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Abstract

Antibiotics profoundly reduced worldwide mortality. However, the emergence of resistance to the 

growth inhibiting effects of these drugs occurred. New approaches to treat infectious disease that 

reduce the likelihood for resistance are needed. In bacterial pathogens, complex signaling 

networks regulate virulence. Anti-virulence therapies aim to disrupt these networks to attenuate 

virulence without affecting growth. Quorum-sensing, a cell-to-cell communication system, 

represents an attractive anti-virulence target because it often activates virulence. The challenge is 

to identify druggable targets that inhibit virulence, while also minimizing the likelihood of 

mutations promoting resistance. Moreover, given the ubiquity of quorum-sensing systems in 

commensals, any potential effects of anti-virulence therapies on microbiome function should also 

be considered. Here we highlight the efficacy and drawbacks of anti-virulence approaches.

Introduction

Over the past century, antibiotics have served as the mainstay for treating bacterial 

infections. Antibiotics are small molecules that inhibit bacterial growth and, therefore, exert 

strong selective pressures on bacterial populations, which favor the emergence of antibiotic 

resistant (AR) clones. Indeed, AR isolates continue to emerge with each new class of 

antibiotics [1]. Approximately 2.8 million infections by AR pathogens occur annually in the 

United States, resulting in at least 35 000 deaths [2]. These alarming trends highlight the 

pressing need for alternative strategies to treat bacterial infections that also reduce the 

likelihood of resistance.

Anti-virulence therapies represent an alternative approach for treating bacterial infections. In 

contrast to antibiotics, anti-virulence agents do not directly inhibit bacterial growth [3], 

which is hypothesized to reduce the selective pressures exerted on pathogen populations. 

Instead, anti-virulence agents are designed to disrupt intercellular signaling networks 

essential for host colonization and induction of disease [4]. The challenge is to identify 

targets within these complex networks that inhibit virulence, while also minimizing the 
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emergence of mutations or compensatory functions that enable pathogen circumvention of 

the anti-virulence therapy. Secondly, given the ubiquity of cross-species signaling within 

bacterial communities, another challenge is to inhibit pathogen virulence while avoiding 

detrimental effects to microbiome function. Herein, we review the implementation of anti-

virulence strategies that target quorum sensing in pre-clinical models of infection, with a 

particular focus on Staphylococcus aureus and Escherichia coli, frequent members of human 

microbiomes that can also become dangerous opportunistic AR pathogens. The 

implementation of such strategies with Pseudomonas aeruginosa, another clinically 

important AR opportunistic pathogen, has been recently reviewed elsewhere [5–8].

Bacterial intercellular signaling through quorum sensing (QS)

Bacteria employ numerous strategies to sense their local environment and integrate this 

spatial information to regulate their growth, physiology, and behaviors. QS is a form of cell-

to-cell communication that enables bacterial populations to coordinate their behaviors in an 

environmental and cell density-dependent manner [4,9]. The primary components of QS 

systems include: (1) biosynthetic machinery that generates the signal (autoinducer); and (2) 

cognate sensory machinery that recognizes and responds to the signal (Figure 1). QS 

systems represent attractive anti-virulence targets because they often activate virulence-

associated functions essential for establishing infection [4]. Moreover, QS can mediate the 

switch from commensal to opportunistic pathogen and serve as bacterial sensors for host 

signals that enable appropriate deployment of pathogen virulence programs [10,11]. Thus, 

much effort has been dedicated toward discovering small molecules that inhibit QS systems 

[3,5,12,13] (Figure 1).

Targeting QS systems in S. aureus

S. aureus is a skin and/or nasal commensal in approximately 30% of the human population 

that, with inappropriate access to deeper tissues, can become an opportunistic pathogen 

responsible for potentially lethal infections [14–16,17•]. In S. aureus, the transition from 

commensal to pathogen is mediated by the accessory gene regulation (agr) locus, which 

encodes a QS system that activates numerous virulence factors and represses cell surface 

proteins that contribute to asymptomatic colonization of the nasal cavity and skin. 

Noticeably, the Agr system cross talks with other regulatory systems, such as SarA/SarR. 

