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Abstract

Background: Findings from epidemiological studies of prenatal phthalate exposure and child 

cognitive development are inconsistent. Methods for evaluating mixtures of phthalates, such 

as weighted quantile sum (WQS) regression, have rarely been applied. We developed a new 

extension of the WQS method to improve specificity of full-sample analyses and applied it to 

estimate associations between prenatal phthalate mixtures and cognitive and language outcomes in 

a diverse pregnancy cohort.

Methods: We measured 22 phthalate metabolites in third trimester urine from mother-child 

dyads who completed early childhood visits in the Conditions Affecting Neurodevelopment and 

Learning in Early childhood (CANDLE) study. Language and cognitive ability were assessed 

using the Bayley Scales of Infant Development (age 3) and the Stanford Binet-5 (age 4–6), 

respectively. We used multivariable WQS regression to identify phthalate mixtures that were 

negatively and positively associated with language score and full-scale IQ, in separate models, 

adjusted for maternal IQ, race, marital status, smoking, BMI, socioeconomic status (SES), child 

age, sex, and breastfeeding. We evaluated effect modification by sex and SES. If full sample 

95% WQS confidence intervals (which are known to be anti-conservative) excluded the null, we 

calculated a p-value using a permutation test (ppermutation). The performance of this new approach 

to WQS regression was evaluated in simulated data. We compared the power and type I error rate 

of WQS regression conducted within datasets split into training and validation samples (WQSSplit) 

and in the full sample (WQSNosplit) to WQS regression with a permutation test (WQSpermutation). 

Individual metabolite associations were explored in secondary analyses.

Results: The analytic sample (N = 1015) was 62.1% Black/31.5% White, and the majority 

of mothers had a high school education or less (56.7%) at enrollment. Associations between 

phthalate mixtures and primary outcomes (language score and full-scale IQ) in the full sample 

were null. Individual metabolites were not associated with IQ, and only one metabolite (mono-

benzyl phthalate, MBzP) was associated with Bayley language score (β = −0.68, 95% CI: −1.37, 

0.00). In analyses stratified by sex or SES, mixtures were positively and negatively associated 

with outcomes, but the precision of full-sample WQS regression results were not supported by 

permutation tests, with one exception. In the lowest SES category, a phthalate mixture dominated 

by mono-methyl phthalate (MMP) and mono-carboxy-isooctyl phthalate (MCOP) was associated 

with higher language scores (βlow SES = 2.41, full-sample 95%CI: 0.58, 4.24; ppermutation = 0.04). 

Performance testing in simulated data showed that WQSpermutation had improved power over 

WQSSplit (90% versus 56%) and a lower type I error rate than WQSNosplit (7% versus 47%).

Conclusions: In the largest study of these relationships to date, we observed predominantly 

null associations between mixtures of prenatal phthalates and both language and IQ. Our novel 

extension of WQS regression improved sensitivity to detect true associations by obviating the need 

to split the data into training and test sets and should be considered for future analyses of exposure 

mixtures.
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1. Introduction

Phthalates are a group of synthetic chemicals found in personal care products, food 

packaging, medical supplies, and processed foods (Hauser and Calafat, 2005). Nearly 

ubiquitous in our environment, phthalates and their metabolites have been detected in 

almost all pregnant women tested, including in amniotic fluid (Silva et al., 2004). Phthalates 

have well-described endocrine disrupting properties. Animal models suggest that prenatal 

exposure may have lasting effects on child neurodevelopment and that some effects are 

sex-specific (Barakat et al., 2018; Hatcher et al., 2019; Lin et al., 2015; Miodovnik et al., 

2014).

However, as reviewed by Lee et al. (2018) and Radke et al. (2020), epidemiological 

support for the hypothesis that prenatal phthalate exposure impairs cognitive development 

is weak and inconsistent. Adverse impacts on early childhood language skills have been 

suggested in a small number of studies but with inconsistency as to which metabolites 

are linked to language impairment (Bornehag et al., 2018; Olesen et al., 2018). The 

heterogeneity of findings across epidemiological studies may be due to methodological 

limitations, including lack of consideration of phthalate mixtures. With very few exceptions 

(Daniel et al., 2020), previous studies of phthalates and pediatric neurodevelopment have not 

utilized statistical methods developed to estimate effects of mixtures. Analyzing metabolites 

separately typically creates a multiple comparison problem and could yield spurious 

findings. In addition, analyses of individual metabolites may be underpowered to detect 

any true effects of phthalate mixtures, if they exist (Lazarevic et al., 2019). Several methods 

for analyzing effects of exposure mixtures are emerging, including weighted quantile sum 

(WQS)1 regression (Carrico et al., 2015; Czarnota et al., 2015). One limitation of WQS 

regression is that estimation of accurate 95% confidence intervals requires splitting the 

sample into training and validation datasets, which reduces statistical power (Carrico et al., 

2015). In many studies, WQS regression has been applied to a full sample without training 

and validation, potentially yielding false positive findings (Brunst et al., 2017; Horton et al., 

2015; Malin et al., 2018; Nieves et al., 2016; Romano et al., 2018; Wu et al., 2018).

