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Summary:

In medical research, the receiver operating characteristic (ROC) curves can be used to evaluate the 

performance of biomarkers for diagnosing diseases or predicting the risk of developing a disease 

in the future. The area under the ROC curve (AUC), as a summary measure of ROC curves, is 

widely utilized, especially when comparing multiple ROC curves. In observational studies, the 

estimation of the AUC is often complicated by the presence of missing biomarker values, which 

means that the existing estimators of the AUC are potentially biased. In this article, we develop 

robust statistical methods for estimating the ROC AUC and the proposed methods use information 

from auxiliary variables that are potentially predictive of the missingness of the biomarkers or the 

missing biomarker values. We are particularly interested in auxiliary variables that are predictive 

of the missing biomarker values. In the case of missing at random (MAR), i.e., missingness of 

biomarker values only depends on the observed data, our estimators have the attractive feature of 

being consistent if one correctly specifies, conditional on auxiliary variables and disease status, 

either the model for the probabilities of being missing or the model for the biomarker values. In 

the case of missing not at random (MNAR), i.e., missingness may depend on the unobserved 

biomarker values, we propose a sensitivity analysis to assess the impact of MNAR on the 

estimation of the ROC AUC. The asymptotic properties of the proposed estimators are studied and 

their finite sample behaviors are evaluated in simulation studies. The methods are further 

illustrated using data from a study of maternal depression during pregnancy.
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1. Introduction

The receiver operating characteristic (ROC) curve plots the fraction of true positives 

(sensitivity) against the fraction of false positives (1–specificity) as the discrimination 

* qlong@emory.edu. 

Supplementary Materials
Web Appendices referenced in Sections 2 and 3 are available under the Paper Information link at the Biometrics website http://
www.biometrics.tibs.org.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2021 May 28.

Published in final edited form as:
Biometrics. 2011 June ; 67(2): 559–567. doi:10.1111/j.1541-0420.2010.01487.x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.biometrics.tibs.org
http://www.biometrics.tibs.org


threshold (e.g., of a biomarker for a disease) is varied, and it is often used to evaluate the 

performance of biomarkers for diagnosing diseases or predicting the risk of developing 

diseases in the future. It was originally developed for the analysis of signal detection (Green 

and Swets, 1966) and was first used in medicine for the assessment of imaging devices 

(Zweig and Campbell, 1993). In medical studies, summary measures of ROC curves are 

often used and they are particularly powerful when comparing several ROC curves. The 

most widely used summary measure is the area under the ROC curve (ROC AUC) (Bamber, 

1975). The ROC AUC is bounded between 0.5 and 1, and has the interpretation of the 

probability of a randomly selected observation from the diseased (non-diseased) population 

having a higher biomarker value than that from the non-diseased (diseased) population. 

Therefore, a large AUC value represents good separation in the biomarker values between 

the diseased and non-diseased populations. In particular, a perfect test would achieve an 

AUC of 1.0, whereas an uninformative test would have an AUC of 0.5. A wealth of literature 

has been developed for this type of research (Pepe (2003) and references therein).

In practice, the biomarker value may be missing for some subjects, especially in 

observational studies. Take for example a self-rated mental illness score collected from 

pregnant women in a psychiatric study, where the disease of interest is the presence (or 

absence) of a major depressive episode throughout pregnancy (see Section 4 for more 

details). Since the biomarker score is self-rated, it is possible that some subjects did not 

complete the self-evaluation and hence the score is missing. In such studies, additional 

variables including demographic and baseline variables are often available, which are 

referred to as auxiliary variables. While these variables are not of primary interest 

themselves, they are potentially predictive of the missingness of the biomarker value or the 

value itself, and can be incorporated in a data analysis to improve its robustness and/or 

efficiency. If an auxiliary variable is predictive of missingness but independent of the 

missing values, then using it in an analysis will not affect the results. Thus, we are interested 

in auxiliary variables that are predictive of the missing values, especially if they are also 

predictive of the missingness.

As with the general setting discussed in Little and Rubin (2002) and references therein, a 

naive analysis that only uses complete observations may lead to bias and loss of efficiency in 

the estimation of the ROC AUC. First, when the biomarker is missing completely at random 

(MCAR), i.e., the missingness does not depend on either observed or unobserved data, the 

naive analysis is valid but is not efficient. Second, when the biomarker is missing at random 

(MAR), i.e., the missingness is conditionally independent of the missing data given the 

observed data, the naive analysis is biased and other methods, e.g., inverse-weighted (IW) 

methods, can be extended for consistent estimation. IW methods weight each complete case 

by the inverse of the probability of observing the biomarker value. Despite its conceptual 

simplicity, IW methods have limitations. Most notably, IW methods are not efficient and are 

subject to bias if one misspecifies the model for the missingness. Alternatively, one can 

extend the methods that are doubly robust and more efficient (Robins et al., 1994; 

Scharfstein et al., 1999) for estimating the ROC AUC. In the case of missing not at random 

(MNAR), i.e., missingness depends on unobserved biomarker values even after conditioning 

on the observed data, it is common practice to conduct sensitivity analysis (Zhou, 1994; 

Rotnitzky and Robins, 1997; Scharfstein et al., 1999; Kosinski and Barnhart, 2003). In all 
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cases, auxiliary variables can be used to potentially reduce bias and improve efficiency when 

associated with the probability of missing and the value of biomarkers, or simply improve 

efficiency when only associated with the value of biomarkers.