SarA activates expression of the agr locus, and transcription of sarA is induced by SarA 

itself, while it is repressed by SarR [18,19] (Figure 2). The importance of agr in S. aureus 
infections is well established in various rodent models [20–23]. The agr locus encodes the 

machinery that synthesizes and secretes the QS signal autoinducing peptide (AIP), its 

receptor AgrC, its cognate response regulator (RR) AgrA, the RNAIII regulatory RNA and 

δ-toxin. AIP is encoded by the agrD gene. After translation, the AgrD propeptide is 

processed into AIP by AgrB [19,24] (Figure 2). AgrA and RNAIII together regulate about 

200 genes in the S. aureus genome, including virulence-associated functions such as toxins, 

phenol soluble modulins and proteases [19,25]. Thus, the agr locus represents an attractive 

therapeutic target for treating S. aureus infections and preventing loss of commensalism in S. 
aureus carriers.
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Staphylococci exhibit subtle strain-level differences in the chemical structures of their AIPs 

[26]. S. aureus secretes one of four AIP types that activate their cognate AgrC receptor and 

inhibit other AgrC alleles [23]. AIPs range from seven to nine aminoacids, and their types 

stems from variations in the agrD gene. Structural differences in AIP, combined with 

differences in the N-terminal region of AgrC, which binds this ligand, dictate the outcomes 

of activation or deactivation of this signaling cascade [19]. Identifying or synthesizing 

competing analogs to AIPs that inhibit AgrC has been an anti-virulence strategy to treat S. 
aureus infections [23]. Interspecies QS crosstalk also occurs between S. aureus and 

staphylococcal skin commensals. For example, Staphylococcus epidermidis’s AIP is able to 

inhibit the Agr system of most S. aureus, except for one subgroup (subgroup 4), which in 

turns inhibits the Agr response of S. epidermidis. The AIP produced by Staphylococcus 
caprae was able to inhibit the Agr system of all classes of S. aureus [27,28,29•,30,31••] 

(Figure 2). Thus, candidate anti-virulence agents should ideally inhibit all four AIP types in 

S. aureus, while also avoiding harmful effects to the skin microbiome. Another strategy to 

inhibit agr activation is to target AgrA, which is more conserved among S. aureus strains. 

For example, savirin is a QS inhibitor that binds residues uniquely present in the DNA-

binding domain of S. aureus AgrA and thus exhibits minimal effects on agr activation in the 

skin commensal S. epidermidis. Through inhibition of AgrA, savirin also inhibits 

transcription of RNAIII, which is activated by AgrA [25]. In acute models of skin infection, 

savirin treatment attenuates pathology as well as local and systemic burdens of S. aureus 
[25]. Importantly, in contrast to repeated antibiotic treatment, continuous in vivo passaging 

of S. aureus together with savarin coadministration did not produce savarin-resistant isolates 

[25]. Another strategy developed to inhibit AgrA and RNAIII was the development of 

peptide conjugated nucleic acids (PLNAs) that are modified antisense RNAs conjugated to a 

cell-penetrating peptide [32]. Interestingly, during acute lung infection, nitric oxide (NO) 

produced by the innate immune system also targets AgrA through a similar mechanism. NO 

inactivates AgrA through the S-nitrosylation of residues that also interfere with DNA 

binding and agr activation, thus resulting in attenuated disease. However, one has to be 

cautious of this approach given that NO production may engender changes in multiple 

protein targets and have off target pleiotropic effects [71••]. These findings, together with 

other studies [32–34], highlight the potential of targeting QS systems as an effective strategy 

for treating acute infections caused by S. aureus.

Commensal microorganisms also produce signaling molecules that interfere with pathogen 

QS systems to compete for limited nutrients and space. For example, some staphylococcal 

skin commensals produce AIPs that inhibit the AgrC receptor in S. aureus [27,28,29•, 

30,31••,56,57] (Figure 2). Similarly, nasal commensals such as Corynebacterium spp. inhibit 

virulence-associated functions in S. aureus by blocking QS activation through an undefined 

mechanism [58,59•]. This antagonistic relationship can be potentially exploited as another 

antivirulence strategy to treat infections. Indeed, simultaneous administration of live 

commensal staphylococci or Corynebacterium attenuates S. aureus agr activation, abscess 

colonization and skin lesion formation [29•,31••,58]. Similarly, therapeutic administration of 

purified AIP from S. caprae reduces pathogen burdens and accelerates resolution of skin 

pathology [29•,31••]. Together, these studies demonstrate the potential for developing 

probiotic treatments that augment the inhibitory effects of commensals on pathogen QS 

Ellermann and Sperandio Page 3

Curr Opin Microbiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systems. More broadly, studying commensal-pathogen interactions within naturally 

occurring microbial communities could enable further discovery of antagonistic 

relationships that can be repurposed for treating infection and maintaining microbiome 

homeostasis.

