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Summary:

Brain-computer interfaces (BCIs) can restore communication to people who have lost the ability to 

move or speak. To date, a major focus of BCI research has been on restoring gross motor skills, 

such as reaching and grasping1–5 or point-and-click typing with a 2D computer cursor 6,7. 

However, rapid sequences of highly dexterous behaviors, such as handwriting or touch typing, 

might enable faster communication rates. Here, we demonstrate an intracortical BCI that decodes 

attempted handwriting movements from neural activity in motor cortex and translates it to text in 

real-time, using a novel recurrent neural network decoding approach. With this BCI, our study 
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participant, whose hand was paralyzed from spinal cord injury, achieved typing speeds that exceed 

those of any other BCI yet reported: 90 characters per minute at 94.1% raw accuracy online, and 

>99% accuracy offline with a general-purpose autocorrect. These speeds are comparable to able-

bodied smartphone typing speeds in our participant’s age group (115 characters per minute)8. 

Finally, new theoretical considerations explain why temporally complex movements, such as 

handwriting, may be fundamentally easier to decode than point-to-point movements. Our results 

open a new approach for BCIs and demonstrate the feasibility of accurately decoding rapid, 

dexterous movements years after paralysis.

Neural representation of handwriting

Prior BCI studies have shown that the motor intention for gross motor skills, such as 

reaching, grasping or moving a computer cursor, remains neurally encoded in motor cortex 

after paralysis1–7. However, it is still unknown whether the neural representation for a rapid 

and highly-dexterous motor skill, such as handwriting, also remains intact. We tested this by 

recording neural activity from two microelectrode arrays in the hand “knob” area of 

precentral gyrus (a premotor area)9,10 while our BrainGate study participant, T5, attempted 

to handwrite individual letters and symbols (Fig. 1a). T5 has a high-level spinal cord injury 

(C4 AIS C) and was paralyzed from the neck down; his hand movements were entirely non-

functional and limited to twitching and micromotion. We instructed T5 to “attempt” to write 

as if his hand was not paralyzed, while imagining that he was holding a pen on a piece of 

ruled paper.

To visualize the neural activity (multiunit threshold crossing rates), we used principal 

components analysis to display the top 3 neural dimensions containing the most variance 

(Fig. 1b). The neural activity appeared to be strong and repeatable, although the timing of its 

peaks and valleys varied across trials, potentially due to fluctuations in writing speed. We 

used a time-alignment technique to remove temporal variability11, revealing remarkably 

consistent underlying patterns of neural activity that are unique to each character (Fig. 1c). 

To see if the neural activity encoded the pen movements needed to draw each character’s 

shape, we attempted to reconstruct each character by linearly decoding pen tip velocity from 

the trial-averaged neural activity (Fig. 1d). Readily recognizable letter shapes confirm that 

pen tip velocity is robustly encoded. The neural dimensions that represented pen tip velocity 

accounted for 30% of the total neural variance.

Next, we used a nonlinear dimensionality reduction method (t-SNE) to produce a 2-

dimensional visualization of each single trial’s neural activity recorded after the ‘go’ cue 

was given (Fig. 1e). The t-SNE visualization revealed tight clusters of neural activity for 

each character and a predominantly motoric encoding where characters that are written 

similarly are closer together. Using a k-nearest neighbor classifier applied offline to the 

neural activity, we could classify the characters with 94.1% accuracy (95% CI = [92.6, 

95.8]). Taken together, these results suggest that, even years after paralysis, the neural 

representation of handwriting in motor cortex is likely strong enough to be useful for a BCI.
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Decoding handwritten sentences

Next, we tested whether we could decode complete handwritten sentences in real-time, thus 

enabling a person with tetraplegia to communicate by attempting to handwrite their intended 

message. To do so, we trained a recurrent neural network (RNN) to convert the neural 

activity into probabilities describing the likelihood of each character being written at each 

moment in time (Fig. 2a, Extended Data Fig. 1). These probabilities could either be 

thresholded in a simple way to emit discrete characters, which we did for real-time decoding 