We confine the scope of this paper to the case where the disease status is always confirmed 

and a set of auxiliary variables are fully observed but the biomarker values are missing for 

some subjects, and we are interested in estimating the ROC AUC. Our setting is to be 

distinguished from the existing research on verification bias (Zhou, 1993, 1998; Rotnitzky et 

al., 2006; Fluss et al., 2009). In the presence of verification bias, the biomarker values are 

always observed whereas the true disease status is only verified for a non-random sample of 

the population of interest, e.g., the selection for testing may depend on the disease status or 

other variables. In particular, Rotnitzky et al. (2006) extended the doubly robust method 

developed in Rotnitzky and Robins (1997) to the estimation of the ROC AUC in the 

presence of verification biases. As a result of different problem setups (i.e. biomarker values 

missing vs. disease status unconfirmed for a subset of subjects), there are important 

differences between our work and theirs. In our setting, a working model on biomarker 

values, which can be continuous or categorical, is utilized, whereas a working model on the 

presence (or absence) of the disease, a binary variable, was utilized in Rotnitzky et al. 

(2006); consequently, our methods require modeling of the conditional distribution of 

biomarker values. Furthermore, we study and compare parametric and nonparametric 

approaches for estimating this conditional distribution and discuss two types of MAR 

assumptions, which have different implications on the estimation of AUC.

The remainder of the article is organized as follows. In Section 2, we describe the proposed 

estimators and their theoretical properties under MAR and propose a sensitivity analysis 

under MNAR. In Section 3, we evaluate the finite sample performance of the proposed 

estimators through simulations. In Section 4, we apply the proposed methods to a psychiatric 

study of maternal depression during pregnancy. We conclude with a discussion in Section 5.

2. Methodology

Suppose that a random sample of n subjects is selected from a population of interest to 

evaluate the performance of a diagnostic or predictive test using a biomarker. Each subject i, 
i = 1, … , n, is classified into one of two groups, diseased (Di = 1) or non-diseased (Di = 0), 

based on a gold standard. For each subject i, denote the biomarker value by Xi, which is 

used to diagnose or predict the disease status (Di). Xi is not observed in a subset of the 

subjects, and let δi denote the missing indicator for Xi, i.e., δi = 1 when Xi is observed and δi 

= 0 if Xi is missing. In addition, p auxiliary variables that may be associated with the value 

of Xi and/or its missingness (δi) are also collected and denoted by Zi = Zi
(1), …, Zi

(p) T
. 

Then for subject i, the complete data are (Di, Zi, δi, Xi). When δi = 1, the observed data are 

Oi = (Di, Zi, δi, Xi) and subject i is called a complete case; when δi = 0, the observed data 

are Oi = (Di, Zi, δi) and subject i is called an incomplete case. We denote by O the collection 

of observed data for all subjects. When δi is independent of Xi conditional on Di and Zi, it is 

a case of MAR; when δi is dependent on Xi conditional on Di and Zi, it is a case of MNAR.
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We are interested in estimating the ROC AUC, which is equivalent to a U-statistic (Bamber, 

1975), θ = Pr(Xi > Xj | Di = 1, Dj = 0), assuming that the diseased tend to have higher 

biomarker values. When all data are completely observed, an unbiased estimator of θ is

θ = 1
∑i ≠ jDi 1 − Dj

∑
i ≠ j

Di 1 − Dj Iij,

where Iij = I(Xi > Xj) + 0.5I(Xi = Xj) with I(A) equals to 1 if A is true and 0 if A is false. 

When X is missing for some subjects, a naive extension of the above estimator using only 

the complete observations (i.e., δi = 1) is

θ0 = 1
∑i ≠ jDi 1 − Dj δiδj

∑
i ≠ j

Di 1 − Dj δiδjIij . (1)

It is straightforward to verify the following proposition:

PROPOSITION 1: (i) When δ is independent of X given D, θ0 is an unbiased estimator of θ; (ii) 

when δ is dependent on X given D, then θ0 is subject to potential bias.

We note that (i) includes the case of MCAR and a special case of MAR where δ may depend 

on D and Z and is independent of X given D and (ii) includes the case of MNAR and a 

special case of MAR where δ is dependent on X conditional on D but is independent of X 
conditional on D and Z. We refer to θ0 as the naive estimator throughout this article.

