images will benefit fundamentally from the current work.
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Fig. 1. 
DWI reorientation. Two fiber populations, one horizontal and one vertical, are shown 

together with their individual diffusion-attenuated signal profiles. When the two fiber 

populations cross each other, the resulting signal profile is a combination of signals from the 

individual fiber populations. Since the individual fiber populations transform differently with 

respect to a local transformation (horizontal shearing in this example), the signal profiles of 

the individual fibers need to be decoupled, reoriented individually, and then recombined to 

form a reoriented signal profile.
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Fig. 2. 
Diffusion basis functions. Typical basis functions generated using (a) the tensor model, (b) 

the Watson distribution function, (c)–(e) the Dhollander basis functions [21] generated using 

SHs with maximum orders of 4, 6, and 8, and (f)–(h) the Dhollander basis functions 

modified by truncating the negative lobes. The red arrow marks the negative lobes. The blue 

arrows mark the problematic areas that will prevent the basis function from accurately 

representing the diffusion-attenuated signals.

Yap and Shen Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Parameters. Average reorientation RMS errors with respect to (a) the regularization 

parameter β, (b) the number of data gradient directions, and (c) the number of DBF 

directions. Subdivision of the faces of an icosahedron 1, 2, and 3 times (discarding antipodal 

symmetric directions) corresponds to a total of 21, 81, and 321 directions, respectively. The 

error bars indicate the standard deviations.
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Fig. 4. 
Weight distributions. Distributions of weights estimated by solving (a)–(d) the least-norm 

problem, (e)–(h) the Tikhonov-regularized least-squares problem, (i)–(l) the non-negative 

least-squares problem, and (m)–(p) the sparse representation problem for both anisotropic 

(two crossing fiber populations) and isotropic signal profiles. Even though the same set of 

tensor DBFs is used, the estimated weights vary vastly with the method used for weight 

estimation.
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Fig. 5. 
Example reorientation results. Reorientation by (a) employing the proposed sparse 

representation strategy, (b) excluding the isotropic component from the set of DBFs, and (c) 

utilizing the Tikhonov-regularized least-squares solver (isotropic component inclusive). The 

tensor DBFs are used for all cases. The corresponding ODFs are shown in Fig. 6.
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Fig. 6. 
Example reorientation results—ODFs. ODFs corresponding to the results shown in Fig. 5.
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Fig. 7. 
Reorientation accuracy—Anisotropic synthetic data. Average reorientation RMS errors for 

an anisotropic signal profile, generated using two crossing fiber populations, with respect to 

the shearing factor h. The error bars indicate the standard deviations. The mean signal value 

for the ground truth profile is 91.22.
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Fig. 8. 
ODFs of reoriented anisotropic profiles. ODFs of reorientated signal profiles (SNR = 10) 

generated with different amount of shearing (h = 0 on the left-most and h = 1 on the right-

most, in steps of 0.1). The red arrows mark problematic areas of the results generated with 

the Dhollander DBFs.
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Fig. 9. 
Reorientation accuracy—Isotropic synthetic data. Average reorientation RMS errors for an 

isotropic profile with respect to the shearing factor h. The error bars indicate the standard 

deviations. The mean signal value for the ground truth profile is 10.11.
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Fig. 10. 
ODFs of reoriented isotropic profiles. ODFs of signal profiles generated by reorientation of 

an isotropic profile (SNR = 10) in association with different amount of shearing (h = 0 on 

the left-most and h = 1 on the right-most, in steps of 0.1). Results for the Watson and 

Dhollander DBFs are omitted since they are very similar to those of the tensor DBFs.
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Fig. 11. 
Reorientation performance—in vivo data. The change in anisotropy, the change in mean 

signal, and the orientational discrepancy in association with the reorientation are shown in 

the first, second, and third rows, respectively, for the tensor, Watson, and Dhollander DBFs. 

From top to bottom in the left-most column are the anisotropy image of the DWI data for 

anatomical reference, the mean signal image, and the mask that were used to ensure that the 

orientational discrepancy values were only computed for the white matter region.
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Fig. 12. 
Reorientation performance statistics. The change in anisotropy, the change in isotropy, and 

the orientational discrepancy in association with reorientation are shown in box plots. The 

bottom and top of the box are the lower and upper quartiles, respectively. The band near the 

middle of the box is the median. The ends of the whiskers are the minimum and maximum 

values.
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Fig. 13. 
Isotropy. A spatial map of weights associated with the isotropic component. The same slice 

as that in Fig. 11 is shown.
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Fig. 14. 
Consistency of orientations with anatomical structures. Consistency of the orientations of the 

ODF peaks with the anatomical structures is preserved after reorientation in association with 

a horizontal shear transformation.
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