(Fig. 2a “Raw Online Output”), or processed more extensively by a large-vocabulary 

language model to simulate an autocorrect feature, which we applied offline (Fig. 2a 

“Offline Output from a Language Model”). We used the limited set of 31 characters shown 

in Fig. 1d, consisting of the 26 lower case letters of the alphabet, commas, apostrophes, 

question marks, periods (written by T5 as ‘~’) and spaces (written by T5 as ‘>‘). The ‘~’ and 

‘>‘ symbols were chosen to make periods and spaces easier to detect. T5 attempted to write 

each character in print (not cursive), with each character printed on top of the previous one.

To collect training data for the RNN, we recorded neural activity while T5 attempted to 

handwrite complete sentences at his own pace, following instructions on a computer 

monitor. Prior to the first day of real-time evaluation, we collected a total of 242 sentences 

across 3 pilot days that were combined to train the RNN. On each subsequent day of real-

time testing, additional training data were collected to recalibrate the RNN prior to 

evaluation, yielding a combined total of 572 training sentences by the last day (comprising 

7.3 hours and 30.4k characters). To train the RNN, we adapted neural network methods in 

automatic speech recognition12–14 to overcome two key challenges: (1) the time that each 

letter was written in the training data was unknown (since T5’s hand was paralyzed), making 

it challenging to apply supervised learning techniques, and (2) the dataset was limited in size 

compared to typical RNN datasets, making it difficult to prevent overfitting to the training 

data (see Supplemental Methods, Extended Data Figs. 2–3).

We evaluated the RNN’s performance over a series of 5 days, each day containing 4 

evaluation blocks of 7–10 sentences that the RNN was never trained on (thus ensuring that 

the RNN could not have overfit to those sentences). T5 copied each sentence from an 

onscreen prompt, attempting to handwrite it letter by letter, while the decoded characters 

appeared on the screen in real-time as they were detected by the RNN (Supplementary Video 

1–2, Extended Data Table 1). Characters appeared after they were completed by T5 with a 

short delay (estimated to be 0.4–0.7 seconds). The decoded sentences were quite legible 

(Fig. 2b, “Raw Output”). Importantly, typing rates were high, plateauing at 90 characters per 

minute with a 5.4% character error rate (Fig. 2c, average of red circles). Since there was no 

“backspace” function implemented, T5 was instructed to continue writing if any decoding 

errors occurred.

When a language model was used to autocorrect errors offline, error rates decreased 

considerably (Fig. 2c, open squares below filled circles; Table 1). The character error rate 

fell to 0.89% and the word error rate fell to 3.4% averaged across all days, which is 

comparable to state-of-the-art speech recognition systems (e.g. word error rates of 4–5% 
14,15), putting it well within the range of usability. Finally, to probe the limits of possible 
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decoding performance, we trained a new RNN offline using all available sentences to 

process the entire sentence in a non-causal way (comparable to other BCI studies 16,17). 

Accuracy was extremely high in this regime (0.17% character error rate), indicating a high 

potential ceiling of performance, although this decoder would not be able to provide letter-

by-letter feedback to the user.

Next, to evaluate performance in a less restrained setting, we collected two days of data in 

which T5 used the BCI to freely type answers to open-ended questions (Supplementary 

Video 3, Extended Data Table 2). The results confirm that high performance can also be 

achieved when the user writes self-generated sentences as opposed to copying on-screen 

prompts (73.8 characters per minute with an 8.54% character error rate in real-time, 2.25% 

with a language model). The prior state-of-the-art for free typing in intracortical BCIs was 

24.4 correct characters per minute 7.

Daily decoder retraining

Following standard practice (e.g. 1,2,18,4,5), we retrained our handwriting decoder each day 

before evaluating it, with the help of ‘calibration’ data collected at the beginning of each 

day. Retraining helps account for changes in neural recordings that accrue over time, which 

might be caused by neural plasticity or electrode array micromotion. Ideally, to reduce the 

burden on the user, little or no calibration data would be required. In a retrospective analysis 

of the copy typing data reported above in Fig. 2, we assessed whether high performance 

could still have been achieved using less than the original 50 calibration sentences per day 

(Fig. 3a). We found that 10 sentences (8.7 minutes) were enough to achieve a raw error rate 

of 8.5% (1.7% with a language model), although 30 sentences were needed to match the raw 

online error rate of 5.9%.