2.1 Inverse-Weighted Estimator

In the case of MAR, we first study an inverse-weighted estimator,

θIW = 1
∑i ≠ j

δiδj
πiπj

Di 1 − Dj
∑
i ≠ j

δiδj
πiπj

Di 1 − Dj Iij, (2)

where πi is an estimate of the probability of observing Xi, namely, πi = Pr(δi = 1), 

conditional on Zi and Di under MAR. We denote by ℳ1  the working model for πi given Zi 

and Di with a set of unknown parameters, α, and denote by A(α; O) = ∑iAi(α; O) the 

estimating equations for computing the estimate of α, namely, α, based on the observed 

data. For instance, one can use a logistic regression model for ℳ1 , i.e. logit(πi) = W(Zi, 

Di; α) where W(Zi, Di; α) is a function of Zi and Di and is parameterized by α; A(α; O) can 

be taken as the likelihood equations for the logistic regression model. ℳ1  is also known as 

the propensity score model (Rosenbaum and Rubin, 1983). It can be readily shown that if 

the working model ℳ1  is correctly specified, θI is a consistent estimator of θ under MAR.

2.2 Doubly Robust Estimators

In the case of MAR, we propose a second estimator
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θDR = 1
∑i ≠ j

δiδj
πiπj

Di 1 − Dj
∑
i ≠ j

Di 1 − Dj

δiδj
πiπj

Iij − δiδj − πiπj
πiπj

E Iij ∣ Zi, Zj, Di = 1, Dj = 0
(3)

where πi is the same as previously defined and E(Iij | Zi, Zj, Di = 1, Dj = 0) can be estimated 

based on the joint conditional distribution of Xi and Xj given the observed data. Specifically, 

we denote by ℳ2  the working model for characterizing the conditional distribution of X 

given Z and D with a set of unknown parameters, β, and denote by ℬ(β; O) = ∑iℬi(β; O) the 

estimating equations for computing the estimate of β, namely, β, based on the observed data. 

We note that the conditional mean of X given Z and D is only part of ℳ2 . It can be readily 

shown that if either ℳ1  or ℳ2  is correctly specified, θDR is a consistent estimator of θ 
under MAR.

We consider two options for the working model ℳ2 . In the first option, X given Z and D is 

assumed to follow a known parametric distribution with unknown parameters β. One special 

case is the Gaussian distribution, i.e., Xi ∣ Zi, Di N V Zi, Di; β1 , σ1
2Di + σ0

2 1 − Di , where 

V(Zi, Di; β1) is a function of Zi and Di parameterized by β1. Let β = β1
T , σ1

2, σ0
2 T

 denote all 

parameters of interest, and it follows that

Xi − Xj ∣ Zi, Zj, Di = 1, Dj = 0 N V Zi, Di = 1; β1 − V Zj, Dj = 0; β1 , σ1
2 + σ0

2 ,

and hence

E Iij ∣ Zi, Zj, Di = 1, Dj = 0 = Φ
V Zi, Di = 1; β1 − V Zj, Dj = 0; β1

σ1
2 + σ0

2 ,

where Φ(·) is the cumulative distribution function (c.d.f.) of a standard normal random 

variable. θDR can be rewritten as

θDR = 1
∑i ≠ j

δiδj
πiπj

Di 1 − Dj
∑
i ≠ j

Di 1 − Dj
δiδj
πiπj

Iij − δiδj − πiπj
πiπj

Φ bij(β) ,
(4)

where bij(β) =
V Zi, Di = 1; β1 − V Zj, Dj = 0; β1

σ1
2 + σ0

2  and β can be obtained through, say, linear 

regression for ℳ2  using the observed data. From here on, let θDR denote the doubly robust 

estimator in Equation (4), which assumes that the conditional distribution of X is Gaussian.

In the second option, suppose Xi = V(Zi, Di; β1)+ε1iDi+ε0i(1−Di), where {ε1i, i = 1, …, n1} 

and {ε0i, i = 1, …, n0} are independent and identically distributed (i.i.d.) random errors in 

the diseased and non-diseased, respectively, and their respective distributions are unknown. 
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In this case, the conditional distribution of Xi given Zi and Di can be estimated 

nonparametrically. We denote the set of observed residuals by 

ε1k = Xk − V Zk, Dk = 1; β1 , k = 1, …, n1
o  and ε0l = Xl − V Zl, Dl = 0; β1 , l = 1, …, n0

o

for the diseased and non-diseased, respectively, where n1
o and n0

o are the number of subjects 

with observed X in the diseased and non-diseased, respectively. An empirical sample of the 

estimated conditional distribution of Xi given Zi and Di can be constructed as 

Xik
1 = V Zi, Di = 1; β1 + ε1k, k = 1, …, n1

o  in the diseased and 

Xil
0 = V Zi, Di = 0; β1 + ε0l, l = 1, …, n0

o  in the non-diseased. E(Iij | Zi, Zj, Di = 1, Dj = 0) in 

Equation (3) can then be estimated using 1
n1
0n0

σ ∑k = 1
n1
0

∑l = 1
n0
o

I Xik
1 > Xjl

0 + 0.5I Xik
1 = Xjl

0 , 

where i and j go through all subjects including those with missing X, and we denote the 

resulting nonparametric estimator of θ by θDR − N. When random errors are not i.i.d., e.g., 

the variance changes as the mean of X changes, the above procedure needs to be modified 

accordingly, e.g., performed within strata of the mean of X.