To address limitations in previous studies, we examined the links between prenatal 

phthalates and early childhood cognition and language in a longitudinal, well-

characterized pregnancy cohort of over 1500 mother–child dyads, the Conditions Affecting 

Neurodevelopment and Learning in Early childhood (CANDLE) study. To avoid bias 

associated with applying WQS regression in a full sample without training and validation, 

1BBZP- Benzyl butyl phthalate; BMI - Body Mass Index; BSI - Brief Symptom Index; CANDLE - Conditions Affecting 
Neurocognitive Development and Learning in Early Childhood; CI - Confidence Intervals; COI - Childhood Opportunity Index; 
ECHO - Environmental Influences on Child Health Outcomes; EDC - Endocrine Disrupting Compound; HOME - Home Observation 
Measurement of the Environment; HPLC - High-Performance Liquid Chromatography; IRB - Institutional Review Board; IQ - 
Intelligence Quotient; KIDI - Knowledge of Infant Development Inventory; LOD - Limit of Detection; MIBP - mono-isobutyl 
phthalate; MEP - monoethyl phthalate; MMP - mono-methyl phthalate; MnBP - mono-n-butyl phthalate; MBzP - mono-benzyl 
phthalate; MCNP - mono-carboxy-isononyl phthalate; MCOP - mono-carboxy-isooctyl phthalate; MCPP - mono-(3-carboxypropyl) 
phthalate; MEHP - mono-(2-ethylhexyl) phthalate; MEHHP - mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP - mono-(2-ethyl-5-
oxohexyl) phthalate; MECPP - mono-(2-ethyl-5-carboxypentyl) phthalate; MCMHP - mono(2-carboxymethylhexyl) phthalate; SB-5 - 
Stanford-Binet 5; SD - Standard Deviation; SES - Socioeconomic Status; SG - Specific Gravity; UTHSC - University of Tennessee 
Health Science Center; WASI - Weschler Abbreviated Scale Intelligence; WISC-V - Weschler Intelligence Scale of Intelligence V; 
WPPSI - Weschler Preschool and Primary Scale of Intelligence; WQS - Weighted Quantile Sum; ∑DEHP - sum of di(2-ethylhexyl) 
phthalate metabolites
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we developed a permutation test extension of the existing WQS algorithm. We estimated 

associations between mixtures of phthalate metabolites measured in third trimester urine 

and language development (age 3 years) and full-scale IQ (age 4–6 years) and rigorously 

adjusted for confounders given the strong and complex relationships between phthalate 

exposure and sociodemographics (James-Todd et al., 2017; Wenzel et al., 2018). Due to 

biological plausibility that phthalates may have sex-specific effects on neurodevelopment, 

effect modification by sex was of primary interest. We also investigated whether SES 

modified associations given prior evidence that low SES children may be more vulnerable to 

poor neurodevelopmental outcomes associated with chemical exposures (Tong et al., 2000).

2. Methods

2.1. Study population

The CANDLE study is a community pregnancy cohort established to describe pre- and 

postnatal factors that impact child development and learning. The design and methods 

have been described previously (LeWinn et al., 2020; Sontag-Padilla et al., 2015). Between 

2008 and 2011, CANDLE recruited 1,503 women in their 2nd trimester of pregnancy and 

residing in the Memphis, TN, region. Specifically, women were considered eligible if they 

were Shelby County residents between 16 and 40 years of age, had low-risk singleton 

pregnancies, and planned to deliver at a participating study hospital. The University of 

Tennessee Health Sciences Center (UTHSC) Institutional Review Board (IRB) approved 

CANDLE research activities, and women provided informed consent before enrolling. Data 

were collected at several points across pregnancy and early childhood, including clinic 

visits, a hospital visit, home visits, and numerous phone-based assessments. In the current 

study, we included 1,015 mother–child dyads with gestational age at birth of at least 34 

weeks, measurements of phthalate metabolites in third trimester urine, and either the Bayley 

Scales of Infant and Toddler Development, 3rd Edition (Bayley-III) at age 3 visit or the 

Stanford-Binet intelligence test at age 4–6 visit. The current analysis was conducted as part 

of the ECHO PATHWAYS Consortium and was approved by the University of Washington 

IRB.

2.2. Maternal urinary phthalate metabolites

Individual metabolites of parent phthalates were measured in spot urine samples collected 

in the 3rd trimester. Samples were collected in sterile, phthalate-free specimen cups, 

transferred to cryovials, and stored at − 80 ◦C in the study repository (UTHSC Department 

of Pathology) until shipment for analysis. Specific gravity (SG) was measured with a 

handheld refractometer at the time of urine collection. Samples were analyzed for 22 

metabolites at Wadsworth Laboratory of the New York State Department of Health. This 

process involved enzymatic deconjugation of phthalate metabolites from glucuronidated 

form, automated online solid phase extraction, separation with high performance liquid 

chromatography (HPLC), and detection by isotope-dilution tandem mass spectrometry. 

Detailed methods have been previously described (Asimakopoulos et al., 2016; Guo et 

al., 2014; Rocha et al., 2017). Process and instrument blanks were included for quality 

assurance. The limit of detections (LODs) were between 0.012 and 0.304 ng/mL.
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The 13 individual phthalate metabolites that were detected in >80% of the study population 

were included in this analysis: mono-isobutyl phthalate (MiBP), monoethyl phthalate 

(MEP), mono-methyl phthalate (MMP), mono-n-butyl phthalate (MnBP), mono-benzyl 

phthalate (MBzP), mono-carboxy-isononyl phthalate (MCNP), mono-carboxy-isooctyl 

phthalate (MCOP), mono-(3-carboxypropyl) phthalate (MCPP), mono-(2-ethylhexyl) 

phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-

oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) and 

mono(2-carboxymethylhexyl) phthalate (MCMHP). We imputed values lower than the limit 

of detection (LOD) as LOD divided by the square root of 2. Concentrations of metabolites 

were corrected for dilution using the following formula (Boeniger et al., 1993):

Pc = P⋆ SGmedian − 1
SG − 1

where P is the measured urinary phthalate concentration, SG is the sample specific 

gravity, and SGmedian is the median SG over all samples. To calculate the summed molar 

concentration of DEHP metabolites (∑DEHP), the mass concentrations of each of the five 

individual DEHP metabolites (MEHP, MEHHP, MEOHP, MECPP and MCMHP) were 

divided by molecular weight and summed. Metabolites were natural log-transformed (loge) 

for all analyses.