However, our copy typing data were collected over a 28-day time span, possibly allowing 

larger changes in neural activity to accumulate. Using further offline analyses, we assessed 

whether more closely-spaced sessions reduce the need for calibration data (Fig. 3b). We 

found that when only 2–7 days passed between sessions, performance was reasonable with 

no decoder retraining (11.1% raw error rate, 1.5% with a language model), as might be 

expected from prior work showing short-term stability of neural recordings19–21. Finally, we 

tested whether decoders could be retrained in an unsupervised manner by using a language 

model to error-correct and retrain the decoder, thus bypassing the need to interrupt the user 

for calibration (i.e., by recalibrating automatically during normal use). Encouragingly, 

unsupervised retraining achieved a 7.3% raw error rate (0.84% with a language model) when 

sessions were separated by 7 days or less.

Ultimately, whether decoders can be successfully retrained with minimal recalibration data 

depends on how quickly the neural activity changes over time. We assessed the stability of 

the neural patterns associated with each character and found high short-term stability (mean 

correlation = 0.85 when 7 days apart or less), and neural changes that seemed to accumulate 

at a steady and predictable rate (Extended Data Fig. 4). The above results are promising for 

clinical viability, as they suggest that unsupervised decoder retraining, combined with more 

limited supervised retraining after longer periods of inactivity, may be sufficient to achieve 
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high performance. Nevertheless, future work must confirm this online, as offline simulations 

are not always predictive of online performance.

Temporal variety improves decoding

To our knowledge, 90 characters per minute is the highest typing rate yet reported for any 

type of BCI (see Discussion). For intracortical BCIs, the highest performing method has 

been point-and-click typing with a 2D computer cursor, peaking at 40 characters per minute 
7 (see Supplementary Video 4 for a direct comparison). The speed of point-and-click BCIs is 

limited primarily by decoding accuracy. During parameter optimization, the cursor gain is 

increased so as to increase typing rate, until the cursor moves so quickly that it becomes 

uncontrollable due to decoding errors22. How is it then that handwriting movements could 

be decoded more than twice as fast, with similar levels of accuracy?

We theorize that handwritten letters may be easier to distinguish from each other than point-

to-point movements, since letters have more variety in their spatiotemporal patterns of 

neural activity than do straight-line movements. To test this theory, we analyzed the patterns 

of neural activity associated with 16 straight-line movements and 16 letters that required no 

lifting of the pen off the page, both performed by T5 with attempted handwriting (Fig. 4a–

b).

First, we analyzed the pairwise Euclidean distances between each neural activity pattern. We 

found that the nearest-neighbor distances for each movement were 72% larger for characters 

as compared to straight lines (95% CI = [60%, 86%]), making it less likely for a decoder to 

confuse two nearby characters (Fig. 4c). To confirm this, we simulated the classification 

accuracy for each set of movements as a function of neural noise (Fig. 4d), demonstrating 

that characters are easier to classify than straight lines.

To gain insight into what might be responsible for the relative increase in nearest neighbor 

distances for characters, we examined the spatial and temporal dimensionality of the neural 

patterns. Spatial and temporal dimensionality were estimated using the “participation ratio”, 

which quantifies approximately how many spatial or temporal dimensions are required to 

explain 80% of the variance in the neural activity patterns23. We found that spatial 

dimensionality was only modestly larger for characters (1.24 times larger; 95% CI = [1.19, 

1.30]), but that the temporal dimensionality was much greater (2.65 times larger; 95% CI = 

[2.58, 2.72]), suggesting that the increased variety of temporal patterns in letter writing 

drives the increased separability of each movement (Fig. 4e).

