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Abstract

Background: Substantial increases in wildfire activity have been recorded in recent decades. 

Wildfires influence the chemical composition and concentration of particulate matter ≤2.5 μm in 

aerodynamic diameter (PM2.5). However, relatively few epidemiologic studies focus on the health 

impacts of wildfire smoke PM2.5 compared with the number of studies focusing on total PM2.5 

exposure.

Objectives: We estimated the associations between cardiorespiratory acute events and exposure 

to smoke PM2.5 in Colorado using a novel exposure model to separate smoke PM2.5 from 

background ambient PM2.5 levels.

Methods: We obtained emergency department visits and hospitalizations for acute 

cardiorespiratory outcomes from Colorado for May-August 2011–2014, geocoded to a 4 km 

geographic grid. Combining ground measurements, chemical transport models, and remote 

sensing data, we estimated smoke PM2.5 and non-smoke PM2.5 on a 1 km spatial grid and 

aggregated to match the resolution of the health data. Time-stratified, case-crossover models were 
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fit using conditional logistic regression to estimate associations between fire smoke PM2.5 and 

nonsmoke PM2.5 for overall and age-stratified outcomes using 2-day averaging windows for 

cardiovascular disease and 3-day windows for respiratory disease.

Results: Per 1 μg/m3 increase in fire smoke PM2.5, statistically significant associations were 

observed for asthma (OR = 1.081 (1.058, 1.105)) and combined respiratory disease (OR = 1.021 

(1.012, 1.031)). No significant relationships were evident for cardiovascular diseases and smoke 

PM2.5. Associations with non-smoke PM2.5 were null for all outcomes. Positive age-specific 

associations related to smoke PM2.5 were observed for asthma and combined respiratory disease in 

children, and for asthma, bronchitis, COPD, and combined respiratory disease in adults. No 

significant associations were found in older adults.

Discussion: This is the first multi-year, high-resolution epidemiologic study to incorporate 

statistical and chemical transport modeling methods to estimate PM2.5 exposure due to wildfires. 

Our results allow for a more precise assessment of the population health impact of wildfire-related 

PM2.5 exposure in a changing climate.
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1. Introduction

Climate change, defined as the long-term change in global and regional weather patterns, 

has been extensively documented since the mid-to-late 20th century (Boudes, 2011; 

Incropera, 2016; The Environmental Pollution Panel, 1965; United States Environmental 

Protection Agency, 2017b). Despite politically charged debates regarding the cause of the 

change, it is clear that climate change and its resulting extreme weather events could 

severely impact the health and well-being of populations across the globe (Berrang-Ford et 

al., 2015; Kjellstrom et al., 2016; Thornton et al., 2014; Wu et al., 2016). One area that 

reflects the synergistic impact of climate change and human activity is the occurrence of 

wildfires. Notably, the Western US has seen consistent and rapid increases in wildfire 

activity since the 1980s. This increase has been characterized by rises in the frequency, 

severity, size, and total burned area associated with wildfires (Liu et al., 2013; Westerling, 

2016; Westerling et al., 2006). Fire effects are often seen at great distances from the events 

due to large smoke plumes, sometimes extending across multiple counties or states. States in 

the Rocky Mountain region continue to exhibit climatic factors conducive to fire activity—

including high temperatures, low soil moisture, decreased rainfall, and increased solar 

radiation (Crockett and Westerling, 2018; Dawson et al., 2014; Griffin and Anchukaitis, 

2014; Leung and Gustafson, 2005; Penrod et al., 2014). Conditions may become more 

suitable to large wildfires over time due to climate change (Keeley and Syphard, 2016; 

Keywood et al., 2013; Stavros et al., 2014). Consequently, wildfires place significant 

burdens on the human, economic, and environmental systems in areas surrounding and 

downwind from the burn zone. This is of particular concern given the impact that wildfire 

events can have on regional air quality and, subsequently, human health (Liu et al., 2015; 

Reid, Jerrett et al., 2016).
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Wildfire smoke can produce significantly higher exposures to harmful compounds than are 

normally found in non-fire urban settings (Alves et al., 2011; Kim et al., 2018; Na and 

Cocker, 2008). Fine particulate matter (PM2.5, airborne particles < 2.5 μm in aerodynamic 

diameter) is of particular concern due to its ability to travel deep into the human respiratory 

system and enter the blood stream (Dockery and Pope, 1994; Hong et al., 2017; Kim et al., 

2015; Liu et al., 2015; Park and Wexler, 2008; Reid, Jerrett et al., 2016; United States 

Environmental Protection Agency, 2017a). Smoke particles differ in both size and 

composition from particles found in typical ambient PM from non-wildfire sources. It has 

been shown that organic compounds, such as methanol or formaldehyde, make up a 

significantly higher proportion of smoke PM2.5 when compared with ambient PM (X.X. Liu, 

2017; Na and Cocker, 2008). These distinctions could have differing effects on human health 

outcomes and may vary by fuel source. This has been shown in both in vivo and in vitro 

studies using human cells and mice (Kim et al., 2019; Shin et al., 2017; Xu et al., 2019). 

