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Abstract

Monoterpene indole alkaloids are a large class of natural products derived from a single 

biosynthetic precursor, strictosidine. We describe a synthetic approach to strictosidine that relies 

on a key facially selective Diels–Alder reaction between a glucosyl-modified alkene and an enal to 

set the C15–C20–C21 stereotriad. DFT calculations were used to examine the origin of 

stereoselectivity in this key step, wherein two of 16 possible isomers are predominantly formed. 

These calculations suggest the presence of a glucosyl unit, also inherent in the strictosidine 

structure, guides diastereoselectivity, with the reactive conformation of the vinyl glycoside 

dienophile being controlled by an exo-anomeric effect. (−)-Strictosidine was subsequently 

accessed using late-stage synthetic manipulations and an enzymatic Pictet–Spengler reaction. 

Several new natural product analogs were also accessed, including precursors to two unusual aryne 

natural product derivatives termed “strictosidyne” and “strictosamidyne”. These studies provide a 

strategy for accessing glycosylic natural products and a new platform to access monoterpene 

indole alkaloids and their derivatives.

Graphical Abstract

INTRODUCTION

Monoterpene indole alkaloids (MIAs) are a large class of natural products, many of which 

possess valuable pharmacological properties. To date, more than 3000 MIAs have been 

identified with diverse structures and bioactivities, which are exemplified by three of the 

most well-known members: quinine (1), strychnine (2), and vinblastine (3) (Figure 1).1–3 

Quinine (1) belongs to the family of Cinchona alkaloids and is an antimalarial drug;4–6 

strychnine (2), one of the most complex Strychnos alkaloids, is a potent toxin;7–9 and 

vinblastine (3), a Vinca alkaloid, is a frontline anticancer therapeutic and one of the most 

expensive small-molecule, off-patent drugs on the pharmaceutical market.10–13

An active area of research is the development of new strategies to access complex MIAs, 

such as vinblastine (3), through a combination of isolation from natural sources, 

biosynthesis, and total synthesis.1,14–31 We identified the natural product (−)-strictosidine 

(4) as an attractive entryway to access MIAs and derivatives.1 (−)-Strictosidine (4) is the last 

common biosynthetic precursor to all MIAs. It was first isolated in 1968 and contains nine 

stereocenters, a highly congested dihydropyran ring, a glucosyl moiety, and a bis(acetal) 

linkage.32 Despite its importance in MIA biosynthesis and being known for over 50 years, 
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(−)-strictosidine (4) has remained challenging to access. Isolation of 4 from natural sources 

is unreliable, and its complete biosynthesis has proven difficult to engineer.32 Seminal 

efforts in this field include O’Connor and co-workers’ breakthrough in the biocatalytic 

production of strictosidine in yeast, albeit with a modest titer,1,33 and our groups’ finding of 

prevalent shunt pathways in the bioengineering of the early steps in S. cerevisiae.34,35 

Furthermore, 4 has been largely overlooked by the synthetic community until very recently. 

The first total synthesis of strictosidine (4) was published during the course of our studies by 

Ishikawa and co-workers.36,37

Our laboratories sought to achieve the synthesis of (−)-strictosidine (4) using a blend of 

synthetic chemistry and biocatalysis and then use our approach as a platform for the 

preparation of new, unnatural derivatives thereof. Herein, we report: (a) a facially selective 

Diels–Alder reaction to access the dihydropyran moiety of 4, including the C15–C20–C21 

stereotriad, (b) a computational analysis of this key step, (c) access to (−)-strictosidine (4) 

and an unnatural C15 epimer via enzymatic and nonenzymatic late-stage Pictet–Spengler 

reactions, and (d) the preparation and interception of “strictosidyne” and “strictosamidyne,” 

which are aryne derivatives of natural products.

RESULTS AND DISCUSSION

Retrosynthetic Analysis.