Targeting QS systems in Enterobacteriaceae

E. coli encompasses genetically and functionally diverse species that range from benign 

commensal to professional pathogen. Commensal E. coli are usually present in the gut 

microbiota [14]. Like S. aureus, endogenous E. coli can become opportunistic pathogens 

with inappropriate access to extra-intestinal niches and cause diseases such as meningitis, 

sepsis and urinary tract infections [35–37]. The outgrowth of commensal E. coli within the 

gut has also been linked to chronic, immune-mediated diseases such as inflammatory bowel 

disease (IBD) [38]. In contrast, pathogenic E. coli reside in environmental reservoirs such as 

ruminants and cause human diarrheal diseases upon ingestion of contaminated food and 

water sources [39,92].

The QseC signaling cascade is a highly conserved QS response system in Gamma-

Proteobacteria that consists of the histidine sensor kinase (HK) QseC and its cognate RR 

QseB [40] (Figure 3). QseC senses the bacterial signal autoinducer-3 (AI-3), which 

encompass a family of pirazynone molecules that are derived from products from threonine 

dehydrogenase (Tdh) combined with abortive tRNA synthase reactions. The AI-3 family is 

synthesized by a variety of bacterial species. Importantly the most active molecule in this 

AI-3 family is a new pyrazinonetype of metabolite, with very potent activity [94]. QseC and 

a second HK QseE also sense the host neurotransmitters epinephrine and norepinephrine 

[41,42], thus enabling E. coli to coordinate population-level behaviors in direct response to 

the host. QseC activates QseB, thus stimulating flagella biosynthesis [40]. The kinase 

activity of QseC is promiscuous and also activates the non-cognate RRs, KdpE and QseF, 

which substantially expands the QseC regulon [43] (Figure 3).

Genetic studies have demonstrated that QseC is an important activator of virulence in 

pathogenic E. coli and in the closely related murine pathogen Citrobacter rodentium [44–

46,90]. In enterohemorrhagic and enteropathogenic E. coli, QseC regulates the locus of 

enterocyte effacement (LEE), a pathogenicity island that is essential for causing disease 

[44,45,90]. QseC activates the LEE through KdpE and QseF-regulated sRNAs [43,47] 

(Figure 3). Despite employing divergent mechanisms for causing disease, the QseC regulon 

also modulates virulence-associated functions in other E. coli pathovars such as UPEC and 

in pathogens such as Francisella tularensis and Salmonella enterica [48–52,90,91]. Indeed, 

the integration of QseC into the intracellular signaling cascades that modulate virulence is 

wired differently between bacterial strains [49,53–55,91]. Importantly, the QseC signaling 

cascade is exploited by many Gram-negative bacterial pathogens to promote virulence. QseC 

activates expression of a multi and varied array of virulence genes in these pathogens, such 

as expression of type three secretion systems (T3SS), LPS modification enzymes that 

promote resistance to stress and antimicrobial peptides, flagella and motility genes, 

promotion of biofilm formation, expression of multiple iron uptake systems, pili/fimbriae 

and adhesins, and toxins [49,51,53–55,91].
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Consequently, pharmacological inhibition of QseC with LED209 is effective in attenuating 

pathogen virulence and disease in diverse models of acute infection [46,49,51,90], thus 

demonstrating the potential efficacy of QseC as an anti-virulence target in numerous 

pathogens. LED209 was identified through a screen of a small molecule chemical library. 

Extensive structure activity relationship (SAR) studies revealed that LED209 is a potent pro-

drug that is highly selective for QseC. Its warhead allosterically modifies lysines that are 

only present in QseC, impairing its function, and preventing the activation of the virulence 

program of several Gram-negative pathogens both in vitro and during murine infection. 

LED209 does not interfere with pathogen growth, possibly leading to a milder evolutionary 

pressure toward drug resistance. LED209 has desirable pharmokinetics and does not present 

toxicity in vitro and in rodents [51,90].

However, given that QseC homologues are also expressed by gut commensals, including 

endogenous E. coli, studies investigating the effects of QseC inhibition on the human 

microbiome and on commensal-to-pathogen transitions are important next steps to assess the 

safety and specificity of this anti-virulence target in pre-clinical models of infection.

Targeting QS systems in chronic infection and disease

While anti-virulence strategies can be effective in models of acute infection, the 

implementation of such therapies to treat chronic infections may be challenging because of 

selective pressures continuously exerted by the host [60,61]. Whole genome sequencing has 

revealed that isolates recovered from chronic disease patients accumulate mutations that 

fundamentally alter the function of the pathogen [7,16,62–64]. Moreover, in chronic 

infections that are likely caused by commensal-turned-opportunists, infection-associated 

isolates harbor mutations that functionally distinguishes the pathogen from its putative 

commensal ancestor [16,17•,63].