While much is left to be understood about the toxicological differences, current literature has 

begun to elucidate potential differences between smoke and ambient PM sources. It is, 

therefore, important to differentiate between smoke and non-smoke PM2.5 when assessing 

the health impact of wildfires.

While numerous epidemiological studies have established the associations between ambient 

PM2.5 and human health (Brook et al., 2010; Di et al., 2017; Pope and Dockery, 2006), 

relatively few studies have focused specifically on wildfire smoke (Rappold et al., 2017). For 

example, Reid et al. published a study showing a significant results for asthma during fire 

events (previous 2-day moving average) for a 5 μg/m3 change in PM2.5 concentration (Reid, 

Jerrett et al., 2016). While Reid et al. included satellite and chemical transport data, they 

were limited to the use of fire day and fire distance parameters to account for smoke PM 

instead of directly estimating smoke PM concentrations. Additionally, many studies are 

restricted to the use of ambient urban air pollution measurements, coupled with fire day 

indicators, to represent fire-related exposures. In addition, current guidelines for public 

health response to wildfire events rely heavily on changes of ambient total PM 

measurements due to a lack of information in wildfire-specific air quality (Lipsett et al., 

2016). A few studies have distinguished among sources on larger scales (Hutchinson et al., 

2018; J.C. Liu, 2017; Thelen et al., 2013). For example, Liu et al. derived metrics of smoke 

waves for distinguishing fire activity and evaluated the health impacts of smoke PM2.5 (J.C. 

Liu, 2017). Their chemical transport model simulations, however, were on a spatial grid of 

0.5 × 0.67 degrees, which may be too coarse to capture finer-scale spatial gradients of 

exposure, see Supplemental Fig. 1.

Though there is consistent evidence for associations between wildfire events and disease, 

questions remain regarding the relationship between wildfire smoke PM2.5 and both 

respiratory and cardiovascular outcomes given the difficulty in estimating smoke PM2.5 

exposure. Developing robust methods for understanding this complex relationship is vital to 

understand the potential future impacts of climate and wildfire events on human health. 

Building upon previous studies, the goal of our study is to estimate the associations for 

multiple respiratory and cardiovascular acute health events in relation to wildfire smoke 

PM2.5 in Colorado during the fire seasons of 2011–2014 using novel, high-resolution 

methods to separate wildfire smoke PM2.5 from background ambient PM2.5.
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2. Methods

2.1. Health data

We obtained individual-level health data on daily hospitalizations and emergency 

department (ED) visits at all public and private hospitals for the fire seasons (May-August) 

of 2011–2014 from the Colorado Department of Public Health and Environment. 

Information included in the patient records are dates of admission, residential address, age, 

sex, payer information and International Classification of Diseases version 9 (ICD9) codes 

for primary and secondary diagnoses. Patients admitted to the hospital through the ED were 

only counted once, and those with elective hospitalizations were excluded from analysis.

We analyzed multiple endpoints for primary cardiovascular and respiratory diagnoses. 

Respiratory outcomes include asthma (ICD9: 493), bronchitis (ICD9: 490), chronic 

obstructive pulmonary disease (ICD9: 491, 492, and 496), upper respiratory infection 

(ICD9: 460–465 and 466.0), and combined respiratory disease (ICD9: 460–465, 466.0, 

466.1, 466.11, 466.19, 480–486, 487, 488, 490, 491, 492, 496, and 493). Cardiovascular 

outcomes include ischemic heart disease (ICD9: 410–414), acute myocardial infarction 

(ICD9: 410), congestive heart failure (ICD9: 428), dysrhythmia (ICD9: 427), peripheral/

cerebrovascular disease (ICD9: 433–437, 440, 443, 444, 451–453), and combined 

cardiovascular disease (ICD9: 410–414. 427, 428, 433–437, 440, 443, 444, 451–453). Due 

to inadequate numbers, events in children were not analyzed for COPD or any 

cardiovascular outcomes.