To illustrate how increased temporal dimensionality can make movements more 

distinguishable, we constructed a toy model with four movements and two neurons whose 

activity is constrained to lie along a single dimension (Fig. 4f–g). Simply by allowing the 

trajectories to change in time (Fig. 4g), the nearest neighbor distance between the neural 

trajectories can be increased, resulting in an increase in classification accuracy when noise 

levels are large enough (Fig. 4h). Although neural noise in the toy model was assumed to be 

independent white noise, we found that these results also hold for noise that is correlated 

across time and neurons (Extended Data Fig. 5 and Supplemental Note 1).
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These results suggest that time-varying patterns of movement, such as handwritten letters, 

are fundamentally easier to decode than point-to-point movements. We think this is one, but 

not necessarily the only, important factor that enabled a handwriting BCI to go faster than 

continuous-motion point-and-click BCIs. Other discrete (classification-based) BCIs have 

also typically used directional movements with little temporal variety, which may have 

limited their accuracy and/or the size of the movement set24,25.

More generally, using the principle of maximizing the nearest neighbor distance between 

movements, it should be possible to optimize a set of movements for ease of classification26. 

We explored doing so and designed an alphabet that is theoretically easier to classify than 

the Latin alphabet (Extended Data Fig. 6). The optimized alphabet avoids large clusters of 

redundant letters that are written similarly (most Latin letters begin with either a downstroke 

or a counter-clockwise curl).

Discussion

Locked-in syndrome (paralysis of nearly all voluntary muscles) severely impairs or prevents 

communication, and is most frequently caused by brainstem stroke or late-stage ALS 

(estimated prevalence of locked-in syndrome: 1 in 100,000 27). Commonly used BCIs for 

restoring communication are either flashing EEG spellers28–30,18,31,32 or intracortical point-

and-click BCIs33,6,7. EEG spellers based on oddball potentials or motor imagery typically 

achieve 1–5 characters per minute28–32. EEG spellers that use visually evoked potentials 

have achieved speeds of 60 characters per minute 18, but have important usability 

limitations, as they tie up the eyes, are not typically self-paced, and require panels of 

flashing lights on a screen. Intracortical BCIs based on 2D cursor movements give the user 

more freedom to look around and set their own pace of communication, but have yet to 

exceed 40 correct characters per minute in people7. Recently, speech-decoding BCIs have 

shown exciting promise for restoring rapid communication (e.g. 34,16,17), but their accuracies 

and vocabulary sizes require further improvement to support general-purpose use.

Here, we introduced a novel approach for communication BCIs – decoding a rapid, 

dexterous motor behavior in a person with tetraplegia – that sets a new benchmark for 

communication rate at 90 characters per minute. The demonstrated real-time system is 

general (the user can express any sentence), easy to use (entirely self-paced and the eyes are 

free to move), and accurate enough to be useful in the real-world (94.1% raw accuracy, and 

>99% accuracy offline with a large-vocabulary language model). To achieve high 

performance, we developed new decoding methods to work effectively with unlabeled neural 

sequences in data-limited regimes. These methods could be applied more generally to any 

sequential behavior that cannot be observed directly (e.g., decoding speech from someone 

who can no longer speak).

Finally, it is important to recognize that the current system is a proof-of-concept that a high-

performance handwriting BCI is possible (in a single participant); it is not yet a complete, 

clinically viable system. More work is needed to demonstrate high performance in additional 

people, expand the character set (e.g., capital letters), enable text editing and deletion, and 

maintain robustness to changes in neural activity without interrupting the user for decoder 
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retraining. More broadly, intracortical microelectrode array technology is still maturing, and 

requires further demonstrations of longevity, safety, and efficacy before widespread clinical 

adoption35,36. Variability in performance across participants is also a potential concern (in a 

prior study, T5 achieved the highest performance of 3 participants7).