2.3. Outcomes

Child language development was assessed at the age 3 visit using the Bayley-III 

administered by a licensed clinical psychologist. The Bayley-III is a standardized tool for 

evaluating developmental function of infants and young children up to 42 months of age. 

Age-standardized composite scores and subscale scores were obtained for the domains of 

cognitive, language and motor development. The language composite score was utilized as 

our primary outcome measure of language development (Bayley, 2006).

Standardized full scale child IQ (mean = 100; SD = 15) was assessed at the age 4–6 visit by 

trained psychologists using the Stanford-Binet Intelligence Scales (SB-5), which has been 

validated and normed in large, diverse populations and includes tasks assessing working 

memory, processing speed, visual-spatial skills, vocabulary and language comprehension 

(Roid and Pomplun, 2012). The full-scale age-standardized score was our primary outcome 

measure of cognitive development.

For both outcome metrics, higher scores indicate more favorable neurocognitive outcomes.

2.4. Covariates

Several characteristics were ascertained by maternal report during pregnancy, including: 

maternal age, race, education, marital status, insurance status, pre-pregnancy body mass 

index (BMI), prenatal smoking, parity and income. We adjusted household income for 

number of adults and children supported by the income (Burniaux et al., 1998). Maternal 

psychopathology was characterized by Brief Symptom Inventory (BSI), administered during 

pregnancy (Derogatis and Melisaratos, 1983), and maternal cognition was assessed using 

Loftus et al. Page 5

Environ Int. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Weschler Abbreviated Scale Intelligence (WASI) (Axelrod, 2002). The Knowledge of 

Infant Development Inventory (KIDI) was used as a measure of maternal knowledge of child 

caretaking (MacPhee, 1981). Child birth weight and gestational age at birth were abstracted 

from the birth record. During a home visit, trained staff conducted a Home Observation 

Measurement of the Environment (HOME) assessment, to characterize the quality of the 

care-taking environment (Elardo and Bradley, 1981). Breastfeeding history of the enrolled 

child was reported at the age 4–6 visit. Maternal addresses were collected at enrollment 

and updated across pregnancy. Each residence was geocoded and linked by census tract to 

values of the Childhood Opportunity Index (COI), a measure of neighborhood resources 

and opportunities for healthy childhood development (Acevedo-Garcia et al., 2014), and a 

pregnancy average was calculated for each mother–child dyad by time-weighting across all 

reported prenatal residences.

2.5. Statistical analysis

All analyses were performed using STATA 15 or R studio 3.5.2. We conducted descriptive 

analyses to summarize distributions of outcome measures, phthalate exposure, and 

covariates in the analytic population. Distributions of phthalate exposure within strata of 

effect modifiers were also calculated. We summarized pairwise correlations among specific-

gravity adjusted metabolites using Spearman correlation coefficients.

For the primary analyses, we utilized weighted quantile sum (WQS) regression 

to characterize the association between phthalate metabolite mixtures and child 

neurodevelopment (Bayley language score and full-scale IQ, in separate models). We used 

the R package (“gWQS”) to estimate WQS scores comprised of weighted sums of individual 

phthalate concentrations (each normalized by converting to quintiles). Weights were selected 

using bootstrap resampling methods (1000 bootstrap runs for each analysis) to optimize the 

association between the WQS score and outcome in a multivariate linear regression model, 

adjusted for covariates as described below. Standard errors and statistical significance were 

evaluated using robust sandwich standard errors. WQS regression estimates sum mixture 

effects in either the positive or negative direction separately, and we chose to evaluate 

both directions in separate models to allow for the possibility of associations in both the 

hypothesized (negative) and non-hypothesized (positive) directions. In the primary analyses 

we included ∑DEHP as one component of the mixture, rather than the individual DEHP 

metabolites.

Because we did not split the sample into separate datasets for training and validation in 

WQS regression analyses, the observed 95% confidence intervals (CIs) for coefficients of 

WQS indices in the full sample (i.e., full-sample 95% CIs) are likely anti-conservative 

estimates of true precision (Borovicka et al., 2012). We therefore developed an extension of 

the WQS method that applies a permutation test to estimate p-values that more accurately 

represent the uncertainty in the WQS coefficient. See Supplement A1 for expanded 

background and rationale for the permutation test approach and Supplement A2 for a 

detailed description of the methodology. In brief, a permutation test is a widely used 

statistical method for calculating a p-value based on simulations of the null distribution 

upon which the p-value is based. To our knowledge, we are the first to apply this approach 
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to WQS regression. For linear regression coefficients, the p-value indicates the probability of 

randomly observing a coefficient as great or greater in value given that the true coefficient 

is zero. For a linear regression with a single predictor variable, the permutation test 

simulates the condition in which the true coefficient is zero by randomly permuting outcome 

values and running linear regressions with those new outcome variables each time, thereby 

generating a distribution of coefficient values given a true null hypothesis (Manly, 1991). 

The permutation test p-value in this case is the number of times the absolute value of the 

permuted coefficient is as great or greater than the absolute value of the initially observed 

coefficient. For regression with multiple predictor variables, the permutations are performed 

on the residuals of predicted outcome values from a regression omitting the predictor 

variable of interest (Freedman and Lane, 1983). We utilize this latter method for permutation 

tests with WQS regressions. It should be noted that permutation tests only provide a p-value 

and not valid confidence intervals. Also, permutation tests, while improving the accuracy of 

p-values, do no change point estimates.

To verify that the permutation test does restore the nominal false positive rate of 5% while 

still improving statistical power, we performed our own repeated simulations comparing 

WQS regressions within a training and validation dataset using a 40:60 split (WQSSplit), 

within the full sample (WQSNosplit), and within the full sample but also including a 

permutation test (WQSPermutation). For the WQS coefficient, we tested statistical power 

(i.e., the true positive rate, also called sensitivity), and the Type I error rate (i.e., the false 

positive rate, equal to one minus the specificity). More details about the WQS regression 

performance testing are provided in Supplement A3.

