
Recent Advances in Potentiometric Biosensing

Nicole L. Walkera, Anastasiya B. Roshkolaevab, Andrei I. Chapovalb, Jeffrey E. Dicka,c

aDepartment of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 
27599, USA

bRussian-American Anti-Cancer Center, Altai State University, Barnaul, 656049, Russia

cLineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina 
at Chapel Hill, Chapel Hill, NC 27599, USA

Abstract

Potentiometric biosensors are incredibly versatile tools with budding uses in industry, security, 

environmental safety, and human health. This mini-review on recent (2018–2020) advances in the 

field of potentiometric biosensors is intended to give a general overview of the main types of 

potentiometric biosensors for novices while still providing a brief but thorough summary of the 

novel advances and trends for experienced practitioners. These trends include the incorporation of 

nanomaterials, graphene, and novel immobilization materials, as well as a strong push towards 

miniaturized, flexible, and self-powered devices for in-field or at-home use.
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1. Introduction

Biosensors are very popular tools for applications from environmental sensing, to clinical 

diagnoses, forensics, security, and more, coming in an incredible variety of forms. Most of 

these forms are outside of the scope of this review, but an interested reader can find a 

thorough history on the field of biosensors and their forms here [1].

Electrochemistry is a popular technique used to manufacture biosensors as it is versatile, 

rapid, inexpensive, highly sensitive, and selective. These Preadvantageshaveledto an 

immense variety of electrochemical sensors existing today, with the commercial glucose 

meter being one of the most widely-known and used examples. While the vast majority of 

electrochemical biosensors are either voltammetric or amperometric, there is a growing 
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number of potentiometric sensors being designed due to its advantages. Potentiometry is an 

electrochemical technique where negligible bias current (on the order of 10-15 A) flows as 

the potential between a working electrode and a reference electrode is measured across some 

interface. This technique is advantageous in that it is simple, compact, and requires little 

power [2]. Additionally, the negligible current flow means the technique should be more 

resistant to interferent effects [3] and ohmic drop considerations compared to voltammetric 

or amperometric sensors. Finally, potentiometry has shown to be relatively insensitive to 

electrode size [4], meaning that miniaturization without loss of sensitivity is achievable.

This mini-review aims to highlight the types of potentiometric biosensors that exist today, 

and the novel advances in the field from the past few years.

2. Main Text

2.1. Ion Selective Electrodes

One of the most widely used forms of potentiometric sensors are ion-selective electrodes 

(ISEs), where an ion transport or exchange at a selective membrane causes a change in 

membrane potential (Figure 1). Traditionally, ISEs have been used to measure pH and 

electrolyte concentrations, but clever membrane formations have led to an expansion of 

analytes that can be detected with these electrodes. For a thorough review on ISEs, the 

reader is encouraged to view [2, 5, 6].

More recent advances in this field have allowed for the measurement of neurotransmitters [7, 

8], proteins [9], bacteria [10, 11], small molecules [12–14], and toxins [15]. These advances 

have occurred through innovative use of biomimetics as the ion exchanger in the polymeric 

membrane [7], the addition of analyte-selective enzymes to some part of the biosensor to 

form ions that an ISE membrane is selective for [8, 12, 13, 15], and multiple molecule 

sandwiches integrated into the polymeric membrane made of antibodies [9], DNA [10], 

proteins [11], or aptamers [14]. Other advances have included the design of a solid-state ISE 

designed for simple miniaturization and mass fabrication [15], the use of a combination ISE 

and FET (see section 2.3) [8], and simultaneous potentiometric detection of two different 

analytes [10].

Of particular interest is an ISE that can detect recombinant human myelin basic protein 

(rhMBP) with a limit of detection of 50 ng/mL [9]. Polyclonal rhMBP antibodies were 

adsorbed to a PVC-COOH membrane, so that the presence of rhMBP creates a build-up of 

TBABr (tetrabutylammonium bromide) in the inner filling solution and thus changes the 

measured potential (Figure 4).

2.2. Conventional potentiometric sensors with new materials

Another way to design a potentiometric biosensor is to immobilize the biorecognition 

element(s) on the surface of a conventional electrode (where metal or carbon rods or disks 

are encased in an insulating sheath of plastic or glass) or an array of screen-printed 

electrodes. This immobilization can be done is a huge variety of ways, including the 

formation of self-assembled monolayers, hydrogels, polymeric membranes, and more. 

Recent advances in this type of biosensor have focused on the discovery of new materials or 
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the creative use of old materials to improve biosensor selectivity, sensitivity, and stability. 