2.2. PM2.5 and meteorological data

We sought to separate smoke PM2.5 from ambient sources. To accomplish this, daily mean 

PM2.5 concentrations were adopted and improved from our previous study by adding new 

data (Geng et al., 2018). Briefly, mean concentrations were estimated using a two-model 

approach to combine information from high-resolution satellite AOD derived from the 

Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm, model 

simulations from the Community Multiscale Air Quality Modeling System (CMAQ), and 

ground measurements obtained from the U.S. Environmental Protection Agency (USEPA) 

for fire seasons in the state of Colorado (April-September 2011–2014). The first model (i.e. 

AOD model) utilized random forest modeling to incorporate MAIAC AOD, smoke mask, 

meteorological fields and land-use variables. The second model (i.e. CMAQ model) utilized 

statistical downscaling to calibrate the CMAQ PM2.5 simulations. Additional exposure 

modeling specifics can be found in Supplemental 2 and Supplemental Fig. 2. The output 

exposure data have full coverage in space and time and are able to capture the large fire 

events at a resolution of 1 km × 1 km (CV R2 = 0.81 and RMSE = 1.85 μg/m3). Compared 

to Geng et al. (2018), major improvements include new observation data from the National 

Park Service to capture PM2.5 enhancement near wildfires, allowing for a better 

representation of high values found during fire events (Supplemental 2 and Supplemental 

Fig. 2) (Benedict et al., 2017; Martin et al., 2013). Additionally, a random forest approach 

was utilized instead of the original statistical downscaler for the AOD model. This improved 

the R2 of the AOD model from 0.65 to 0.92 and the gap-filled R2 from 0.66 to 0.81 (Geng et 
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al., 2018). PM2.5 exposure values were then aggregated to a 4 km × 4 km grid to match the 

resolution of the health data.

Fire count data were obtained using the MODIS fire count product to specify fire days for 

each grid cell (NASA, 2018). Wildfire and prescribed fire emissions were obtained from the 

US EPA emissions inventory for the study period. To calculate the wildfire smoke PM2.5 

fractions, we used two CMAQ model scenarios-with and without smoke and dust particles. 

The differences between these scenarios were then divided by the total PM2.5 scenario to 

calculate the smoke PM2.5 fractions. The smoke PM2.5 fractions were then multiplied by the 

total satellite-based PM2.5 exposure to get the smoke PM2.5 concentrations.

2.3. Epidemiological modeling methods

We estimated associations between short-term changes in air quality and ED visits and 

hospital admissions using a case-crossover study design (Maclure, 1991). Each individual’s 

event day (i.e., date of ED visit or hospitalization) was matched with up to four non-event 

days, with matching based on grid location, day of week, and calendar month (Levy et al., 

2001). Exposure and meteorology were assigned to each event day and corresponding non-

event days based on the 4 km × 4 km grid cell in which the patient’s address is located. The 

4 km grid was chosen a priori through collective agreement between the researchers and the 

Colorado State Health Department. This resolution was deemed the finest resolution we 

could use while still conserving confidentiality. We then used conditional logistic regression 

to estimate the associations between ED visits and hospitalizations for each outcome and 

exposure to non-smoke PM2.5 and smoke PM2.5. The final models for respiratory outcomes 

are shown in model specification 1 & 2 below:

logit P Y = β total3day PM2.5 + β temp3day + ns doy (1)

logit P Y = β smoke3dayPM2.5 + β nonsmoke3day PM2.5 + β temp3day
+ ns doy (2)

where total3day PM2.5 represents the 3-day moving average for total PM2.5 (i.e., smoke + 

non-smoke), temp3day is the 3-day moving average temperature, ns(doy) is a spline for day 

of year (two internal nodes per year), smoke3day PM2.5 represents the three-day moving 

average smoke PM2.5; and nonsmoke3day PM2.5 denotes three-day moving average PM2.5 

not related to wildfires. Cardiovascular outcome models were conducted using the same 

models shown in model specifications 1 and 2, but with 2-day averaging windows. Exposure 

windows of 3-day average PM for respiratory outcomes and 2-day average PM for 

cardiovascular outcomes were decided a priori based on published studies and consensus 

information found in the latest Integrated Science Assessment from the USEPA (Analitis et 

al., 2012; Delfino et al., 2009; Kunzli et al., 2006; J.C. Liu, 2017; Rappold et al., 2011; Reid, 

Jerrett et al., 2016; Strickland et al., 2010; USEPA, 2019). Sensitivity analyses were 

conducted using lag 0, lag 0–1 and seven-day exposure windows for respiratory outcomes 

and lag 0 and three-day exposure windows for cardiovascular outcomes.
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Other potential confounders were assessed (relative humidity, boundary layer height, heat 

index, wind speed). However, these parameters did not influence the results and were 

omitted in the final model. Analyses to examine the presence of potential effect modification 

were completed using sex and age-stratification. Age-stratified categories included children 

(0–18 years), adults (19–64 years), and older adult (65+ years). We conducted all analyses in 

R 3.4.3 (2017) and SAS© 9.4.