For every full-sample WQS analysis that resulted in 95% confidence intervals that did not 

include the null, we repeated WQS regression with the permutation test and estimated 

a permutation test p-value (ppermutation), which is a more conservative measure of the 

strength of evidence to reject the null hypothesis than the full-sample 95% CIs. We loosely 

distinguish three levels of evidence against the null: 1) full-sample 95% CIs overlap the null 

(weakest evidence); 2) full-sample 95% CIs do not overlap the null but ppermutation > 0.05 

(moderate evidence); and 3) full-sample 95% CIs do not overlap the null and ppermutation < 

0.05 (strongest evidence).

We chose covariates for adjusted regression models a priori by identifying established risk 

factors for pediatric language and cognitive development that could be directly or indirectly 

associated with phthalate exposure but not on the causal pathway. See Fig. S1 for a directed 

acyclic graph (DAG) presenting our conceptual model. We implemented a staged approach 

to modeling with varying levels of adjustment: Model 1 was adjusted for child sex and age at 

visits. Model 2 (main adjustment model) was additionally adjusted for maternal education, 

income adjusted for household size, maternal race, mother’s IQ, maternal age at delivery, 

marital status (married vs. living with partners vs. single), prenatal smoking, child birth 

order, recruitment site, child year of birth, pre-pregnancy BMI class, breastfeeding, maternal 

prenatal psychopathology (BSI global severity index t-score), COI indices (education, 

health and environment, and social and economic), Knowledge of Infant Development 

Inventory score (KIDI), and insurance coverage. Model 3 was an extensive model further 

controlled for HOME subscale scores (learning materials, parental involvement and variety 
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of experiences), which were not included in main models due to substantial missingness. 

Model 4 included additional adjustment for birth outcomes (birth weight and gestational 

age at birth) which we did not include in the main adjustment model (Model 2) because 

they may lie on the causal pathway if phthalates are adversely associated with child 

neurodevelopment in this study sample. All analyses were conducted using complete case 

analysis.

In secondary analyses, we explored effect modification in associations between phthalate 

mixtures and primary outcome measures by socioeconomic status (SES) and child sex. 

We calculated a composite SES index from maternal education and adjusted household 

income by averaging z-scores of each separate measure and categorized the composite into 

tertiles. Effect modification was assessed in main adjustment models only. If WQS analysis 

suggested evidence of an association between a phthalate mixture and either outcome 

measure in the full population, we assessed interaction by SES and child sex by adding 

an interaction term to the WQS regression model. Finally, we conducted fully stratified 

WQS analyses of phthalate mixtures and both primary outcomes, deriving stratum-specific 

weights and WQS scores in each stratum of SES and child sex.

In sensitivity analyses, we repeated the main WQS analyses but included the individual 

DEHP metabolite constituents (MEHP, MEHHP, MEOHP, MECPP and MCMHP) instead of 

∑DEHP. For these sensitivity studies, we report full-sample 95% CIs but did not calculate 

permutation test p-values for the sensitivity analyses due to the computational burden of 

these calculations.

3. Results

3.1. Characteristics of the study population

Fig. 1 illustrates CANDLE cohort retention between enrollment and the time of outcome 

assessments and sample sizes for all primary models. Of 1503 pregnancies enrolled in 

CANDLE, 1015 mother–child pairs completed an assessment for at least one primary 

outcome and had prenatal phthalate data. Mothers included in analyses were racially diverse, 

with 62% identifying as Black and 32% identifying as White (Table 1). At enrollment, more 

than half of them reported a high school education or less, and about 40% reported never 

being married. One third of the participating families had a baseline household income less 

than $20,000 per year, and more than half were covered by Medicaid or Medicare only. 

Few mothers reported smoking (8.8%) during pregnancy, and 66% breastfed their newborn. 

Characteristics of women and children of the each of the analytic samples for the two 

outcomes were similar, and did not differ meaningfully from those of the 1503 who enrolled 

in CANDLE (Table 1).

The Age 3 clinic visit was attended by 1046 mother–child dyads, of which 1040 had a valid 

Bayley language assessment (average age 3.1 years; SD = 0.1 years), and the average (SD) 

language composite score was 101.4 (12.3). The age 4 visit was attended by 1062 dyads; of 

these, 1056 children completed a valid IQ assessment. The mean (SD) age of children at this 

visit was 4.4 (0.6) years, and the mean FSIQ score was 100.3 (14.9). A total of 857 dyads 

attended both visits.
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3.2. Prenatal phthalate exposure

The 13 individual phthalate metabolites that were detectable in at least 80% of the samples 

were included in this analysis (Table 2). MCNP had the lowest concentrations (geometric 

mean = 0.51 ng/mL, adjusted for specific gravity) while the phthalate present at the highest 

concentrations was MEP (geometric mean = 126.3 ng/mL, adjusted for specific gravity). 

Metabolite pairwise correlations varied from weak to strong (Table S1). Compared to 

geometric means reported in the US National Health and Nutrition Examination Survey 

(NHANES) in 2009–2010 (Zota et al., 2014), those in our analytic population were similar, 

with some exceptions. The geometric mean concentration of MEP in CANDLE women was 

almost twice as high (110.86 versus 64.4 ng/mL) while MBzP and MEHP were somewhat 

higher (10.29 versus 6.46 and 2.26 versus 1.59 ng/mL, respectively). The geometric mean 

of MCPP was in CANDLE less than that observed in NHANES (1.40 versus 3.02 ng/mL) 

while that of MECPP and MEHHP were also lower (11.75 versus 20.7 and 8.13 versus 12.9 

ng/mL, respectively).

The phthalate distributions were comparable between male and female children (Table S2). 