Some groups have investigated different polymer materials for biorecognition element 

immobilization [16, 17], including Nafion [16, 18], Aquivion [17], chitosan and synthetic 

polymer blends [16, 19, 20], and 4-mercaptobenzoic acid as an alternative to the common 

thiol-bonding methods [21]. Others have inserted metal oxides, such as zinc oxide [18] and 

aluminum-doped zinc oxide [18], or nanomaterials [21] into the immobilization matrix to 

improve sensor performance. While many of these biosensors use oxidase enzymes to detect 

small molecules like glucose [16–18, 20], some groups are exploring the use of direct 

electron transfer enzymes [22].

Other advances have included the use of metal ion-specific aptamers bound to gold 

nanoparticles to monitor the concentrations of three metal ions simultaneously [23]. These 

nanoparticles are immobilized using thiol-chemistry on the surface of screen-printed carbon 

electrodes modified with reduced graphene oxide and dendritic gold nanostructures (Figure 

4). Additional aptamer-coated nanoparticles acted as internal standards, allowing for limits 

of detection as low as 2.0 pM for Hg2+, 0.62 pM for Cd2+, and 0.17 pM for As3+. An 

amperometric sensor for Hg2+, on the other hand, has a limit of detection of 10 nM [24].

Additionally, antibody-conjugated liposomes have been designed to split open and begin a 

novel precipitation reaction at the electrode surface in the presence of the analyte [25], and 

an enzyme-based reference electrode was designed to mitigate drift problems that are known 

to occur when metal salt references are used in long-term in vivo studies [21].

2.3. Field-Effect Transistors (FETs)

In order to achieve incredibly high sensitivities (aM [26] to nM [27]), many groups are 

moving towards the use of various field effect transistors (FETs), which operate based on the 

principle that a change of the voltage at the gate electrode leads to a change in the FET’s 

conductance (Figure 2a). Biologically coupled FETs (Bio-FETs) are designed so that 

binding of the analyte to the biorecognition element leads to a change in the charge 

distribution of the semiconductor layer underneath, and therefore a change to the overall 

device conductance (Figure 2b). BioFETs have large linear ranges, incredible sensitivities, 

and can be readily and inexpensively miniaturized. For an in-depth review on BioFETs, the 

reader is encourage to read [28].

These BioFETs have been used to detect small molecules [26, 29–32], proteins [33, 34], 

bacteria [35], lipids [26], neurotransmitters [8, 26, 36], and pH [37]. These molecules have 

been detected by binding enzymes [29–32], peptides [33, 34], DNA probes [35], and 

aptamers [26, 36] to the gate electrode. Groups have explored the use of novel materials for 

immobilization of biorecognition elements on the gate electrode, including: zeolites [29], 

polyaniline films [30], nanoporous gold [35], and layered double hydroxides [8]. Others 

have investigated alternative materials for increasing the charge transfer rate of the gate, 

such as graphene [34]. In this paper, a peptide specific to the biomarker neuropeptide Y was 

adsorbed to the graphene-covered FET (Figure 4), creating a highly specific sensor with a 

dynamic range of 1 pM to 10 μM.
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Other advances have included the use of extended gate electrodes [27, 33, 35, 37], which 

separates the biorecognition portion of the biosensor from the rest of the FET, and the design 

of a polymeric nanofilter to prevent small molecular weight molecules from interfering with 

the measurement [27]. Some groups are exploring FETs based off of different principles, 

such as the junctionless nanowire FET [33] or the organic electrochemical transistors [31, 

32, 36] in order to achieve the desired levels of performance.

2.4. Transition to Field-Deployable Biosensors

One of the biggest pushes in the field of biosensors is to create sensors that are field-

deployable. To do this, the sensors have to be either very low-powered or self-powered, 

portable, inexpensive to manufacture, and robust. To tackle the power issue, potentiometry 

has inherent advantages as having low power needs to begin with. However, in many field 

locations even potentiometry’s low power needs are too much, so some groups have been 

working on designing self-powered sensors. Other groups have been working on making 

their sensors incredibly robust and flexible for real-time analyses.

2.4.1. Self-powered biosensors—Self-powered biosensors often take the form of 

biofuel cells (BFCs), where both the anode and the cathode are modified in such a way that 

the reactions occurring provide all of the power needed for the biosensor to function (Figure 

3). Other advantages of these systems are that they are relatively easy to make, inexpensive, 

and portable.

These BFCs have been used to detect single nucleotide polymorphisms [38], microRNA [39, 

40], glucose [31, 41, 42], lactate [42], and organophosphate pesticides [43]. For many of 

these, the electrode material is either made of or functionalized with nanomaterials such as 

gold, silica, iron oxide nanoparticles [32, 38–40] or carbon nanotubes [38, 39, 43] in order to 

adsorb or bind to the biorecognition element(s), which usually either an enzyme [31, 41–43] 

or DNA capture probe [38–40]. However, one novel work uses covalent organic frameworks 

to immobilize both the enzyme and the electron mediator to stabilize them and mitigate their 

loss over extended use [41].