3. Results

3.1. Exposure modeling and smoke contribution to PM2.5 levels

A time series plot for modeled statewide daily mean PM2.5 concentrations is shown in Fig. 

1. Modeled total PM2.5 values ranged from close to 0 to 47.48 μg/m3, with an overall mean 

value of 4.67 μg/m3. The exposure model was also used to separate smoke PM2.5 from 

nonsmoke PM2.5. This separation is based on the CMAQ fraction, with total PM2.5 equal to 

the sum of non-smoke PM2.5 and smoke PM2.5. Ratios of smoke PM2.5 to total PM2.5 ranged 

from 0 to 99.56% (mean = 0.006%), with smoke PM2.5 levels ranging from 0 to 37.34 

μg/m3. The statewide daily mean smoke vs. total PM2.5 ratio is also shown for the entire 

study period (See Fig. 2). As shown, concentrations varied year-to-year and between 

stations. This is likely due to the spatial variability of wildfires and varied smoke plume 

behavior due to factors such as prevailing wind speed and direction. To illustrate PM2.5 

concentrations and ratios attributable to fire, Fig. 3 shows the domain-wide average total 

PM2.5 on fire days (smoke PM2.5 > 1%) compared with the domain-wide average ratio of 

smoke PM2.5. For the entire study period, total PM2.5 averaged 7.87 μg/m3 with average 

fire PM2.5 ratios at 28%. Fig. 4 shows locations on a fire day near two major fires that 

occurred during our study period. As shown in Fig. 4A, high levels of smoke PM can be 

seen despite more moderate total PM2.5 concentrations. Fig. 4B depicts a fire day with 

much higher total PM2.5 concentrations and the subsequent contributions of smoke PM. 

Additional analysis showed relatively little correlation between smoke PM2.5 and non-smoke 

PM2.5 (Pearson correlation coefficient r = 0.11, p < 0.0001). The peaks of highest smoke 

PM2.5 ratios tended to correspond with active fire days. Fig. 5 illustrates the modeled total 

PM2.5 and smoke PM2.5 ratio for June 22, 2013, a peak fire day during the West Fork Fire 

Complex. As depicted, when compared to satellite imaging, the modeled smoke PM2.5 

appears to capture the apparent visible smoke plume adequately.

3.2. Epidemiological modeling

After excluding duplicate events and events with non-geocoded addresses, 44,262 of 

490,368 (9%) of cases were excluded from the analysis. A total of 446,106 ED visit and 

hospitalization events were analyzed from the Colorado Department of Public Health and 

Environment. Of those included, there were 204,823 male and 241,283 female cases. The 

lowest case count occurred in 2011 (n = 102,318), with the highest number of cases in 2014 

(n = 129,477). While many reasons could exist, the large increase seen in 2014 could be 

explained by changes in health seeking behavior due to wider Medicaid coverage resulting 

from the implementation of the Affordable Care Act (Singer et al., 2019). Other summary 

statistics on age groups and events per year are found in Table 1.
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Using conditional logistic regression models, we estimated the odds ratio for exposure to 

smoke PM2.5 and individual health outcomes. As shown in Fig. 6 and Supplemental Table 1, 

we observed significant positive associations between 1 μg/m3 increases in 3-day moving 

average fire exposures and both asthma (OR 1.081, 95% CI (1.058, 1.105)) and combined 

respiratory disease (OR 1.021, 95% CI (1.012, 1.031)) in a model that adjusted for PM2.5 

from other sources. There were no significant positive associations linked to cardiovascular 

outcomes and 2-day smoke PM2.5 exposures (see Fig. 7 and Supplemental Table 2). 

However, some inverse associations were shown to be protective for cardiovascular 

outcomes. This could possibly be due to random error, or it may be that individuals with pre-

existing cardiovascular disease stay indoors on days with fire activity.