When computing θIW , θDR and θDR − N, the weights 1
πi

 may be large and unstable, and 

lead to extra noise in estimation, in particular, when computing the bootstrap SE of θDR − N. 

Thus, we consider a simple modification to stabilize the weights, namely, replacing 1
πi

 with 

1
πi

n
∑iδi/πi

. When ℳ1  is correctly specified, it can be readily shown that 1
n ∑iδi/πi converges 

to 1 in probability, hence 1
πi

n
∑iδi/πi

 is equivalent to 1
πi

 asymptotically.

2.3 Theoretical Properties

Following our previous notation, we further define the following,

Ui, j(θ, α) ≡ θ
δiδj
πiπj

Di 1 − Dj −
δiδj
πiπj

Di 1 − Dj Iij,

Vi, j(θ, α, β) ≡ θ
δiδj
πiπj

Di 1 − Dj −
δiδj
πiπi

Di 1 − Dj Iij +
δiδj − πiπj

πiπj
Di 1 − Dj E Iij ∣ Zi, Zj, Di, Dj ,

where πi depends on α and E(Iij | Zi, Zj, Di, Dj) depends on β. It follows that 

U = ∑i ≠ jUi, j(θ, α) and V = ∑i ≠ jVi, j(θ, α, β) are the set of estimating equations for θIW
and θDR, respectively. Let α0 and β0 be the probability limits of α and β, respectively, which 

usually exist.
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THEOREM 1: Under the regularity conditions (A1)–(A3) given in Web Appendix A, if either 
or both of ℳ1  and ℳ2  are correctly specified, then n θDR − θ N(0, Ω) in distribution, 

where Ω = Var E
δiδj
πiπj

Di 1 − Dj
−1

Qi θ, α0, β0 , and

Qi = − E Vi, j(θ, α, β) + Vj, i(θ, α, β) ∣ Oi + ∂
∂α E Vi, j(θ, α, β) × ∂

∂α E Ai(α)
−1

Ai(α)

+ ∂
∂β E Vi, j(θ, α, β) × ∂

∂β E ℬi(β)
−1

ℬi(β) .

Ω can be consistently estimated by Ω = 1
γ2n

∑i = 1
n Qi

2 with γ = 1
n2 ∑i, j

δiδj
πiπj

Di 1 − Dj  and

Qi = − 1
n ∑j Vi, j θDR, α, β + Vj, i θDR, α, β + 1

n ∑i ≠ j
∂Vi, j θDR, α, β

∂α α = α

∑i
∂Ai(α)

∂α α = α

−1
Ai(α) + 1

n ∑i ≠ j
∂Vi, j θDR, α, β

∂β β = β
∑i

∂ℬi(β)
∂β β = β

−1
ℬi(β) .

THEOREM 2: Under the regularity conditions similar to (A1)–(A3) given in Web Appendix A, 

if ℳ1  is correctly specified, then n θIW − θ N(0, Ω) in distribution, where 

Ω = Var E
δiδj
πiπj

Di 1 − Dj
−1

Ri θ, α0 , and

Ri = − E ui, j(θ, α) + uj, i(θ, α) ∣ Oi + ∂
∂α E Ui, j(θ, α) × ∂

∂α E Ai(α)
−1

Ai(α) .

Ω can be consistently estimated by Ω = 1
γ2n

∑i = 1
n Ri

2 with γ = 1
n2 ∑i, j

δiδj
πiπj

Di 1 − Dj  and

Ri = − 1
n ∑j ui, j θIW , α + uj, i θIW , α + 1

n ∑i ≠ j
∂Ui, j θIW , α

∂α α = α
∑i

∂Ai(α)
∂α α = α

−1
Ai

(α) .

A sketch of proof for Theorems 1 and 2 is provided in Web Appendix A, which is along the 

similar lines of Rotnitzky et al. (2006). The underlying idea is to derive the influence 

functions for θIW  or θDR by plugging in the influence functions for α and β. The 

consistency of θDR − N is straightforward to show when either ℳ1  or ℳ2  holds and its 

SE can be computed using a bootstrap procedure, which resamples the data with 

replacement within disease strata.

A few remarks are in order. First, as stated in Proposition 1, θ0 is unbiased when δ is 

independent of X given D; but if δ and X are associated with Z, θIW , θDR and θDR − N are 

potentially more efficient when the working models are correctly specified. Second, when δ 
is dependent on X given D but independent of X given D and Z, θIW , θDR and θDR − N are 
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still consistent under suitable conditions, while θ0 is subject to potential bias. Thirdly, θDR
assumes that the residuals are Gaussian in ℳ2  and is subject to model misspecification 

even if the mean model is correctly specified; θDR − N does not impose this restriction.