Our retrosynthetic analysis of (−)-strictosidine (4) is shown in Scheme 1. We envisioned (−)-

strictosidine (4) would be obtained from its biosynthetic precursors (−)-secologanin (6) and 

tryptamine (5) via an enzymatic Pictet—Spengler reaction.33 This known step would build 

the tetrahydro-β-carboline ring, establish the stereochemistry at the C3 stereocenter, and 

provide a platform for the synthesis of unnatural strictosidine analogs. It should be 

emphasized that secologanin derivatives have been popular synthetic targets, yet only one 

synthesis of this compound exists, as reported by Ishikawa in 2019.37–45 (−)-Secologanin (6) 

could be obtained from vinylogous ester 7 through a series of manipulations, including 

introduction of the terminal olefin and oxidative cleavage of the five-membered ring. In a 

key step, the dihydropyran of vinylogous ester 7 could be accessed by an inverse electron-

demand hetero-Diels–Alder reaction between enal 8 and enol ether 9. Enabled by the 

presence of the acetylated glucose moiety, this transformation would set three key 

stereocenters (C15, C20, C21). Whereas enal 8 can be obtained from cyclopentenone using 

known chemistry,46 we envisioned enol ether 9 to be accessible from glucose.47,48

Substrate Synthesis and Experimental and Computational Studies of Facially Selective 
Diels–Alder Reaction.

To initiate our synthetic effort, we prepared enol ether 9 using the sequence shown in 

Scheme 2. Known vinylogous ester 1048 underwent silylation/Rubottom oxidation to give an 

intermediate α-siloxy ketone.49 Subsequent ketone reduction and acetylation50,51 provided 

allylic acetate 11 as a 1:1 diastereomeric mixture in 56% yield over the two steps. Next, 

substantial effort was put forth to reductively remove the acetoxy group, which proved quite 

challenging. Reductions of allylic acetates bearing oxygen on the vinylic carbon are 

precedented on cyclic systems,52–59 but the corresponding reduction on linear substrates is 
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rare and gives poor E/Z selectivity.60 Ultimately, we optimized nickel-catalyzed allylic 

reduction conditions reported by Yin, which afforded enol ether 9.60 Of note, the position 

and E geometry of the olefin was maintained.61,62

With enol ether 9 in hand, we sought to assess its viability as a dienophile in the key inverse 

electron-demand hetero-Diels–Alder reaction with known enal 846 (Scheme 3).63,64 Of note, 

a successful Diels–Alder cycloaddition would lead to the introduction of three new 

stereocenters, where we hoped selectivity would be guided by the sugar moiety in 9. 

Moreover, in considering the formation of these stereocenters and regioselectivity 

possibilities, 16 isomers of the Diels–Alder cycloadduct could arise. After examining a 

variety of reaction conditions (i.e., solvents, Lewis acids, and temperatures),65 we identified 

optimal reaction conditions, which involved heating 8 and 9 in hexafluoroisopropanol 

(HFIP) at 50 °C for 16 h. This gave rise to cycloadducts 7a (desired) and its C15 epimer, 7b, 

as the major productsin a 1:1 ratio (55% combined yield).66 Sugars have rarely been 

employed to dictate stereochemistry in intermolecular inverse electron-demand hetero-

Diels–Alder reactions, where the sugar resides on the dienophilic component.67–80 

Furthermore, in the present example, the sugar is not used as a chiral auxiliary, but it is a 

component of both (−)-secologanin (6) and (−)-strictosidine (4). Thus, our approach 

involving early introduction of the sugar to guide stereochemical outcomes represents a 

useful strategy for accessing single enantiomers of glycosylated natural products.

To explore the factors that control selectivity in the Diels–Alder reaction, we undertook 

density functional calculations (DFT) with the M06–2X functional. This method is known to 

give reliable energetics of stereoisomeric transition states of Diels–Alder reactions.81–83 

Transition states were calculated for stepwise and concerted pathways, and the latter were 

found to be more favorable. As such, the E geometry in dienophile 9 leads to the trans 
relationship between C20 and C21 in the products 7a and 7b (see Scheme 3). Four possible 

stereoisomeric transition states, corresponding to endo/exo pathways and different facial 

approach, were investigated, with bond formation occurring between C15 and C20 and O17 

and C21 of the reactants. These are shown in Figure 2.84–88 TS1(exo) and TS1(endo) were 

energetically most favorable and correlate to the two major products isolated experimentally, 

7a and 7b, respectively. TS2(exo) and TS2(endo) were found to have higher activation 

barriers, and the corresponding products were not isolated experimentally.