The models were also run using total PM2.5 for both cardiovascular and respiratory 

outcomes. Overall, the majority of the respiratory odds ratios for 3-day average total PM2.5 

were either null or trending to positive (Supplemental Table 3).The odds ratios for ischemic 

heart disease, acute myocardial infarction, and dysrhythmia also suggest a trend toward a 

positive association (see Supplemental Table 4). The cardiovascular results for total PM2.5 

included significant negative results for congestive heart failure, peripheral/cerebrovascular 

disease, and cardiovascular disease.

We conducted sensitivity analyses for additional exposure windows. Using lag 0 for both 

respiratory and cardiovascular outcomes, similar results were seen with smoke PM2.5 

exposure, with notable differences in overall upper respiratory infection (OR 1.015, 95% CI 

(1.005, 1.026)) and upper respiratory infection in children (OR 1.018, 95% CI (1.004, 

1.003), see Supplemental Figs. 3 and 4). Using lag 0–1 for all respiratory outcomes, the 

results were again similar to the initial analysis with changes for overall and child-only 

upper respiratory infections; see Supplemental Fig. 5. Using a 7-day averaging window for 

respiratory outcomes, asthma was the only outcome to have a significant positive association 

with smoke PM2.5 exposure (OR 1.081, 95% CI (1.051, 1.112), see Supplemental Table 5). 

The associations for asthma, upper respiratory infection, bronchitis, and combined 

respiratory disease trended positive but not significant for 7-day averaged total PM2.5 

exposure (see Supplemental Table 6). A 3-day averaging window used for cardiovascular 

outcomes also yielded either null or negative results (Supplemental Tables 7 and 8).

3.3. Stratified analysis

To investigate potential effect modification of the relationship between exposures and 

respiratory outcomes, we conducted stratified analyses based on sex and age. While most 

sex-stratified total PM2.5 results were null, an association was seen in females for bronchitis 

(OR 1.007, 95% CI (1.001, 1.013), see Supplemental Table 9), however, no significant 

results were observed for cardiovascular outcomes and both 2-day total and smoke PM2.5 

(Supplemental Tables 10 and 11). Associations for both female and male asthma cases and 

3-day average smoke PM2.5 were significant, with higher odds shown in female cases (OR 

1.096, 95% CI (1.064, 1.128)) than in male cases (OR 1.063, 95% CI (1.029, 1.098)). 

Female bronchitis cases (OR 1.054, 95% CI (1.010, 1.101)) and female total respiratory 

cases (OR 1.027, 95% CI (1.015, 1.040)) were also positively associated with smoke PM2.5. 
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Additional sex-stratified, 3-day average smoke PM2.5 results can be found in Supplemental 

Table 12.

Additionally, some outcomes exhibited differences when stratified on age. After age-

stratification, there were no patterns found linking respiratory outcomes and total PM2.5 with 

any specific age group (Supplemental Table 13). Regarding smoke PM2.5, Fig. 6 also depicts 

the ORs and associated confidence intervals for each of the respiratory outcomes by age 

group. In children ages 0 to 18 years, significant positive associations were seen for asthma 

(OR 1.075, 95% CI (1.035, 1.116)). Adults aged 19 to 64 years of age exhibited positive 

associations for asthma (OR 1.091, 95% CI (1.060, 1.122)), bronchitis (OR 1.044, 95% CI 

(1.005, 1.085)), COPD (OR 1.056, 95% CI (1.015, 1.100)), and combined respiratory 

disease (OR 1.030, 95% CI (1.017, 1.044)) (see also Supplemental Table 14). For 

individuals 65 and older, there were no significant positive associations seen for respiratory 

outcomes. We found no positive associations for age-stratified total or smoke PM2.5 and any 

of the cardiovascular outcomes (See Fig. 7 and Supplemental Tables 15 and 16). Additional 

results for stratification analyses using a 7-day averaging window for respiratory outcomes 

and a 3-day averaging window for cardiovascular outcomes can be found in Supplemental 

Tables 17–24. Of note, associations for both childhood and adult asthma, adult COPD, and 

adult combined respiratory disease events were positively associated with 7-day average 

smoke PM2.5 (see Supplemental Table 17).

4. Discussion

In this study, we estimated associations between various health outcomes and acute exposure 

to non-smoke PM2.5 and smoke PM2.5 in the state of Colorado over a four-year period 

(2011–2014). The design of this study is centered on smoke PM2.5 contributions to health 

outcomes. This work builds on our previous work by improving exposure data metrics and 

expanding from a 1-month pilot study (Alman et al., 2016). The exposure data considers 

both spatial and temporal variability by including the use of satellite data to enhance the 

exposure estimates on an improved spatial scale of 4 km × 4 km. Another unique aspect of 

our exposure assessment is that we were able to separate smoke PM2.5 from non-smoke 

sources and estimate risks attributable to wildfire smoke distinct from those due to PM2.5 

exposures from other sources.