2.4 MNAR: Sensitivity Analysis

We now consider a case of MNAR, where δ is dependent on X conditional on Z and D; thus, 

a working model ℳ1  that only includes Z and D is misspecified. We investigate a 

sensitivity analysis to assess the impact on θIW , θDR and θDR − N, as the effect of X on δ is 

varied. To fix the idea, suppose that logit(πi) = S(Zi, Di; αS) + U(Xi, αX), where αS and αX 

are two sets of unknown parameters associated with known functions S and U, respectively. 

αX represents the effect of biomarker values on the probability of being missing. Since αS 

and αX can not be jointly estimated using the observed data, we fix αX at a set of pre-

determined values and estimate αS using the following set of estimating equations,

∑
i = 1

n δi
πi

− 1 W Zi, Di , (5)

where W(Zi, Di) is an arbitrary known vector function with the same dimension as αS. For 

instance, if S(Zi, Di; αS) = αSW(Zi, Di), then W(Zi, Di) is the covariate vector for i, which 

may include interaction terms. Compared to the likelihood equations for the logistic 

regression, one advantage of the estimation equations (5) is that πi is not needed when Xi is 

missing. For every pre-determined value of αX, we can compute αS using (5) and πi for 

subjects with observed Xi; subsequently we can compute θIW , θDR and θDR − N, all of 

which do not need πi for subjects with missing Xi. This procedure is repeated for a grid of 

αX values, and the resulting estimators are compared to assess the impact of αX and hence 

the impact of MNAR. U(Xi, αX) = 0 corresponds to the case of MAR, and U(Xi, αX) ≠ 0 

corresponds to the case of MNAR. In this sensitivity analysis, we do not assume that the 

estimation of the parameters of ℳ2  is not affected by MNAR. To simplify the sensitivity 

analysis and, in particular, avoid performing sensitivity analysis for two working models, we 

exploit the doubly robust property, i.e., if ℳ1  is correctly specified then the proposed 

estimators are consistent, and focus on ℳ1  only.

3. Simulation studies

We conducted simulations to evaluate the finite sample performance of the proposed 

estimators, first in the case of MAR where δ is independent of X given D and Z, then in the 

case of MNAR where δ is dependent on X given D and Z. In our simulations, θ0, θIW , θDR
and θDR − N were compared. In addition, we considered another estimator, namely, 

θIMP = 1
∑i ≠ jDi 1 − Dj

∑i ≠ jDi 1 − Dj δiδjIij − δiδj − 1 Φ bij(β) , which only relies on 

ℳ2  and is not doubly robust. While it is not of primary interest in this article, θIMP  under 

the correctly specified ℳ2  can be used as an optimal benchmark for efficiency as 

suggested by a referee. To benchmark bias and loss of efficiency due to missing data, a so-
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called gold standard (GS) estimator was also computed, i.e., 

θGS = 1
∑i ≠ jDi 1 − Dj

∑i = 1
n ∑j = 1

n Di 1 − Dj Iij, which uses the underlying “true” 

biomarker values for all subjects and is not applicable in real data analysis. In Tables 1–3, 

modified weights as described in Section 2.2 were used for θIW , θDR and θDR − N; to 

compute the standard error for θDR − N, we used 200 bootstrap datasets randomly sampled 

with replacement from the data while stratified on the disease status. In each simulation, we 

generated a random sample of n = 200 independent subjects with an equal number of 

diseased and non-diseased subjects. For each simulation setting, 500 Monte Carlo datasets 

were generated and the results were summarized using the following measures: the mean 

relative bias (RB), mean of the standard error estimates (SE), Monte Carlo standard 

deviation of parameter estimates (SD), square root of mean squared errors (SMSE) and 

coverage rate (CR) of 95% Wald’s confidence interval using a logistic transform of θ as 

suggested in Pepe (2003) (Ch. 5).

3.1 MAR: δ independent of X given D and Z

Under MAR, we considered two settings, namely, δ dependent on X given D and δ 
independent of X given D. Corresponding to each setting, we generated the auxiliary 

variables, Z1 = Z1
(1), Z1

(2), Z1
(3) , which are associated with δ, and Z2 = Z2

(1), Z2
(2), Z2

(3) , 

which are associated with X. In the first setting, Z1 = Z2 and they were generated from a 

multivariate Gaussian distribution with a mean μZ = (3, −2, −1) and a variance matrix ΣZ = 

diag(0.25, 0.25, 0.25), which implies that δ is dependent on X given D and hence θ0 is 

subject to potential bias. In the second setting, Z1 and Z2 were generated from two 

independent multivariate Gaussian distributions with the same mean and variance as in the 

first setting, which implies that δ is independent of X given D and hence θ0 is unbiased. 

Next, we generated X as follows, X = β0 + β1D + β2Z2 + β3DZ2 + ε with β0 = 1, β1 = 2.5, 

β2 = (3, 3, 3), and β3 = (.5, .5, .5), which is the true underlying model for ℳ2 . Two 

different residual distributions were considered so that we could compare the performance of 

θDR and θDR − N; specifically, ε ~ N(0, σ2) or ε = 20{η − E(η)} with η ~ Beta(5, 1). The 

resulting true θ is 0.722 for Gaussian ε and 0.675 for non-Gaussian ε. Subsequently, we 

generated the missing indicator δ from a Bernoulli distribution with mean π which satisfies 

logit(π) = α0 + α1D + α2Z1 + α3DZ1 with α0 = 0.3, α1 = 0.3, α2 = (0.4,0.5,0.3), and α3 = 

(−0.7, −0.7, −0.9); this is the underlying true model for ℳ1 . The resulting average 

probability of missing X is 66.4% in the diseased group and 55.8% in the non-diseased 

group.