Often, the reaction occurring at the electrode opposite to the one where the biorecognition 

element is immobilized is the conversion of oxygen to water. This is achieved through a 

variety of materials, including bilirubin oxidase [43] and platinum black [42]. In other 

biosensors, the electrode is modified by an enzyme specific to glucose, and the binding event 

between the biorecognition element and the analyte on the other electrode causes a mediator 

to be released from inside a porous particle [39, 40] or moved towards the electrode [38] to 

become reduced by the enzymatic reaction occurring as glucose turned over.

One ingenious BFC uses a combination of DNA strand displacement reactions and 

hybridization chain reaction such that in the presence of the target DNA sequence, a 

mediator is extended towards the anode, where the enzymatic oxidation of glucose reduces 

the mediator and alters the measured potential (Figure 4). This BFC has a limit of detection 

of 20 aM, and is capable of differentiating the target sequence from nearly-identical 

sequences [38].
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2.4.2. Flexible Biosensors—Biosensors geared towards use in the field and everyday 

life have been experiencing a move towards flexible sensors, as they can provide 

comfortable, inexpensive, robust, easy-to-use real-time analyses. Many of these devices are 

intended as point-of-care monitoring devices for small molecules that can warn users about 

potential harm ahead of time, such as diabetes, or for sweat analysis during exercise. If 

interested in more detail than can be provided here, the reader is directed towards the recent 

reviews on of flexible biosensors [44], wearable electrochemical sensors [45], and 

challenges associated with developing wearable sensors [46].

One of the main types of flexible biosensors are wearable sensors designed for the analysis 

of sweat during exercise. For example, a recent publication describes a glucose and lactate 

sensor made on polydimethylsiloxane that is not only self-powered, but is also very flexible 

and can use the analysis of electrolyte concentrations and pH of the sweat to correct the 

glucose and lactate concentrations measured [42].

The other main type of flexible sensor is designed to monitor for indicators of a particular 

disease state. A flexible array made on polyethylene terephthalate and modified with lactate 

dehydrogenase and glucose oxidase allowed for the detection of glucose and lactate in blood 

as markers for disease [47]. A similar paper-based device was created to measure galactose 

by immobilizing galactose oxidase on platinized paper in order to screen for galactosemia in 

infants [48]. A textile-based biosensor was created to monitor glucose and uric acid by 

modifying organic electrochemical transistors with the appropriate enzyme and then 

weaving nylon fibers around the sensor (Figure 4). The glucose fibers had a detection limit 

of 30 nM and were woven into a fabric square inside of a diaper to monitor glucose levels in 

urine [32].

3. Conclusions and Future Outlooks

The main challenge with potentiometric biosensing is achieving selectivity. There has been a 

great deal of recent advancement in biosensing, from the novel use of materials both old and 

new to improved potentiometric sensors that expand the range of available analytes to the 

use of new sensing devices to drastically improve sensitivity. An important trend has 

emerged in the push towards portable, self-powered, and wearable biosensors for use in 

technologically limited locations or for point-of-care devices. Though there have been many 

exciting leaps, an overview of which is illustrated in Figure 4, many of these biosensors are 

not quite yet refined enough for commercial or wide-scale use. Further work is needed to get 

many of these devices to market, but we anticipate that it will not be much longer before 

potentiometric biosensors are commonplace.
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Highlights

• Potentiometric biosensors are versatile tools with a wide variety of 

applications

• New advances push the limits of detection, sensitivity, and selectivity

• Biosensing is moving towards portable and flexible sensors for in-field use
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Figure 1. 
Schematic of a conventional ISE for analysis of solution pH.
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Figure 2. 
Schematic of a a) field effect transistor, where changes in the gate voltage cause either holes 

or electron carries to move between the source and the drain, resulting in a change to the 

device’s conductance and a b) Bio-FET, where binding of the analyte to the biorecognition 

element leads to a change in charge distribution of the semiconducting layer, driving a 

change in overall conductance of the device.
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Figure 3. 
Schematic of a biofuel cell, where the energy to power the lightbulb is made by the reactions 

occurring at the cathode-glucose oxidase turning over glucose and releasing an electrode 

into the anode-and laccase using that electron to turn dissolved oxygen into water.
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Figure 4. 
Summary of the types of potentiometric biosensors, with an example schematic of each 

type: Ion-selective electrode for the detection of recombinant human myelin basic protein 

[9], a modified screen-printed electrode for the simultaneous detection of Hg2+, Cd2+, and 

As3+ [23], a graphene-based field effect transistor for the detection of neuropeptide Y [34], a 

self-powered biosensor for the detection of a single nucleotide polymorphism [38], and a 

flexible, fabric-based biosensor for the detection of glucose [32].
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