As we hypothesized, many of the respiratory disease outcomes increased during periods of 

wildfire activity. For respiratory outcomes, we estimated an increase (OR = 1.036 (95% CI: 

1.022, 1.050%)) in ED/hospitalizations per 1 μg/m3 increase in fire smoke PM2.5 exposure. 

The magnitude of the association was largest for asthma (OR = 1.081 (95% CI: 1.058, 

1.105)). Additionally, we observed heterogeneity in the association estimates when 

stratifying by age group. Positive associations were observed for asthma events, where ED/

hospitalizations increased significantly in children (OR = 1.075 (95% CI: 1.035, 1.116)) and 

in adults (OR = 1.091 (95% CI: 1.060, 1.122)) whereas the association estimate was lower in 

magnitude and was less precise for older adults (OR = 1.009 (95% CI: 0.920, 1.106)). 

Similarly, an increase was seen for combined respiratory diseases with increases in ED/

hospitalizations and adults (OR = 1.030 (95% CI: 1.017, 1.044)). Specifically, in the adult 

group, increases were also shown for both bronchitis (OR = 1.044 (95% CI: 1.005, 1.085)) 
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and COPD (OR = 1.056 (95% CI: 1.015, 1.100)). As opposed to other studies, there was no 

association shown for respiratory diseases when stratified for the older adult age group.

Unlike respiratory outcomes, we did not see a strong link between smoke PM2.5 and 

cardiovascular outcomes. Results for combined cardiovascular disease yielded null results 

(OR = 0.998 (95% CI: 0.984, 1.011)). Similar results were shown for both the adult and 

older adult age groups. This is not wholly surprising given differing results in current 

literature regarding the links between cardiovascular outcomes and wildfire events. There 

are fewer examples of cardiovascular associations with wildfire smoke exposure compared 

to respiratory outcomes. Additionally, associations with cardiovascular outcomes tended to 

be substantially lower in magnitude than for the respiratory outcomes. These differences are 

consistent with published studies on both types of outcomes (Cascio, 2018; Deflorio-Barker 

et al., 2019; Dennekamp et al., 2011; Dennekamp et al., 2015; Johnston et al., 2014; Liu et 

al., 2015; Reid, Brauer et al., 2016; Wettstein et al., 2018). For example, in Deflorio-Barker 

et al. (2019), most cardiovascular outcomes were not significant with fire day PM2.5 using 

lag0-2. They also found similar results for smoke day all-cause cardiovascular outcomes 

were very similar to non-smoke days (OR 1.06 for smoke days vs OR 1.07 for non-smoke 

days (Deflorio-Barker et al., 2019)).

Our high-resolution epidemiological study furthers the current knowledge in the field by 

incorporating random forest modeling methods combining information from MAIAC AOD, 

CMAQ simulations, and ground measurements to elucidate the portion of PM2.5 present in 

the air due to wildfire smoke. Previous work has been done to enhance the spatial coverage 

and resolution of total PM2.5 estimates during wildfire events (Reid et al., 2019). While 

most work compared smoke and non-smoke days using various fire indicators, our study 

particularly focuses on the separation of smoke PM2.5 from other sources. In most work, 

researchers compared smoke and non-smoke days using a variety of methods different from 

our study (Reid et al., 2019; Reid, Jerrett et al., 2016). For example, satellite measurements 

are increasingly used to augment the spatially sparse ground monitoring for PM. However, 

this remains a relatively new approach to capturing the smoke PM concentrations. A study 

by Liu et al. looked at the entire Western US at the county-level using combined satellite and 

ground data (J.C. Liu, 2017). They defined a fire indicator variable, or “smoke wave,” which 

includes periods of at least two days of high pollution from wildfire smoke. Using this 

method, Liu et al. found associations between wildfire smoke exposure and various 

respiratory illnesses, but no associations with cardiovascular outcomes. Reid et al. (2015) 

used a machine learning approach to integrate multiple data sources including smoke 

indicators such as the distance to the nearest fire cluster and a smoke intensity calculation. 

The use of more advanced methods for predicting PM2.5 exposure enhanced the exposure 

estimations, however, the PM2.5 concentrations were not separated into smoke and non-

smoke concentrations (Reid et al., 2015).