Nevertheless, we believe the future of intracortical BCIs is bright. Current microelectrode 

array technology has been shown to retain functionality for 1000+ days post implant37,38 

(including here; see Extended Data Fig. 7), and has enabled the highest BCI performance to 

date compared to other recording technologies (EEG, ECoG) for restoring communication7, 

arm control2,5, and general-purpose computer use39. New developments are underway for 

implant designs that increase the electrode count by at least an order of magnitude, which 

will further improve performance and longevity35,36,40,41. Finally, we envision that a 

combination of algorithmic innovations42–44 and improvements to device stability will 

continue to reduce the need for daily decoder retraining. Here, offline analyses showed the 

potential promise of more limited, or even unsupervised, decoder retraining (Fig. 3).

Extended Data

Extended Data Fig. 1: Diagram of the RNN architecture.
We used a two-layer gated recurrent unit (GRU) recurrent neural network architecture to 

convert sequences of neural firing rate vectors xt (which were temporally smoothed and 

binned at 20 ms) into sequences of character probability vectors yt and ‘new character’ 

probability scalars zt. The yt vectors describe the probability of each character being written 

at that moment in time, and the zt scalars go high whenever the RNN detects that T5 is 

beginning to write any new character. Note that the top RNN layer runs at a slower 

frequency than the bottom layer, which we found improved the speed of training by making 

it easier to hold information in memory for long time periods. Thus, the RNN outputs are 

updated only once every 100 ms.
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Extended Data Fig. 2: Overview of RNN training methods.
a, Diagram of the session flow for copy typing and free typing sessions (each rectangle 

corresponds to one block of data). First, single letter and sentences training data is collected 

(blue and red blocks). Next, the RNN is trained using the newly collected data plus all 

previous days’ data (purple block). Finally, the RNN is held fixed and evaluated (green 

blocks). b, Diagram of the data processing and RNN training process (purple block in a). 

First, the single letter data is time-warped and averaged to create spatiotemporal templates of 

neural activity for each character. These templates are used to initialize the hidden Markov 
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models (HMMs) for sentence labeling. After labeling, the observed data is cut apart and 

rearranged into new sequences of characters to make synthetic sentences. Finally, the 

synthetic sentences are combined with the real sentences to train the RNN. c, Diagram of a 

forced-alignment HMM used to label the sentence “few black taxis drive up major roads on 

quiet hazy nights”. The HMM states correspond to the sequence of characters in the 

sentence. d, The label quality can be verified with cross-correlation heatmaps made by 

correlating the single character neural templates with the real data. The HMM-identified 

character start times form clear hotspots on the heatmaps. Note that these heatmaps are 

depicted only to qualitatively show label quality and aren’t used for training (only the 

character start times are needed to generate the targets for RNN training). e, To generate new 

synthetic sentences, the neural data corresponding to each labeled character in the real data 

is cut out of the data stream and put into a snippet library. These snippets are then pulled 

from the library at random, stretched/compressed in time by up to 30% (to add more 

artificial timing variability), and combined into new sentences.
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Extended Data Fig. 3: The effect of key RNN parameters on performance.
a, Training with synthetic data (left) and artificial white noise added to the inputs (right) 

were both essential for high performance. Data are shown from a grid search over both 

parameters, and lines show performance at the best value for the other parameter. Results 

indicate that both parameters are needed for high performance, even when the other is at the 

best value. Using synthetic data is more important when the dataset size is highly limited, as 

is the case when training on only a single day of data (blue line). Note that the inputs given 

to the RNN were z-scored, so the input white noise is in units of standard deviations of the 

input features. b, Artificial noise added to the feature means (random offsets and slow 

changes in the baseline firing rate) greatly improves the RNN’s ability to generalize to new 

blocks of data that occur later in the session, but does not help the RNN to generalize to new 

trials within blocks of data that it was already trained on. This is because feature means 

change slowly over time. For each parameter setting, three separate RNNs were trained 

(circles); results show low variability across RNN training runs. c, Training an RNN with all 

of the datasets combined improves performance relative to training on each day separately. 