Participants in the lowest SES category were more likely to have higher MnBP, MEP, MiBP, 

MBzP and MEHP (Table S3). The variability of each individual phthalate (geometric SD) 

was relatively low in the overall study population, and variability of each metabolite was 

similar across strata by child sex and SES category as well.

3.3. Performance of the permutation test

To assess performance of WQS regression with the permutation test extension, we calculated 

the power (i.e., sensitivity) and type I error rate of the WQS coefficient estimated in various 

implementations of WQS regression (Table 3). When WQS regression was performed 

with the sample split into training and validation datasets (WQSSplit), the type I error 

rate was low (6%) but statistical power was also low (56%). With full-sample WQS 

(WQSNosplit), conducted without splitting the sample, power was maximized but the type 

I error rate was 47%. With calculation of permutation test p-values in full-sample WQS 

(WQSPermutation), we observed that statistical power was high (90%) and the type I error rate 

was approximately equal to that achieved by splitting the sample into training and validation 

datasets (7%). See Supplement A3 for additional details.

3.4. Associations between phthalates and language measures

We found little evidence for associations between individual metabolites and Bayley 

language composite scores (Fig. 2a). While several metabolites were associated with lower 

language score in minimally adjusted models (MnBP, MBzP, MEP, MiBP, MCMHP, and 

MEHP), the associations did not persist with further adjustment. In the main adjustment 

models (Model 2), only MBzP was associated with lower language scores (β = −0.68, 95% 

CI: −1.37, 0.00). MCOP and MCNP were suggestively associated with higher language 

scores in Model 2. Model 3 results were similar, and adjustment for possible mediators did 

not alter associations (Model 4).

We also observed little evidence of associations with language score when phthalates 

were analyzed as mixtures using WQS (Table 4 and Fig. 3). When analyzing negative 
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relationships between phthalates and language (adverse effects) in the main adjustment 

models, a 1-unit increase in WQS index was associated with −0.76 language composite 

score points (full-sample 95% CIs: −1.73, 0.21), and MEHP and MBzP had the largest 

weights (i.e., weights in the highest sextile across metabolites; Fig. S3). For positive 

associations, an increase in WQS index of one unit was associated with 0.75 higher points 

(full-sample 95% CIs: −0.11, 1.6). MCOP and MCNP were the metabolites with the highest 

weights in the positive WQS index (Fig. S3). Since the full-sample 95% CIs included the 

null in main adjustment models, we did not calculate permutation test p-values.

We used WQS regression to evaluate both negative and positive associations between 

phthalate mixtures and language scores for females and males separately (Fig. 3). Positive 

associations were somewhat higher in males than females (βmale = 1.36, full sample 95%CI: 

−0.07, 2.79; βfemale=0.7, full sample 95%CI: −0.43, 1.83). Weights in positive WQS indices 

were largest for MMP and MCOP for males, and MECPP, MCPP and MCNP for females 

(Fig. S3). Adverse associations were similar for males and females (βmale = −1.13, full 

sample 95%CI: −2.41, 0.15; βfemale= −1.21, full sample 95%CI: −2.54, 0.11). The adverse 

mixture determined by WQS regression in males was driven by MCMHP and MBzP 

whereas for females it was MEP, MEHP and MnBP (Fig. S3).

When stratified by SES in WQS analysis, we observed a positive association between 

phthalate mixtures and language score only in the lowest SES tertile (βlow = 2.41, full 

sample 95%CI: 0.58, 4.24, ppermutation = 0.04), with the highest weights assigned to MMP 

and MCOP (Fig. S3). For adverse associations between mixtures and language scores, the 

largest effects were observed in the higher two tertiles (βmiddle = −1.52, full sample 95%CI: 

−3.11, 0.08; βhigh = −1.63, full sample 95%CI: −3.07, −0.19, ppermutation = 0.17). For the 

middle SES group, MCMHP, MEHP and MEP had the largest weights in the WQS index; 

for the highest SES group, it was MEOHP. The sensitivity analysis replacing the five DEHP 

metabolites with sum DEHP yielded the same conclusions as the primary analysis (Table S4, 

Fig. S2 and Fig. S5).

3.5. Associations between phthalates and FSIQ

When phthalate metabolites were evaluated individually, we observed little evidence 

supporting adverse effects of phthalates on FSIQ (Fig. 2b). Five metabolites were 

significantly associated with lower FSIQ in minimally adjusted models (MBzP, MnBP, 

MiBP, MEHP and MEP), but these associations were strongly attenuated or reversed after 

further adjustment, including in our main adjustment model (Model 2). MMP, MCNP, 

MCOP and MCPP exhibited suggestive associations with higher FSIQ in Model 2, though 

95% confidence intervals included the null (Fig. 2b). Adjustment for possible mediators had 

no effect on associations (Model 4).

We used WQS regression to estimate adverse and positive associations between phthalate 

mixtures and FSIQ using the main adjustment model (Table 4 and Fig. 3). In analyses of 

negative (adverse) relationships between phthalate mixtures and FSIQ, no association was 

observed. When positive relationships were analyzed, the WQS effect size was 1.01 points 

(full sample 95%CI: −0.03, 2.05) per WQS unit in the main adjustment model (Model 2), 

and MCNP had the highest weight (Fig. S4). With adjustment for additional confounders in 
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the expanded model (Model 3), this positive effect was stronger and more precise (β = 1.58, 

full sample 95%CI: 0.37, 2.79; ppermutation = 0.075). Since the full sample CIs overlapped 

the null in all cases, we did not use the permutation test to calculate p-values, and we did not 

evaluate effect modification by child sex or SES using the mixture weights derived for the 

overall population.

