Skip to main content
. Author manuscript; available in PMC: 2021 Aug 15.
Published in final edited form as: Stat Med. 2020 May 10;39(18):2447–2476. doi: 10.1002/sim.8549

TABLE A7.

Single Confounder Removal: simulation results for B(−Xj) with n = 500 using parametric estimation;

Variable 1 2 3 4 5
Setting 1
Truth 0.3610 0.2300 0.1880 0.1950 0.0260
Estimate 0.3650 0.2220 0.1880 0.1970 0.0290
Bias −0.0040 0.0080 0.0000 −0.0020 −0.0020
ESE 0.0760 0.0770 0.0600 0.0560 0.0240
ASE 0.0758 0.0750 0.0596 0.0547 0.0247
Setting 2
Truth 0.6090 0.0110 0.3170 0.0180 0.0460
Estimate 0.5940 0.0220 0.3060 0.0320 0.0470
Bias 0.0150 −0.0110 0.0110 −0.0140 −0.0010
ESE 0.0930 0.0190 0.0870 0.0260 0.0360
ASE 0.0955 0.0226 0.0877 0.0298 0.0365
Setting 3
Truth 0.3910 0.1920 0.0440 0.3010 0.0710
Estimate 0.4390 0.1780 0.0300 0.3210 0.0320
Bias −0.0480 0.0150 0.0140 −0.0200 0.0390
ESE 0.0790 0.0610 0.0250 0.0870 0.0270
ASE 0.0852 0.0621 0.0297 0.0858 0.0299
Setting 4
Truth 0.3100 0.2150 0.1940 0.1970 0.0840
Estimate 0.3640 0.2250 0.1860 0.1960 0.0280
Bias −0.0540 −0.0090 0.0080 0.0010 0.0550
ESE 0.0750 0.0770 0.0600 0.0570 0.0240
ASE 0.0769 0.0762 0.0604 0.0559 0.0251

ESE = empirical standard error (standard deviation of estimates across the 1,000 replications); ASE = average standard error (average of standard error estimates across the 1,000 replications obtained using bootstrapping)