Each circle shows the performance on one of seven days. d, Using separate input layers for 

each day is better than using a single layer across all days. e, Improvements in character 

error rates are summarized for each parameter. 95% confidence intervals were computed 

with bootstrap resampling of single trials (N=10,000). As shown in the table, all parameters 

show a statistically significant improvement for at least one condition (confidence intervals 

do not intersect zero).
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Extended Data Fig. 4: Changes in neural recordings across days.
a, To visualize how much the neural recordings changed across time, decoded pen tip 

trajectories were plotted for two example letters (“m” and “z”) for all ten days of data 

(columns), using decoders trained on all other days (rows). Each session is labeled according 

to the number of days passed relative to Dec. 9, 2019 (day #4). Results show that although 

neural activity patterns clearly change over time, their essential structure is largely 

conserved (since decoders trained on past days transfer readily to future days). b, The 

correlation (Pearson’s r) between each session’s neural activity patterns was computed for 

each pair of sessions and plotted as a function of the number of days separating each pair. 

Blue circles show the correlation computed in the full neural space (all 192 electrodes) while 

red circles show the correlation in the “anchor” space (top 10 principal components of the 

earlier session). High values indicate a high similarity in how characters are neurally 

encoded across days. The fact that correlations are higher in the anchor space suggests that 

the structure of the neural patterns stays largely the same as it slowly rotates into a new 
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space, causing shrinkage in the original space but little change in structure. c, A 

visualization of how each character’s neural representation changes over time, as viewed 

through the top two PCs of the original “anchor” space. Each “o” represents the neural 

activity pattern for a single character, and each “x” shows that same character on a later day 

(lines connect matching characters). The left panel shows a pair of sessions with only two 

days between them (“Day −2 to 0”), while the right panel shows a pair of sessions with 11 

days between them (“Day −2 to 9”). The relative positioning of the neural patterns remains 

similar across days, but most conditions shrink noticeably towards the origin. This is 

consistent with the neural representations slowly rotating out of the original space into a new 

space, and suggests that scaling-up the input features may help a decoder to transfer more 

accurately to a future session (by counteracting this shrinkage effect). d, Similar to Fig. 3b, 

copy typing data from eight sessions was used to assess offline whether scaling-up the 

decoder inputs improves performance when evaluating the decoder on a future session 

(when no decoder retraining is employed). All session pairs (X, Y) were considered. 

Decoders were first initialized using all data from session X and earlier, then evaluated on 

session Y under different input scaling factors (e.g., an input scale of 1.5 means that input 

features were scaled up by 50%). Lines indicate the average raw character error rate and 

shaded regions show 95% CIs. Results show that when long periods of time pass between 

sessions, input-scaling improves performance. We therefore used an input scaling factor of 

1.5 when assessing decoder performance in the “no retraining” conditions of Fig. 3.

Extended Data Fig. 5: Effect of correlated noise on the toy model of temporal dimensionality (see 
Supplemental Note 1 for a detailed interpretation of this figure).
a, Example noise vectors and covariance matrix for temporally correlated noise. On the left, 

example noise vectors are plotted (each line depicts a single example). Noise vectors are 

shown for all 100 time steps of neuron 1. On the right, the covariance matrix used to 

generate temporally correlated noise is plotted (dimensions = 200 × 200). The first 100 time 

steps describe neuron 1’s noise and the last 100 time steps describe neuron 2’s noise. The 
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diagonal band creates noise that is temporally correlated within each simulated neuron (but 

the two neurons are uncorrelated with each other). b, Classification accuracy when using a 

maximum likelihood classifier to classify between all four possible trajectories in the 

presence of temporally correlated noise. Even in the presence of temporally correlated noise, 

the time-varying trajectories are still much easier to classify. c, Example noise vectors and 

noise covariance matrix for noise that is correlated with the signal (i.e., noise that is 

concentrated only in spatiotemporal dimensions that span the class means). Unlike the 

temporally correlated noise, this covariance matrix generates spatiotemporal noise that has 

correlations between time steps and neurons. d, Classification accuracy in the presence of 

signal-correlated noise. Again, time-varying trajectories are easier to classify than constant 

trajectories.