We estimated child sex- and SES-specific positive and negative associations between 

prenatal phthalate mixtures and FSIQ in stratified WQS analyses (Fig. 3). In both sexes, 

the positive WQS index was associated with higher FSIQ, but p-values calculated with a 

permutation test indicated that the strength of the evidence to reject the null was not strong 

(βmale = 2.13, full sample 95%CI: 0.56, 3.69; ppermutation = 0.07; βfemale=1.18, full sample 

95%CI: 0.19, 2.18; ppermutation = 0.32). In analyses of adverse relationships, phthalate 

mixtures were associated with lower IQ in females, with MIBP, MBzP, MMP and MCMHP 

assigned the highest weights (Fig. S4), though the p-value calculated with a permutation test 

did not confirm the strength of the evidence suggested by full sample 95% CIs (βnegative = 

−1.64, full sample 95%CI: −3.03, −0.25; ppermutation = 0.13). When stratified by SES, we 

observed positive associations in the two lowest SES categories, but p-values calculated with 

a permutation test did not support the strength of the evidence indicated by full sample 95% 

CIs (βlowSES = 1.87, full sample 95%CI: 0.04, 3.70, ppermutation = 0.17; βmiddleSES=2.39, full 

sample 95%CI: 0.16, 4.61, ppermutation = 0.10) (Fig. 3). We did not observe evidence of SES 

strata-specific adverse associations between phthalate mixtures and FSIQ (Fig. 3).

The sensitivity analysis replacing the five DEHP metabolites with sum DEHP yielded the 

same conclusions as the primary analysis (Table S4, Fig. S2, and Fig. S6).

4. Discussion

We conducted an analysis of prenatal phthalate exposure and child cognitive and language 

development using the CANDLE Study, a diverse and well-characterized birth cohort 

representative of Shelby County, TN. In primary analyses, we estimated the effect of 

phthalate mixtures using WQS regression with a permutation test, a new extension of the 

WQS method that we developed to improve the specificity of full-sample analyses. We 

observed little evidence that prenatal phthalate mixtures had adverse impacts on IQ or 

language in early childhood, either in the overall population or in subgroups. Although some 

evidence of positive effects of phthalate mixtures on both IQ and language outcomes was 

observed, in most cases the strength of the evidence was not supported by a permutation 

test. An exception was a positive association between a mixture dominated by MMP, MCOP, 

MCNP and MCPP and language scores in the lowest SES stratum that was confirmed to 

be significant at a traditional alpha of 0.05 by the permutation test. Given the number 

of comparisons evaluated, this could be a spurious finding. In exploratory analyses, we 

additionally analyzed all metabolites individually in the overall sample. Most of the adjusted 

associations were null, though MBzP was linked to lower language scores.

Our study adds a set of largely null findings to a generally inconsistent body of 

epidemiological evidence on prenatal phthalates and cognition. A recent systematic review 

on this topic concluded that the weight of epidemiological evidence for adverse effects of 
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phthalates on cognition was “slight” (Radke et al., 2020). Included in this review were 11 

birth cohort studies set in Asia, Europe or North America, ranging in size from N = 64 to 

802. Overall, there was little between-study consistency in the magnitude or direction of 

effects. While most studies reported at least one adverse association (Factor-Litvak et al., 

2014; Gascon et al., 2015; Huang et al., 2015; Kim Yeni et al., 2011; Polanska et al., 2014; 

Téllez-Rojo et al., 2013; Whyatt et al., 2012), in general the associations with individual 

phthalates were null. Among the studies reviewed by Radke et al. (2020), no clear patterns 

emerged as to which metabolites might have the strongest adverse or protective effects. We 

identified three recent studies of cognition not included in the Radke et al. review. Hyland 

et al. (2019) analyzed prenatal phthalates and a wide range of neurodevelopmental outcomes 

assessed at adolescence in the CHAMACOS cohort and observed no associations with IQ 

overall but found sex-specific effects, with positive effects in girls and adverse effects in 

boys. Prenatal and postnatal phthalate metabolites were measured in cohort of N = 134 

Polish mothers by Jankowska et al. (2019) and examined in relation to cognitive outcomes 

at 7 years. Associations with prenatal metabolites were null, with the exception of MEHP, 

which was linked to higher cognition. Qian et al. (2019) found no associations between 

urinary phthalate metabolites measured in three trimesters of N = 476 pregnancies in China 

and the Bayley Scales of Infant Development mental development index at age 2. Taken 

together, findings of these newer studies and ours likely do not shift the collective evidence 

for potential causal effects above the “slight” determination of Radke et al. (2020).

Fewer studies have explored relationships between prenatal phthalate exposure and early 

childhood language skills. In the Danish Odense Cohort (N = 518 pregnancies), Olesen et al. 

(2018) observed that higher prenatal MEP and ∑DEHP was associated with poorer language 

outcomes at age 20–36 months, but only in boys. Bornehag et al. (2018) explored prenatal 

phthalate exposure in relation to reported number of words understood around 3 years in 

separate analyses of cohorts in the US (TIDES; n = 309) and Sweden (SELMA; n = 963). 

Results in each cohort suggested a higher risk of language delay with higher MnBP and 

MBzP exposure, while risk of delay with MEP exposure were observed in SELMA only. 

Like Bornehag et al. (2018), we observed possible adverse effects of MBzP, MnBP and 

MEP on language outcomes, but those associations were sensitive to covariate inclusion in 

our analyses and effectively disappeared after adjustment for confounders. Both Bornehag 

et al. (2018) and Olesen et al. (2018) included minimal covariates describing SES or related 

factors in regression models. Another methodological difference is that language outcomes 

analyzed by Olesen et al. (2018) and Bornehag et al. (2018) were parental report of words 

spoken, while the language assessment in our analysis was a rigorous direct assessment by 

a trained examiner. Some studies of phthalates and IQ additionally explored relationships 

with IQ subtests, including the WPPSI verbal IQ factor (Huang et al., 2017; Nakiwala et 

al., 2018) and the verbal comprehensive index of the WISC-IV (Factor-Litvak et al., 2014; 

Huang et al., 2017; Hyland et al., 2019). These involved direct assessments of language but 

were all smaller studies conducted on older children, providing limited insight into early life 

language development.

