TABLE A6.
Single Confounder Inclusion: simulation results for λ(Xj) using nonparametric estimation with n = 2000;
Variable | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Setting 1 | |||||
Truth | 0.128 | 0.080 | 0.062 | 0.063 | 0.009 |
Estimate | 0.127 | 0.073 | 0.063 | 0.058 | 0.008 |
Bias | 0.001 | 0.007 | −0.001 | 0.005 | 0.001 |
ESE | 0.016 | 0.016 | 0.011 | 0.009 | 0.005 |
Setting 2 | |||||
Truth | 0.133 | 0.000 | 0.065 | −0.004 | 0.009 |
Estimate | 0.131 | 0.000 | 0.066 | −0.003 | 0.008 |
Bias | 0.001 | 0.000 | −0.001 | −0.001 | 0.001 |
ESE | 0.016 | 0.004 | 0.011 | 0.005 | 0.005 |
Setting 3 | |||||
Truth | 0.189 | 0.065 | −0.012 | 0.142 | 0.016 |
Estimate | 0.187 | 0.066 | −0.010 | 0.129 | 0.015 |
Bias | 0.001 | −0.001 | −0.002 | 0.013 | 0.002 |
ESE | 0.019 | 0.011 | 0.011 | 0.018 | 0.008 |
Setting 4 | |||||
Truth | 0.124 | 0.073 | 0.063 | 0.061 | 0.007 |
Estimate | 0.125 | 0.070 | 0.062 | 0.056 | 0.008 |
Bias | −0.002 | 0.004 | 0.001 | 0.005 | 0.000 |
ESE | 0.016 | 0.016 | 0.011 | 0.010 | 0.006 |
ESE = empirical standard error (standard deviation of estimates across the 1,000 replications)