Skip to main content
. Author manuscript; available in PMC: 2021 Aug 15.
Published in final edited form as: Stat Med. 2020 May 10;39(18):2447–2476. doi: 10.1002/sim.8549

TABLE A11.

Single Confounder Removal: simulation results for B(−Xj) using parametric estimation with n = 2000 under alternative settings;

Variable 1 2 3 4 5
Setting 5
Truth 0.0040 0.3000 0.0830 0.3040 0.3090
Estimate 0.0070 0.3060 0.0780 0.3050 0.3050
Bias −0.0020 −0.0060 0.0050 0.0000 0.0040
ESE 0.0060 0.0300 0.0190 0.0310 0.0300
ASE 0.0067 0.0313 0.0193 0.0313 0.0312
Setting 6
Truth 0.1950 0.2810 0.2360 0.2580 0.0300
Estimate 0.1890 0.2850 0.2410 0.2520 0.0330
Bias 0.0050 −0.0040 −0.0040 0.0060 −0.0030
ESE 0.0360 0.0480 0.0390 0.0350 0.0170
ASE 0.0384 0.0487 0.0383 0.0356 0.0166
Setting 7
Truth 0.3960 0.2490 0.2180 0.1110 0.0270
Estimate 0.4050 0.2570 0.2150 0.1080 0.0140
Bias −0.0090 −0.0080 0.0020 0.0020 0.0130
ESE 0.0410 0.0430 0.0330 0.0260 0.0100
ASE 0.0412 0.0426 0.0333 0.0253 0.0095
Setting 8
Truth 0.4300 0.1310 0.3430 0.0490 0.0480
Estimate 0.5130 0.0950 0.3500 0.0290 0.0130
Bias −0.0830 0.0360 −0.0070 0.0190 0.0350
ESE 0.0910 0.0660 0.0840 0.0210 0.0110
ASE 0.0938 0.0764 0.0823 0.0269 0.0127

ESE = empirical standard error (standard deviation of estimates across the 1,000 replications); ASE = average standard error (average of standard error estimates across the 1,000 replications obtained using bootstrapping)