When computing θIW , θDR and θDR − N, we fitted the two working models for δ and X, 

namely, ℳ1  and ℳ2 , under the following four scenarios: 1) the mean structure is 

correctly specified for both working models, i.e., Z1 and D are included in ℳ1 , and Z2 and 

D are included in ℳ2 ; 2) the mean structure is misspecified for ℳ1 , i.e., only Z1
(1) and D 

are used in ℳ1 ; 3) the mean structure is misspecified for ℳ2 , i.e., only Z2
(1) and D are 

used in ℳ2 ; and 4) the mean structure is misspecified for both working models, i.e., only 
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Z1
(1) and D are included in ℳ1  and only Z2

(1) and D are included in ℳ2 . We note that θDR

assumes that X follows Gaussian distributions. Consequently, if the residuals for X follow a 

Gaussian distribution, e.g. ε ~ N(0, σ2), then the correct specification of the mean structure 

in ℳ2  also indicates the correct specification of the conditional distribution for X when 

computing θDR. However, if the residual distribution is not Gaussian, e.g., ε = 20{η−E(η)} 

with η ~ Beta(5, 1), the conditional distribution for X is misspecified when computing θDR, 

even if the mean structure is correctly specified in ℳ2 . Since θDR − N is robust to the mis-

specification of distributions of the residuals for X, it should remain consistent in both cases.

3.1.1 The case of δ dependent on X given D.—In this setting, we let Z1 and Z2 be 

identical, hence δ is dependent on X given D. Table 1 presents the results for two different 

residual distributions for X. We first discuss the case of Gaussian ε. θ0 shows a large RB of 

11.6% with a low coverage rate of 70.0%. θIW  exhibits negligible bias and a CR close to the 

nominal level when ℳ1  is correctly specified; however, its bias becomes substantial and 

CR degrades considerably to 78.6% when ℳ1  is misspecified. When at least one working 

model is correctly specified, θDR and θDR − N show negligible bias that is comparable to 

θGS and good coverage properties. In particular, as long as ℳ2  is correctly specified, θDR
and θDR − N are more efficient than θIW , and is almost as efficient as θIMP ; in this case, 

negligible loss of efficiency is observed even if ℳ1  is misspecified. By contrast, when 

ℳ2  is misspecified and ℳ1  is correctly specified, the loss of efficiency is considerable for 

θDR and θDR − N. These observations are consistent with what have been reported in the 

literature, i.e., the correct specification of ℳ2  for X is more important in terms of 

improving efficiency of θDR. When both working models are misspecified, the bias and 

MSE of θDR and θDR − N are still similar to or less than those of θIW  or θ0.

When the residuals are not Gaussian, ℳ2  is always misspecified for θDR. Our results in 

Table 1 show that θDR is fairly robust to the misspecified distribution of ε as long as the 

conditional mean of X in ℳ2  is correctly specified. In addition, most observations for 

Gaussian ε are still true for non-Gaussian ε. In this case, θIMP  serves as an approximate 

benchmark for efficiency, since θIMP  is also fairly robust to a mis-specified distribution for 

ε and it is generally difficult to obtain an exact “imputation” estimator when ε is non-

Gaussian. Similar results were observed in our additional simulations with other non-

Gaussian distributions for ε, say, χ2 distribution.

3.1.2 The case of δ independent of X given D.—In this setting, Z1 and Z2 are two 

separate sets of auxiliary variables, hence δ is independent of X given D. Table 2 presents 

the results for both Gaussian and non-Gaussian residuals. In all cases, all estimators exhibit 

negligible bias and satisfactory coverage properties, which is consistent with our discussion 

in Section 2. Again, as long as ℳ2  is (approximately) correctly specified, θDR and 

θDR − N are almost as efficient as θIMP ; they perform no worse than θIW  and θ0 in other 
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settings. As with the case of δ dependent on X given D in Section 3.1.1, the results are very 

similar for two different types of residual distributions for X.

We repeated the simulations in Tables 1 and 2 using the original weights (Web Appendix B), 

and the results are almost the same except that the performance of the bootstrap SE for 

θDR − N deteriorates somewhat.