Other work has utilized methods combining wildfire emissions and smoke plume modeling. 

For example, Hutchinson et al. examined similar epidemiological questions using exposure 

data derived from a model that combined the Wildland Fire Emissions Information System 

and the Hybrid Single-Particle Lagrangian Integrated Trajectories (Hutchinson et al., 2018). 

Their study found increases in respiratory events with null cardiovascular results. However, 
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the methods denoted fire-specific emissions due to fire location and progression from 

modeled progression maps and may not capture exposures as well as the use of chemical 

transport models. Ultimately, while our results carry similar interpretations to both studies, 

subtle dissimilarities may be seen as we utilize different air quality evaluation products and 

higher-resolution meteorological and epidemiological data to better-define the local 

exposures for each event.

The asthma association found in our study is substantially larger than those shown in 

previous publications. In addition to Reid, Brauer et al. (2016), other studies found 

significant associations between smoke PM and health outcomes. Delfino et al. reported 

significant associations of OR = 1.043 between asthma and 2-day moving average smoke 

exposure for 10 μg/m3 increase in total PM2.5 concentration (Delfino et al., 2009). In a 

more recent study, Reid et al. also found a significant association for asthma and previous 2-

day moving average smoke exposure, with an OR of 1.050 during fire events for a 10 μg/m3 

increase in PM2.5 (Reid et al., 2019). Factoring in the domain-wide average smoke PM2.5 

ratio for the study period (~28% for days with > 1% smoke PM), our result per 1 μg/m3 

roughly translates to 1.08 per 4 μg/m3 of total PM2.5. This converted result is more aligned 

with previously reported values, and the larger effect estimate is likely due to improved 

exposure assessment. It is also important to remember that our methods are unlike the 

majority of previous literature. Namely, the general approach in previous studies is to model 

smoke exposure using smoke day indicators. Our approach differed in that we sought to 

isolate the actual concentration of PM2.5 directly from smoke. We originally hypothesized 

that there may be a difference in toxicity of smoke PM2.5 compared to non-smoke PM2.5. 

When compared with other literature, our findings suggest that smoke PM2.5 may actually 

be more damaging to human health. Aside from asthma outcomes, the majority of the health 

associations in this study fall in line with those found in previous literature. For example, 

Deflorio-Barker et al. (2019) also demonstrated stronger associations with respiratory 

outcomes than those with cardiovascular disease; with asthma exhibiting the largest OR of 

1.06 (Deflorio-Barker et al., 2019).

While we did not investigate physiological mechanisms, these results may be explained by 

the toxicity of smoke PM2.5. Since different chemical compositions of PM2.5 may affect the 

body differently, it has been suggested that toxicological differences may play a role in how 

wildfire smoke PM affects the human anatomy and physiology. Multiple toxicological 

studies have shown differences in the composition and effects of wildfire smoke compared 

to ambient air (Franzi et al., 2011; Kim et al., 2018; Wegesser et al., 2010; Wegesser et al., 

2009; Wong et al., 2011). It has been shown that the small particles found in wildfire smoke 

may be responsible for stimulation of mechanisms that lead to increased oxidative stress at 

the cellular level. Wegesser et al. (2009) observed significant changes in macrophage and 

neutrophil counts in mouse lung samples exposed to wildfire smoke PM compared to 

ambient air. An additional study by the same group, expanded on these findings to show that 

substances such as polycyclic aromatic hydrocarbons (PAH) can be present in much higher 

concentrations in smoke versus levels detected in ambient air (Wegesser et al., 2010). Franzi 

et al., (2011) looked specifically at the inflammatory responses due to wildfire smoke PM 

exposure. PM from wildfire smoke exhibited approximately five times more toxicity to lung 

macrophages than nonsmoke exposure. This study also showed significant changes in 
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reactive oxygen species and subsequent oxidative stress, leading to higher cell degeneration 

and potential apoptosis. Similarly, Kim et al. (2018) found significant increases in mouse 

lung neutrophils after exposure and that levels of lung toxicity were significantly associated 

with fuel type (Kim et al., 2018).