Chronic infections—Chronic S. aureus infections are associated with loss-of-function agr 
mutations in a subset of patients, which correlates with poorer prognosis and increased 

mortality [16,62,63,65,66]. The AgrC receptor in chronic infection isolates frequently 

acquire mutations that increase the AgrC activation threshold or completely inactivates the 

receptor [17•,62,67••,68•]. These agr dysfunctional isolates generally exhibit decreased 

virulence potential in vitro and in animal infection models [17•,62,67••,68•]. However, one 

study reported that an agr dysfunctional bloodstream isolate retained its virulence in an 

intravenous infection model, which corresponded with the upregulation of agr-regulated 

virulence factors [17•]. In contrast, agr inactivation in a closely related S. aureus nasal strain 

from the same patient attenuated its virulence during bloodstream infection [17•]. Moreover, 

within a population of agr dysfunctional isolates, a subset of cells revert back to an agr+ 

phenotype through phase variation [69••]. Together, these studies suggest that chronic 

infection isolates can acquire mutations or functions that bypass the need for agr-dependent 

activation of its virulence programs, an outcome that could also arise with chronic 

administration of anti-agr agents.

Another common characteristic of agr dysfunctional mutants is the production of robust 

biofilms, a functional characteristic that can be recapitulated in isogenic agr mutants [62, 
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67••,70]. Agr dysfunctional mutants exhibit increased fitness in biofilm infection models 

compared to agr+ strains, which corresponds with the formation of impenetrable in vivo 
biofilms that protect the pathogen from leukocyte-mediated killing [67••]. Indeed, agr 
dysfunctional mutants are detected as early as one week following S. aureus biofilm 

infection, which is consistent with strong host pressures that select for agr dysfunction to 

avoid immune-mediated clearance [67••]. In contrast, agr+ isolates exhibit greater fitness and 

are more virulent during acute skin infections [67••]. Similarly, QS inactivating mutations 

have also been reported in P. aeruginosa clinical isolates associated with chronic disease 

[61,72–74]. However, there is a debate on whether these QS mutants in biofilms may be 

eventually selected out of the population. Taken together, these findings suggest that anti-

virulence treatments are likely to be challenging in chronic infections because of the 

microevolutionary processes that result in loss-of-function mutations in pathogen QS 

systems. We still need to better understand the arms race between QS proficient and 

deficient strains within these environments. Another consideration is whether a multi-

pronged approach targeting signaling cascades at several levels would work better than a 

specific target.

Chronic inflammatory diseases—Chronic inflammatory diseases are often associated 

with compositional changes to the human microbiome that contribute to disease 

pathogenesis — a state known as dysbiosis. Atopic dermatitis (AD), a chronic skin 

condition, is associated with dysbiosis of the skin microbiome, which is often characterized 

by the expansion of commensal S. aureus and a decrease in S. epidermidis [75,76]. The 

severity of AD corresponds with an elevated S. aureus to S. epidermidis ratio [77]. In a 

murine model of skin infection, co-administration of the skin commensal Staphylococcus 
hominis, or its purified AIP, with S. aureus infection attenuates agr activity, inflammation 

and lesion formation, which corresponds to decreased activation of host proteases that 

damage the epidermis to cause disease [31••]. Interestingly, the efficacy of S. hominis 
treatment was lost when co-administered with S. aureus at a 1:10 ratio, which is 

representative of the dysbiosis observed in AD patients [31••]. Thus, this study demonstrates 

the potential of utilizing commensal QS systems to treat chronic skin diseases and restore 

homeostasis within the skin microbiome.

Chronic gastrointestinal diseases such as IBD are also associated with a dysbiotic gut 

microbiota. In Crohn’s disease, dysbiosis is often characterized by the expansion of 

commensal Proteobacteria such as E. coli, which includes increased mucosal colonization of 

a functionally distinct subset known as adherent-invasive E. coli (AIEC) [78,79]. AIEC 

strains utilize type 1 pili to colonize the intestinal epithelium, which enables aberrant 

stimulation of mucosal inflammatory responses mediated by AIEC expression of flagellin 