3.2 MNAR: δ dependent on X given D and Z

We now consider the case of MNAR where δ is dependent on X conditional on D and Z, i.e., 

the true model for δ is logit(π) = α0 + αZZ1
(3) + αDD + αXX with (α0, αZ, αD, αX) = (−1, 0.2, 

0.5, 0.3). The rest of the simulation setup is identical to that in Section 3.1. The resulting 

average probability of missing X is 57.4% in the diseased group and 31.5% in the non-

diseased group. We focused on the case where Z1 and Z2 are identical and ε is Gaussian; in 

this case, the true θ remains 0.722. Our primary goal is to compare θIW , θDR and θDR − N
with their corresponding sensitivity estimators as described in Section 2.4, namely, θIW − S, 

θDR − S and θDR − N − S, for which the estimating equations (5) were used to estimate αS = 

(α0, αZ, αD) with αX fixed at its true value. The rest of estimating procedures remain the 

same for all estimators. As with the case of MAR in Section 3.1, we investigated the impact 

of the mis-specified ℳ1  and/or ℳ2 ; specifically, we considered a misspecified ℳ1  that 

includes Z1
(1) and D and a misspecified ℳ2  that includes only Z2

(3) and D. We also note that 

X is included as a covariate in ℳ1  for θIW − S, θDR − S and θDR − N − S, but not for θIW , 

θDR or θDR − N. Thus, when D and the correct subset of Z1 (i.e., Z1
(3)) are included in ℳ1 , 

ℳ1  is correctly specified for θIW − S, θDR − S and θDR − N − S, but is misspecified for 

θIW , θDR and θDR − N.

Table 3 presents the simulation results. First, θ0 again exhibits substantial bias under 

MNAR. We now compare θIW  and θIW − S. When ℳ1  does not account for the effect of 

X, θIW  shows considerable bias even if ℳ1  includes D and the correct subset of Z1. On 

the other hand, θIW − S, which accounts for the effect of X, shows negligible bias. Next, we 

compare θDR and θDR − N with θDR − S and θDR − N − S. When correct subsets of Z and D 

are included in both working models, ℳ1  is still misspecified for θDR and θDR − N. 

However, since ℳ2  is correctly specified, θDR and θDR − N exhibit negligible bias and 

good coverage properties as a result of their double robustness, and their efficiency is 

comparable to that of θDR − S and θDR − N − S. These results still hold when ℳ1  includes 

the incorrect subset of auxiliary variables and ℳ2  is correctly specified. When an incorrect 

subset of Z2 is included in ℳ2 , both working models are misspecified for θDR and 

θDR − N; consequently, θDR and θDR − N exhibit considerable bias. In all three settings, 

θDR − S and θDR − N − S show negligible bias, but their SDs increase when ℳ2  is 

misspecified, which is consistent with the earlier findings that ℳ2  is more important in 

terms of improving efficiency.
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4. Data Analysis

We illustrate our methods using an observational psychiatric study, which was concerned 

with the impact of maternal depression during pregnancy on infant outcomes. In this study, 

participants were enrolled no later than week 28 of gestation and evaluated at each trimester 

across pregnancy. As part of the study, the presence (or absence) of a major depressive 

episode (disease status, D) was determined at each visit by the Mood Module of the 

Structured Clinical Interview for DSMIV Axis I Disorders (SCID) (First et al., 2002), which 

needs to be administered by a trained research professional and is considerably more time-

consuming and difficult to obtain in practice. At the same time, some subjects also 

completed the self-rated Edinburgh Postnatal Depression Scale (EPDS) (Cox and Holden, 

1987) at each visit.

In female mental health research, several rating scales have been developed for identifying 

postpartum depression (Fergerson et al., 2002; Perfetti et al., 2004), and in particular the 

self-rated EPDS has emerged as a widely-used instrument for postpartum depression 

screening and detection (Austin et al., 2005; Felice et al., 2006), which can be obtained 

fairly easily in practice. In contrast, there are no validated tools to assess depression during 

pregnancy. In practice, the EPDS, developed for postpartum use, has been increasingly used 

to identify depression during pregnancy and to screen for those at risk for developing 

depression during pregnancy. While not designed for such purpose, data collected from this 

study have been recently used to evaluate EPDS as a biomarker for the diagnosis of maternal 

depression throughout pregnancy. For the purpose of illustration, we focus on the data 

collected from the second trimester; a subset of the study population who had data in the 

second trimester was used and the sample size is n = 517 in the analysis. The outcome of 

interest is the presence of a major depressive episode (D) and is confirmed for all subjects, 

whereas EPDS is the biomarker of interest and is missing in 79% of the subjects. Additional 

auxiliary variables were also measured in this study including the mother’s age, race, marital 

status and eduction level, whether or not it was the first pregnancy. In addition, a research 

interviewer masked to treatment status administered the Structured Interview Guide for the 

Hamilton Rating Scale for Depression to obtain 17-item (HRSD17), which is known to be 

highly correlated with EPDS. These variables are treated as auxiliary variables (Z) and are 

used to build ℳ1  and ℳ2 .