A limitation of previous studies of phthalates and cognition or language is a missing 

perspective on possible mixture effects. Studies in pregnant women have detected 

widespread exposure to complex mixtures of phthalates (Woodruff et al., 2011). Analyzing 
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metabolites independently may fail to uncover true effects attributable to co-exposure to 

several phthalates (Kortenkamp Andreas, 2007). In addition, because metabolites are highly 

correlated, true associations with one metabolite may appear as a spurious association 

with another phthalate metabolite when they are analyzed separately (Braun et al., 2016). 

We addressed this shortcoming in the phthalate-neurodevelopment literature by applying 

WQS regression and, further, advancing the existing WQS algorithm with the addition of a 

permutation test. In our simulation models, WQS with the permutation test had improved 

power to detect true associations in comparison to WQS performed on a split sample (90% 

vs 56% power, respectively) and substantial improvement in specificity compared to WQS 

performed without splitting the sample (a 7% vs 47% false positive rate, respectively.) It is 

important to note that in our study sample, all but one of the associations that appeared 

significant in full sample WQS had permutation test p-values > 0.05, indicating that 

applications of full-sample WQS in the literature may include false positive findings. We 

recommend that future applications of WQS in a full sample use the permutation test.

In addition to applying our enhanced WQS methodology, which improved sensitivity to 

detect true associations by obviating the need to split the data into training and test sets, 

this analysis involved a larger sample size than previous studies. Despite these advantages, 

our findings were predominantly null. One possible explanation is that prenatal phthalates at 

environmentally-relevant levels do not have a measurable impact on childhood cognitive or 

language development. In this case, adverse associations observed in other studies may have 

been caused by chance. Analyzing multiple metabolites independently, a common approach, 

increases the possibility of spurious findings. Another feasible explanation for observed 

associations in other studies is residual confounding. Phthalate exposure is associated with 

SES, but this relationship varies by metabolite and by population (James-Todd et al., 2017; 

Wenzel et al., 2018). Since pediatric neurodevelopmental outcomes are strongly related 

to SES, incomplete adjustment for SES and/or downstream factors could bias observed 

associations away from the null. Most studies reporting adverse associations adjusted for 

only a single SES variable (Bornehag et al., 2018; Factor-Litvak et al., 2014; Gascon et al., 

2015; Huang et al., 2017; Olesen et al., 2018; Téllez-Rojo et al., 2013; Whyatt et al., 2012). 

At the same time, we cannot rule out the possibility that different findings between studies 

are due to differences in the magnitude or variability of phthalate exposure. We may have 

failed to detect true associations with some metabolites if exposure variability was limited 

in CANDLE or in the case of nonlinear exposure–response relationships and between-study 

differences in exposure magnitude.

Despite null findings in many observational studies, including ours, there is ample 

toxicological support for neurotoxic effects of phthalates. Animal models suggest a variety 

of mechanisms by which prenatal or postnatal exposure to phthalates can influence 

neurodevelopment, including the disruption of dopamine production, lipid metabolism, 

and signaling induced by calcium, thyroid hormones, and sex hormones (Miodovnik 

et al., 2014; Tanida et al., 2009; Xu et al., 2015). Specific to cognitive development, 

in rodents, postnatal phthalate administration reduced hippocampal neuronal density 

and plasticity when administered at postnatal stages largely corresponding to postnatal 

neurodevelopmental stages in humans (Li et al., 2013; Semple et al., 2013; Smith et al., 

2011). Postnatal BBzP administration in rats decreased the expression of amygdalar proteins 

Loftus et al. Page 13

Environ Int. Author manuscript; available in PMC 2021 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



involved in synaptic plasticity, a mechanism potentially underlying our observed association 

between MBzP and language scores (Betz et al., 2013). It is unclear what mechanisms could 

underlie sporadic positive associations between phthalates and neurocognitive outcomes 

observed in our and other studies. We observed relatively strong evidence for positive 

associations between a mixture of metabolites dominated by MMP, MCOP, MCNP and 

MCPP in the lowest SES category. By contrast, other studies of prenatal exposure and child 

cognition observed mostly null or negative associations for these metabolites (Huang et al., 

2015; Dong et al., 2019; Hyland et al., 2019). These sporadic positive associations observed 

in our study and others may be spurious or due to residual confounding.

Important limitations of our work include analyzing phthalate metabolites in only one urine 

sample per pregnancy. There is a high degree of within-individual temporal variability in 

urinary metabolite concentrations; the exposure measurement error associated with using 

a single time point could have biased observed associations towards the null. Related, if 

susceptibility to phthalate exposure varies across pregnancy, we could have missed a critical 

window by using only one measure (Li et al., 2019). Most other epidemiological studies of 

phthalates and neurodevelopment also relied upon one urine sample. A limitation specific to 

WQS regression is that the algorithm does not account for the relative toxicity of mixture 

components or any differences in magnitude of exposure between metabolites, as quantiles 

are calculated for each component based on the distribution in the analytic sample. Another 

potential limitation to our overall approach is that we only analyzed phthalates, and it 

is plausible that phthalate health effects are synergistic with exposure to other common 

endocrine disrupting compounds (EDCs), as suggested by findings of Tanner et al. (2020). 

A broader perspective on EDC exposure may give better insight into health effects of 

cumulative exposure to mixtures of EDCs, including phthalates. Finally, it is uncertain 

whether the findings of our study, set in a sociodemographically diverse region of the 

southern US, are generalizable to other study populations. However, our participants do 

share characteristics with other, majority Black communities that face high levels of social 

disadvantage in the urban South.

