Table 3.
EGFR mutation prediction results on Test dataset, base classifiers.
Feature Selection | Classifier | SMOTE | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|
MW (5 features) | nnet | No | 0.83 | 0.00 | 0.98 | 0.43 |
ReliefF (15 features) | SVM | Yes | 0.76 | 0.66 | 0.78 | 0.68 |
ReliefF (10 features) | RF | Yes | 0.76 | 0.41 | 0.82 | 0.67 |
ReliefF (15 features) | nnet | Yes | 0.76 | 0.58 | 0.79 | 0.67 |
ReliefF (5 features) | RF | Yes | 0.77 | 0.50 | 0.82 | 0.64 |
ReliefF (20 features) | RF | Yes | 0.73 | 0.16 | 0.83 | 0.63 |
ReliefF (20 features) | SVM | Yes | 0.68 | 0.66 | 0.69 | 0.63 |
ReliefF (5 features) | nnet | Yes | 0.71 | 0.50 | 0.75 | 0.60 |
ReliefF (5 features) | SVM | Yes | 0.79 | 0.25 | 0.89 | 0.59 |
ReliefF (15 features) | RF | Yes | 0.72 | 0.25 | 0.80 | 0.57 |
MW (5 features) | gbm | Yes | 0.68 | 0.16 | 0.78 | 0.53 |