Two key factors that were investigated are the conformation of the glucosyl moiety and the 

adjacent reactive double bond (Figure 3a). Although the conformation of the glucosyl unit in 

dienophile 9 was found to be similar to that in all stereoisomeric transition states (i.e., TS1 
and TS2), the orientation of the adjacent reactive olefin is more variable and is believed to 

dictate the stereochemical outcome of the reaction.

On dienophile 9, the C21 alkene adopts an exo-anomeric conformation (Figure 3).89 The 

dihedral angle between C21–O1 and C1’—O5 is −68°. Here, one lone pair on exocyclic 

oxygen O1 overlaps with the C1’—O5 σ* antibonding orbital and stabilizes itself by 

negative hyperconjugation as shown in the Newman projection in Figure 3a. The glucosyl 

enol ether is s-trans in order to avoid steric repulsion of the glucosyl group that would occur 

in the s-cis conformation that is normally favored for enol ethers.90,91 Each acetate is syn 
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with the C=O aligned with the axial CH of the ring, similar to the XRD structure of an 

acetylated glucose.67

In each TS1, approach of the heterodiene occurs anti to the face of pyranyl oxygen O5 (re 
face) (Figure 2). The C21–O1 and C1’–O5 dihedral angles are −63° and −70°, respectively, 

for TS1(endo) and TS1(exo), indicating exo anomeric preferences in the transition states, 

similar to the orientation present in dienophile 9 (Figure 3b).92 This stabilizing effect 

imparted by the glucosyl ring leads to the face anti to pyranyl oxygen O5 (re face) being 

more accessible to the diene. In TS2(endo) and TS2(exo), involving si facial approach, some 

rotation around the C1’–O1 bond from the stable exo-anomeric conformation is required 

(C21–O1 and C1’–O5 dihedral angles are −143° and −134°, respectively). As a result, 

TS2(endo) and TS2(exo) are 1.3 and 1.8 kcal/mol higher in free energies than the 

corresponding TS1(endo) and TS1(exo) facial approaches. The computationally predicted 

activation energies for TS1(endo) and TS1(exo) correlate to the experimentally observed 

ratio of products 7a and 7b.

This hetero-Diels–Alder reaction is inverse electron-demand, since the LUMO of the 

heterodiene and the HOMO of the dienophile have a lower energy gap (9.6 eV) than the 

opposite HOMO–LUMO pair (14.5 eV) as shown in Figure 4a. There is a strong preference 

for one regioisomer involving the union of the nucleophilic carbon (C20) of the enol ether 

with the electrophilic carbon (C15) of the α,β-unsaturated aldehyde heterodiene due to a 

larger HOMO coefficient at C20 than C21. The frontier orbital interactions involving the π 
orbitals of the enal 8 and enol ether 9 are shown in Figure 4a. Endo/exo selectivity is not 

observed experimentally. The π lone pair of O1 mixes slightly with the alkene HOMO, but 

the coefficient is small, and the stabilizing secondary orbital interaction in the endo 
transition state is small. By contrast in a normal Diels–Alder reaction, such as that of 

butadiene plus acrolein, the large coefficient on the carbonyl carbon in the LUMO gives 

strong secondary orbital stabilization of the endo transition state (Figure 4b).

Elaboration to (−)-Secologanin and (−)-Strictosidine.

As shown in Scheme 4, Diels–Alder adduct 7a was elaborated to (−)-secologanin (6). 

Deprotection of 7a afforded the corresponding free alcohol, which underwent elimination 

under standard Grieco-olefination conditions.95 This sequence gave olefin 12 in 93% yield 

over two steps. Next, 12 was converted to the corresponding TBS enol ether, which set the 

stage for a Rubottom oxidation. The corresponding α-hydroxy ketone 13 was obtained in 

53% yield as a single diastereomer. This intermediate was subjected to lead tetraacetate in 

methanol36,96 to effect oxidative cleavage97 and introduce the necessary aldehyde and 

methyl ester groups. Lastly, global acetyl removal gave (−)-secologanin (6) in 65% yield 

over 2 steps.40 Overall, (−)-secologanin (6) was accessed in nine steps from known 

materials.