There are also a number of strengths. The CANDLE study is a relatively large, pregnancy 

cohort study set in a diverse, high-adversity US population. Enrollment was representative 

of the underlying population, and attrition throughout childhood was low. Rich longitudinal 

data collection provided ample data on important neurodevelopmental predictors and risk 

factors, including maternal IQ, multiple levels and domains of SES, and HOME score, a 

coded rating of the home environmental quality. Another strength is that both cognition and 

language ability were directly assessed by trained examiners. Finally, the novel application 

of the permutation test to WQS regression reduced the likelihood of false positive findings 

associated with conducting WQS in a full sample without splitting the sample into a 

training and validation dataset. This is significant because sample sizes in investigations 

of environmental chemical exposures and child health outcomes are often limited, and the 

permutation test extension of WQS regression yields accurate precision estimates without 

compromising statistical power.

Overall, this study contributes compelling evidence for null relationships between prenatal 

phthalate exposure and early childhood cognition and language development. We also 
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introduce a new extension of the WQS method that improves the accuracy of precision 

estimates without the loss of power associated with splitting samples into training and 

validation samples. Further research of the ECHO PATHWAYS Consortium will include 

assessments of multiple exposure windows in pregnancy, longitudinal neurodevelopment 

through middle childhood, and possible modification of associations by prenatal nutrition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Inclusion Flowchart.
N = 1503 mother–child dyads were enrolled in the CANDLE Study. We included those 

with analysis of phthalates in a third trimester urine sample and at least one valid outcome 

measure. We conducted complete case analyses, and the sample size in each adjustment 

model varied by covariate missingness.
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Fig. 2. Associations between individual phthalate metabolites and a) Bayley-III language 
composite score and b) full-scale IQ.
Phthalates were adjusted for specific gravity and log-transformed. Robust standard errors 

were used. Model 1: Adjusted for child age and sex; Model 2 (Full model): Additionally 

adjusted for maternal education, log transformed income adjusted for household size, 

maternal race, maternal IQ, maternal age, marital status (married vs. living with partners 

vs. single), insurance status, prenatal smoking, child birth order, recruitment site, child 

year of birth, pre-pregnancy BMI class, breastfeeding, prenatal psychopathology (the BSI 

global severity t-score), the Childhood Opportunity Index subscale scores (all 3 subscales, 
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separately) and the KIDI score (total score); Model 3: Full model, additionally adjusted 

for the HOME subscale scores (learning materials, variety in experience and parental 

involvement); Model 4: Full model, additionally adjusted for birthweight and preterm birth.
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Fig. 3. Associations between phthalate mixtures and Bayley-III language composite score and 
full-scale IQ phthalates estimated using WQS in the overall population and by the strata of child 
sex and SES tertiles.
When the 95% Cis estimated in full sample WQS excluded the null, we calculated 

a confirmatory p-value using a permutation test (p*). All associations calculated using 

the main adjustment model (adjusted for child sex, child age, maternal education, log 

transformed income adjusted for household size, maternal race, maternal IQ, maternal age, 

marital status, insurance status, prenatal smoking, child birth order, recruitment site, child 

year of birth, pre-pregnancy BMI class, breastfeeding, prenatal psychopathology [the BSI 

global severity t-score], the Childhood Opportunity Index subscale scores [all 3 subscales, 
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separately] and the KIDI score [total score]). SES categories were calculated using a 

composite of enrollment income and maternal education.
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Table 3

Performance of WQS regression models in simulated datasets.

Model Power Type I Error Rate

WQSSplit 56% 6%

WQSNosplit 100% 47%

WQSPermutation 90% 7%

WQS – weighted quantile sum; WQSSplit – WQS regression model with 40:60 sample splitting into training and validation datasets; WQSNosplit 
– WQS regression model using the full sample, with no splitting; WQSPermutation – WQS regression using the full sample, and p-values 

estimated using the permutation t.
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Table 4

Associations between prenatal phthalate mixtures and primary outcomes in WQS regression.

Direction Models
1

WQS estimate
4

Full sample 95% CI ppermutation
2

Bayley-III language composite score 

Positive
Model 1

3 NA NA NA

Model 2 0.75 (−0.11, 1.60) NA

Model 3 1.04 (0.00, 2.09) NA

Model 4 1.05 (−0.09, 2.19) NA

Negative Model 1 −3.57 (−4.37, −2.77) <0.01

Model 2 −0.76 (−1.73, 0.21) NA

Model 3 −0.52 (−1.57, 0.53) NA

Model 4 −0.63 (−1.73, 0.47) NA

Full scale IQ 

Positive
Model 1

3 NA NA NA

Model 2 1.01 (−0.03, 2.05) NA

Model 3 1.58 (−0.37, 2.79) 0.075

Model 4 0.99 (−0.03, 2.02) NA

Negative Model 1 −3.88 (−4.80, −2.97) <0.01

Model 2 −0.42 (−1.43, 0.58) NA

Model 3 −0.58 (−1.65, 0.49) NA

Model 4 −0.49 (−1.49, 0.52) NA

IQ – Intelligence Quotient; WQS – Weighted Quantile Sum.

1
Model 1: Adjusted for child age and sex; Model 2 (Full model): Additionally adjusted for maternal education, log transformed income adjusted 

for household size, maternal race, maternal IQ, maternal age, marital status (married vs. living with partners vs. single), insurance status, prenatal 
smoking, child birth order, recruitment site, child year of birth, pre-pregnancy BMI class, breastfeeding, prenatal psychopathology (the BSI global 
severity t-score), the Childhood Opportunity Index subscale scores (all 3 subscales, separately) and the KIDI score (total score); Model 3: Full 
model, additionally adjusted for the HOME subscale scores (learning materials, variety of experiences, and parental involvement); Model 4: Full 
model, additionally adjusted for birthweight and preterm birth.

2
A p-value was calculated using the permutation test when the full sample 95% CIs excluded the null.

3
There was no positive association in any bootstrap runs.

4
The WQS estimate is the average change in outcome associated with a one-unit increase in WQS index.
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