Skip to main content
. 2021 Apr 29;7(2):154–168. doi: 10.3390/tomography7020014

Table 3.

EGFR mutation prediction results on Test dataset, base classifiers.

Feature Selection Classifier SMOTE Accuracy Sensitivity Specificity AUC
MW (5 features) nnet No 0.83 0.00 0.98 0.43
ReliefF (15 features) SVM Yes 0.76 0.66 0.78 0.68
ReliefF (10 features) RF Yes 0.76 0.41 0.82 0.67
ReliefF (15 features) nnet Yes 0.76 0.58 0.79 0.67
ReliefF (5 features) RF Yes 0.77 0.50 0.82 0.64
ReliefF (20 features) RF Yes 0.73 0.16 0.83 0.63
ReliefF (20 features) SVM Yes 0.68 0.66 0.69 0.63
ReliefF (5 features) nnet Yes 0.71 0.50 0.75 0.60
ReliefF (5 features) SVM Yes 0.79 0.25 0.89 0.59
ReliefF (15 features) RF Yes 0.72 0.25 0.80 0.57
MW (5 features) gbm Yes 0.68 0.16 0.78 0.53