To access (−)-strictosidine (4), we turned to the late-stage enzymatic Pictet–Spengler 

reaction between (−)-secologanin (6) and tryptamine (5) (Scheme 5). The natural biocatalyst 

for this transformation, strictosidine synthase, has previously been used successfully in the 

laboratory setting to prepare 4.33,98–103 As a practical advance, we sought to use crude cell 
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lysate from an Escherichia coli BL21 overexpressing the strictosidine synthase strain in 

place of purified enzyme. The lyophilized crude lysate was found to be a stable white 

powder that could be easily weighed on the benchtop.104 To test the key biocatalytic step, 

(−)-secologanin (6) and tryptamine (5) were combined in an aqueous phosphate buffer with 

the crude lysate containing strictosidine synthase. This procedure delivered the natural 

product, (−)-strictosidine (4), in 82% yield, as a single C3 epimer, for which the spectral 

data are consistent with the published data.105 Overall, (−)-strictosidine (4) was accessed in 

10 steps from known materials, utilizing a blend of chemical synthesis and enzymatic 

catalysis.

Synthesis of epi-Strictosidine, “Strictosidyne”, and “Strictosamidyne”.

Our next objective was to prepare new, unnatural analogs of strictosidine (4).106–109 This 

was pursued via two complementary strategies, the first of which is highlighted in Scheme 6 

and involves the use of one of our synthetic intermediates that would not be readily 

accessible by other means. Specifically, 7b, the C15 epimer of the desired product of the 

Diels–Alder reaction was elaborated to an unnatural secologanin derivative 14 by applying a 

similar synthetic sequence as that from 7a to 6 (Scheme 3). The enzymatic Pictet–Spengler 

reaction of 14 with strictosidine synthase was attempted, but unfortunately, it led to the 

return of starting material, thus highlighting the substrate specificity of the enzyme.110 We 

were delighted to find that treatment of 14 with TFA and tryptamine (5) generated the 

desired tetrahydro-beta-carboline ring system (1:1 diastereomeric ratio (dr) with respect to 

C3).111–113 Subsequent removal of the acetates afforded epi-strictosidine isomers 15. It is 

worth noting that isomers 15 would not be readily accessible from epimerization of 

strictosidine (4) or by manipulating the biosynthetic pathway.114

The second strategy we pursued for analog synthesis involved varying the tryptamine 

fragment using a new and unconventional building block (Figure 5). Specifically, we 

questioned if tryptamine derivative 17 could be accessible. In turn, 17 could serve as a 

masked synthetic equivalent of “tryptaminyne” 18, which itself could find use in aryne 

trapping experiments or, for the purposes of our current study, be used in Pictet–Spengler 

reactions to make unique strictosidine derivatives. Of note, tryptamine is a prevalent 

precursor in both biosynthesis and chemical synthesis, 1,115,116 so the previously unknown 

“tryptaminyne” precursor could prove generally useful. We were delighted to find that 

commercially available indolyne precursor 16 could be elaborated to silyltriflate 17 in four 

steps.117

With silyl triflate 17 in hand, we attempted the Pictet–Spengler reaction using (−)-

secologanin (6). Attempts to promote the desired reaction with strictosidine synthase were 

unsuccessful and only led to unreacted starting material. However, we found that the use of 

TFA led to the desired fragment coupling and annulation. “Strictosidyne” precursor 19 was 

obtained in 52% yield. The C3 epimer was also observed (16% yield, not depicted).118 We 

also took advantage of the opportunity to make new derivatives of strictosamide, a related 

natural product.119–121 As such, a single diastereomer of 19 (as depicted) was treated with 

sodium carbonate to afford 20, which we envisioned serving as a precursor to the aryne 

derivative of strictosamide we term “strictosamidyne”.
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Lastly, we demonstrated that “strictosidyne” (22) and “strictosamidyne” (23) could be 

generated from precursors 19 and 20, respectively, by performing Diels–Alder trapping 

experiments (Scheme 7). Each silyltriflate was independently subjected to furan (21) and 

cesium fluoride in acetonitrile at 50 °C.122 To our delight, this gave cycloadducts 24 and 25 
in 66% and 55% yield (both 1:1 dr), respectively. The chemoselectivity in both reactions is 

noteworthy, given that the highly reactive aryne moieties could be generated and trapped in 

the presence of nucleophilic groups, such as unprotected amines and the four free alcohols 

on the glucosyl unit. To our knowledge, 19 and 20 are the first silyl triflate derivatives of 

complex alkaloids. Likewise, 22 and 23 are the first aryne derivatives of such complex 

naturally occurring structures.123 We expect the ability to use and intercept aryne derivatives 

of complex natural products will prove useful in future efforts, especially those geared 

toward late-stage structural diversification.