We conducted a sensitivity analysis for θ0, θIW , θDR and θDR − N as described in Section 

2.4. Specifically, we considered a ℳ1  that is similar to what is discussed in Section 2.4, 

i.e., logit(π) = αS
TW (Z, D) + αXX, where W(Z, D) include the intercept and interaction terms 

between auxiliary variables Z and D. In fitting this ℳ1 , estimating equations (5) were used 

with αX fixed at −1, 0 and 1, where αX = 0 corresponds to the case of MAR, and αX = −1 or 

1 correspond to the case of MNAR. In our analysis, all continuous variables including X 
were standardized to have mean 0 and unit standard deviation. Consequently, αX captures 

the effect of a one-SD change in X. Table 4 presents the results using modified weights. The 

impact of different αX values is moderate on θIW , θDR, and θDR − N, and the estimates 

using different methods including θ0 are comparable. It indicates that the missingness of X 
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(δ) is likely close to be independent of X given D. Nevertheless, θDR, which incorporates 

information from auxiliary variables, is more efficient than the other estimators. Since the 

proportion of missing data is very high in the data, the bootstrap SE of θDR − N is greater 

than the SE of θDR, but it is still smaller than the SE of θIW . We repeated this analysis using 

the original weights in Web Appendix C; while the main results remain similar, a larger 

bootstrap SE for θDR − N is observed as a result of large and unstable weights.

With θDR ranging from 0.841 to 0.873, our results suggest that EPDS has very good 

discriminative power during the second trimester. However, in this study, only a subset of the 

study population had depression status confirmed during each perinatal window. As a result, 

in addition to missing values in the biomarker, the verification bias is potentially in play as 

well. Furthermore, both the rating scale and the presence of a major depressive episode were 

repeatedly measured through the pregnancy. Therefore, it is of substantial interest in the 

future studies to investigate methods that can account for both missing biomarker values as 

well as verification bias and accommodate repeatedly measured biomarker values and 

disease status when estimating the ROC AUC.

5. Discussion

We have proposed and contrasted several estimators of the ROC AUC when the biomarker 

value is missing for some subjects. Our numerical studies show that the doubly robust 

estimators perform as well as or better than other estimators in all cases even when both 

working models are misspecified. θDR is also fairly robust to the misspecified residual 

distribution for the biomarker variable (X). Since only ranks of X are used in estimating θ, 

the correct specified conditional mean is more important and the impact of a misspecified 

residual distribution may be limited given the correctly specified conditional mean. The 

bootstrap procedure for obtaining SE of θDR − N is computationally more expensive and 

also makes it more susceptible to large and unstable weights. Thus, in practice, we 

recommend the use of θDR and stabilized weights such as ours, and emphasize the 

importance of identifying (approximately) correct ℳ2 . We also note that θDR can readily 

accommodate categorical biomarker values, e.g., a baseline logit model (Agresti, 2002) can 

be used to model the conditional distribution of a categorical biomarker variable.

More recently, Cao et al. (2009) investigated alternative doubly robust estimators for 

estimating a population mean; their methods achieve minimum variance under incorrectly 

specified ℳ2  and correctly specified ℳ1 , and they do not suffer from large and unstable 

weights. While their enhanced model for ℳ1  can be readily adopted in our methods as an 

alternative to alleviate the problem of large and unstable weights, it is more involved to 

extend their approach of minimizing variance under misspecified ℳ2  and correctly 

specified ℳ1  to the estimation of the ROC AUC as complications arise from the use of U-

statistic in our methods. Potential future research may also include extending sensitivity 

analysis to ℳ2  and investigating more complicated missing patterns, e.g., auxiliary 

variables are also missing and missingness is not monotone, for which an imputation 

approach may be more practical.
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Refer to Web version on PubMed Central for supplementary material.
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Table 3

Results of simulation study under MNAR: comparison of θ0, θIW , θDR, θDR − N, θIW − S, θDR − S, and 

θDR − N − S using modified weights, when ε ~ N(0, 1) and Z1 and Z2 are identical. True θ is 0.722. The 

details of true models and misspecified working models are provided in Section 3.2.

RB (%) SE SD SMSE CR (%)

θGS −0.2 0.036 0.037 0.037 94.0

θ0 −8.1 0.053 0.055 0.080 78.2

Correct subset of Z1 and D included in ℳ1

θIW −5.8 0.052 0.055 0.069 85.4

θIW − S −1.0 0.049 0.052 0.053 93.0

Correct subset of Z and D included in both models

θDR −0.5 0.039 0.040 0.041 95.0

θDR − N −0.5 0.039 0.040 0.040 94.4

θDR − S −0.2 0.038 0.039 0.039 93.8

θDR − N − S −0.2 0.038 0.039 0.039 93.6

Incorrect subset of Z1 and D included in ℳ1

θDR −0.6 0.039 0.040 0.041 94.6

θDR − N −0.5 0.039 0.040 0.040 93.2

θDR − S −0.2 0.038 0.039 0.039 94.0

θDR − N − S −0.2 0.038 0.039 0.039 93.4

Incorrect subset of Z2 and D included in ℳ2

θDR −5.3 0.049 0.053 0.065 85.0

θDR − N −5.3 0.050 0.053 0.065 86.2

θDR − S −0.8 0.047 0.049 0.049 92.8

θDR − N − S −0.8 0.048 0.049 0.049 93.8
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