[80–83,93]. Chemical inhibition (using LED209) of QseC, which stimulates flagella and 

type 1 pili biosynthesis, attenuates colitis induction by AIEC and inhibits Enterobacteriaceae 

outgrowth in several experimental models of IBD [40,84•]. Thus, targeting the QseC system 

in AIEC strains may help alleviate overstimulation of the mucosal immune system while 

also restoring homeostasis within the gut microbiota of IBD patients. However, it remains 

unknown whether QS components such as QseC in commensal E. coli are vulnerable to the 

same selective pressures as S. aureus or P. aeruginosa during chronic disease. A recent study 
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reported the emergence of point mutations in qseC in the aminoacid residues S8R and I283L 

in Klebsiella pneumoniae that contributed to the development of polymixin resistance 

following repeated antibiotic exposure. However, the only mutations that inactivate QseC 

function, which are the direct targets of LED209 are in K256 and K427 [85,86]. Taken 

together, futures studies are clearly needed to assess the microevolution of QS systems in 

human commensals and opportunistic pathogens and to define the implications of these 

genetic events on bacterial function, host response and treating disease.

Concluding remarks and future considerations

Over the past decade, numerous studies have demonstrated the promising potential of anti-

virulence agents in preclinical models of bacterial infections. However, the efficacy of 

targeting QS systems seems to be dependent on the type of bacterial infection (acute versus 

chronic) and the site of infection. Chronic disease can lead to the emergence of QS 

dysfunctional mutants and functionally heterogeneous pathogen populations that can render 

the administration of QS inhibitors challenging. Moreover, given the ubiquity of QS systems 

in commensals and the potential for crosstalk within the microbiota and between commensal 

and pathogen [87–89], further studies investigating the contribution of QS in modulating 

microbiome function and commensal-pathogen interactions are needed in order to evaluate 

the safety and long-term efficacy of these agents in preclinical models of human disease.
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Figure 1. 
Basic structure of quorum sensing systems in bacteria. Quorum sensing (QS) is a form of 

cell-to-cell communication that enables bacterial populations to coordinate their behaviors in 

an environmental and cell density-dependent manner. The primary components of QS 

systems include the biosynthetic machinery that generates the QS signal and its cognate 

sensory machinery that recognizes and responds to the signal. The latter is usually a 

cytoplasmic receptor or histidine sensor kinase (HK), which upon its activation 

phosphorylates its cognate response regulators (RR). However, other transcription factors 

can also be inhibited. The QS cytoplasmic receptors and RRs then modulate bacterial 

behaviors and functions through their functions as transcription factors.
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Figure 2. 
The agr quorum sensing system in S. aureus. The agr locus consists of two divergently 

encoded operons, agrACDB and RNAIII, which are activated by the transcription factor 

AgrA. The agrACDB operon encodes AgrD, which is the precursor for the QS signal 

autoinducing peptide (AIP); AgrB, which is the machinery that processes and secretes AIP; 

and the AgrAC two-component system comprises the AIP receptor AgrC and its cognate 

response regulator AgrA. The RNAIII operon consists of the regulatory RNA, RNAIII, and 

the δ-toxin encoded by hld. AgrA and RNAIII together activate virulence-associated 
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functions such as toxin production, secretion of phenol soluble modulins (PSMs) and 

protease activity and inhibit the expression of cell surface proteins associated with 

commensalism. Coagulase negative staphylococcal commensals produce AIPs that inhibit 

the AgrC receptor in S. aureus, thus attenuating its virulence, they may also inhibit AgrCs 

from other commensals. Additionally Savirin and PNLAs also inhibit Agr signaling.

Ellermann and Sperandio Page 16

Curr Opin Microbiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The QseC quorum sensing system in pathogenic Escherichia coli. A major quorum sensing 

response system in E. coli consists of a two-component system comprises the histidine 

sensor kinase (HK) QseC and its cognate response regulator (RR) QseB. The QseC receptor 

is autophosphorylated upon engagement with the QS signal autoinducer-3 and then transfers 

the phosphate to QseB, which transcriptionally stimulates flagella biosynthesis. QseC, along 

with a second HK QseE, also sense the host neurotransmitters epinephrine and 

norepinephrine. Kinase activity in QseC is promiscuous and can activate two additional non-

Ellermann and Sperandio Page 17

Curr Opin Microbiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cognate RRs, KdpE and QseF. In enterohemorrhagic and enteropathogenic E. coli (EHEC, 

EPEC), QseC also regulates the locus of enterocyte effacement (LEE), which is essential for 

causing intestinal disease. In EHEC and EPEC, QseC activates the LEE through KdpE, a 

positive regulator of the LEE, and inhibits the LEE through sRNAs that are modulated by 

QseF.
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