Despite the strengths of our study, some limitations remain. While we sought to enhance the 

exposure estimates for individual cases, some exposure misclassification is still possible 

given the assumption that the location of a person’s address is a good representation of their 

short-term exposures to smoke PM. An additional limitation exists due to the use of modeled 

exposure data. However, as stated previously and despite this uncertainty, the model 

accurately captures the temporal and spatial trends of PM2.5 measured by ground monitors 

and, thus give an accurate representation of overall trends. Additionally, several health 

events were left out of the analysis due to issues with address geocoding or non-Colorado 

residency. However, the exclusions were relatively small with only 9% of cases not used in 

the final analyses. Additionally, our analyses lacked the ability to differentiate chemical 

compositions of PM2.5. Thus, we cannot link toxicological effects to our exposure metrics. 

Finally, the selection of averaging window size, though based on current literature, may also 

introduce error into the analysis.

Notwithstanding these limitations, our methods lend insight into important challenges that 

remain in the wildfire smoke exposure and health effects literature. The use of higher 

resolution enhanced exposure data provides a new approach to assigning exposure to 

individual events. Using multiple data products, our method aids in distinguishing wildfire 

smoke PM2.5 from background PM2.5. Unlike ground monitors that provide spatially sparse 

measurements, the exposure model used here provides daily concentrations for each 4 km × 

4 km grid cell in our epidemiological study.

5. Conclusions

Supported by high-resolution PM2.5 exposure estimates, we found significant associations 

between wildfire smoke and acute respiratory outcomes in Colorado, despite an absence of 

association with total PM2.5 concentrations. Our findings point to potential toxic differences 

between smoke and non-smoke PM2.5 exposure; suggesting that PM2.5 from wildfire smoke 

could pose a significant threat to public health. This is especially true given the expected 

climate change-related impacts on wildfire incidence. It is, therefore, important to derive 

more accurate concentration-response relationships specific to wildfire smoke in order to 

develop a better understanding of future potential health risks based on increased wildfire 

activity. Taken together, the current analysis can inform public health agencies and 

healthcare systems regarding the potential future burden of wildfire smoke PM2.5 exposure 

within the context of climate change. This information may be a key element in evaluating 

and enhancing current preparations aimed at wildfire-event response readiness.
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Fig. 1. 
Daily mean modeled PM2.5 from for fire seasons 2011–2014 in Colorado. State-averaged 

time series data for fire seasons (May-August) 2011–2014 show total modeled PM2.5 levels 

by day, month, and year.
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Fig. 2. 
Daily mean ratio of PM2.5 attributed to wildfire. State-averaged time series data for fire 

seasons (May-August) 2011–2014 depicting ratio of modeled smoke PM2.5 to total modeled 

PM2.5.
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Fig. 3. 
Domain-wide daily mean total PM2.5 and mean ratio of PM2.5 on fire days (fire PM > 1%). 

Time series depicting both total and ratio of modeled smoke PM2.5 to total modeled PM2.5.
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Fig. 4. 
Daily mean total PM2.5 and mean ratio of PM2.5 attributed to wildfire at two locations. Time 

series depicting both total and ratio of modeled smoke PM2.5 to total modeled PM2.5. A) 

Location near the High Park Fire (June 9–30, 2012) and B) Location near Waldo Canyon 

Fire (June 23-July 10, 2012). Red boxes indicate active fire days. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)

Stowell et al. Page 19

Environ Int. Author manuscript; available in PMC 2021 May 28.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 5. 
Satellite smoke plume, modeled total PM2.5 and smoke PM2.5 for west fork fire complex, 

June 22, 2013. Modeled data corresponds to visible smoke plume as shown in A-C. A) 

Satellite image from June 22, 2013 with active West Fork Complex Fire (NASA, 2013). B) 

Total PM2.5 for Colorado on June 22, 2013. C) Amount of PM2.5 attributed to fire on June 

22, 2013.
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Fig. 6. 
Wildfire smoke PM2.5 exposure and respiratory outcomes. Odds ratios for both total and 

age-stratified respiratory outcomes per 1 μg/m3 increase in wildfire smoke PM2.5 exposure, 

arranged by outcome and age group.
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Fig. 7. 
Wildfire smoke PM2.5 exposure and cardiovascular outcomes. Odds ratios for both total and 

age-stratified cardiovascular outcomes per 1 μg/m3 increase in wildfire smoke PM2.5 

exposure, arranged by outcome and age group.
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Table 1

Epidemiologic data descriptive statistics.

Case count

Total records 490,368

 Geocoded addresses 446,106

 Non-geocoded addresses   44,262

Year of event

 2011 102,318

 2012 102,574

 2013 111,737

 2014 129,477

Age ranges

 0–18 y   94,022

 19–64 y 202,665

 65+ y 149,419

Sex

 Female 241,282

 Male 204,823
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