CONCLUSIONS

In summary, we have completed the total synthesis of (−)-strictosidine and several unnatural 

analogs thereof. Our stereospecific approach features a facially selective Diels–Alder 

reaction to access the C15–C20–C21 stereotriad. As shown by DFT calculations, 

stereoselectivity in this key step is ultimately controlled by the glucosyl unit present in both 

the dienophile and (−)-strictosidine itself as a result of an exo-anomeric effect. This key step 

permits access to (−)-secolo- ganin and an unnatural derivative, which are subsequently 

employed in enzymatic or reagent-based Pictet–Spengler reactions, to give (−)-strictosidine 

and an unnatural epimer. Moreover, by accessing a “tryptaminyne” precursor, two unusual 

aryne natural product derivatives termed “strictosidyne” and “strictosamidyne” were 

generated and intercepted in Diels–Alder cycloadditions. These studies not only provide a 

means to access strictosidine and new derivatives thereof but also showcase the ability of a 

glucosyl unit to guide stereoselectivity through conformational effects, the synergy between 

synthetic chemistry, biocatalysis, and computations, and the use of “tryptaminyne” 

chemistry as a strategy to access derivatives of complex alkaloids.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Strictosidine (4) and select natural products biosynthetically derived from 4.
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Figure 2. 
Four stereoisomeric transition states of the hetero-Diels–Alder reaction, with activation 

energies shown in kcal/mol. TS1(exo) and TS2(endo) correspond to observed products 7a 
and 7b, respectively. R = TBS in experimental work. R = TMS in calculated structures.
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Figure 3. 
(a) Conformation and Newman projection of dienophile 9. (b) Newman projections for TS1 
and TS2.

Anthony et al. Page 16

J Am Chem Soc. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a) Frontier orbital interactions in the inverse electron-demand Diels–Alder reaction of 8 
with 9. Orbital energies were calculated with HF/6-31G(d,p)/SMD(toluene).93,94 HOMO–

LUMO energies are shown with the inverse electron-demand pathway in blue (HOMO–

LUMO gap = 9.6 eV) and the normal electron-demand pathway in red (HOMO–LUMO gap 

= 14.5 eV). (b) Schematic representation of the strong endo-stabilizing secondary orbital 

interactions in a normal electron-demand Diels–Alder reaction (compared to weak 

interactions for the inverse electron-demand case studied here).
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Figure 5. 
Synthesis of tryptaminyne precursor 17, “strictosidyne” precursor 19, and “strictosamidyne” 

precursor 20.
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Scheme 1. 
Retrosynthetic Analysis of (−)-Strictosidine (4)
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Scheme 2. 
Synthesis of Enol Ether 9
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Scheme 3. 
Facially Selective Hetero-Diels–Alder Reaction Affords Cycloadducts 7a (Desired) and 7b 

out of 16 Possible Isomers
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Scheme 4. 
Synthesis of (−)-Secologanin (6)
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Scheme 5. 
Enzymatic Pictet–Spengler Reaction Provides (−)-Strictosidine (4)
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Scheme 6. 
Synthesis of Unnatural Derivative epi-Strictosidine 15
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Scheme 7. 
Trapping Experiments of Strictosidyne Precursor 19 and Strictosamidyne Precursor 20

Anthony et al. Page 25

J Am Chem Soc. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	Retrosynthetic Analysis.
	Substrate Synthesis and Experimental and Computational Studies of Facially Selective Diels–Alder Reaction.
	Elaboration to (−)-Secologanin and (−)-Strictosidine.
	Synthesis of epi-Strictosidine, “Strictosidyne”, and “Strictosamidyne”.

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.
	Scheme 5.
	Scheme 6.
	Scheme 7.