Extended Data Fig. 6: An artificial alphabet optimized to maximize neural decodability.
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(A) Using the principle of maximizing the nearest neighbor distance, we optimized for a set 

of pen trajectories that are theoretically easier to classify than the Latin alphabet (using 

standard assumptions of linear neural tuning to pen tip velocity). (B) For comparison, we 

also optimized a set of 26 straight lines that maximize the nearest neighbor distance. (C) 

Pairwise Euclidean distances between pen tip trajectories were computed for each set, 

revealing a larger nearest neighbor distance (but not mean distance) for the optimized 

alphabet as compared to the Latin alphabet. Each circle represents a single movement and 

bar heights show the mean. (D) Simulated classification accuracy as a function of the 

amount of artificial noise added. Results confirm that the optimized alphabet is indeed easier 

to classify than the Latin alphabet, and that the Latin alphabet is much easier to classify than 

straight lines, even when the lines have been optimized. (E) Distance matrices for the Latin 

alphabet and optimized alphabets show the pairwise Euclidean distances between the pen 

trajectories. The distance matrices were sorted into 7 clusters using single-linkage 

hierarchical clustering. The distance matrix for the optimized alphabet has no apparent 

structure; in contrast, the Latin alphabet has two large clusters of similar letters (letters that 

begin with a counter-clockwise curl, and letters that begin with a down stroke).

Extended Data Fig. 7: Example spiking activity recorded from each microelectrode array.
(A) Participant T5’s MRI-derived brain anatomy. Microelectrode array locations (blue 

squares) were determined by co-registration of postoperative CT images with preoperative 

MRI images. (B) Example spike waveforms detected during a ten second time window are 

plotted for each electrode (data were recorded on post-implant day 1218). Each rectangular 

panel corresponds to a single electrode and each blue trace is a single spike waveform (2.1 

millisecond duration). Spiking events were detected using a −4.5 RMS threshold, thereby 

excluding almost all background activity. Electrodes with a mean threshold crossing rate ≥ 2 

Hz were considered to have ‘spiking activity’ and are outlined in red (note that this is a 

conservative estimate that is meant to include only spiking activity that could be from single 

neurons, as opposed to multiunit ‘hash’). Results show that many electrodes still record large 
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spiking waveforms that are well above the noise floor (the y-axis of each panel spans 330 

μV, while the background activity has an average RMS value of only 6.4 μV). On this day, 

92 electrodes out of 192 had a threshold crossing rate ≥ 2 Hz.

Extended Data Table 1:

Example decoded sentences for one block of copy typing. In the rightmost columns, errors 

are highlighted in red (extra spaces were denoted with a red square, and omitted letters were 

indicated with a strikethrough). Note that our language model substitutes “epidermal” for 

“epidural”, since “epidural” is out of vocabulary. The mean characters per minute for this 

block was 86.47 and the character error rates were 4.18% (real-time output) and 1.22% 

(language model). Sentence prompts were taken from the BNC corpus according to a 

random selection process (see Supplementary Methods for details).
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Extended Data Table 2:

Example decoded sentences for one block of free typing. In the rightmost columns, errors 

are highlighted in red (omitted letters were indicated with a strikethrough). Note that our 

language model substitutes “salt fish” for “sailfish”, since “sailfish” is out of vocabulary. 

The mean characters per minute for this block was 73.8 and the estimated character error 

rates were 6.82% (real-time output) and 1.14% (language model).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neural representation of attempted handwriting.
a, To assess the neural representation of attempted handwriting, participant T5 attempted to 

handwrite each character one at a time, following the instructions given on a computer 

screen (lower panels depict what is shown on the screen, following the timeline). b, Neural 

activity in the top 3 principal components (PCs) is shown for three example letters (d, e and 

m) and 27 repetitions of each letter (‘trials’). The color scale was normalized within each 

panel separately for visualization. c, Time-warping the neural activity to remove trial-to-trial 

changes in writing speed reveals consistent patterns of activity unique to each letter. In the 

inset above C, example time-warping functions are shown for the letter ‘m’ and lie relatively 

close to the identity line (each trial’s warping function is plotted with a differently colored 

line). d, Decoded pen trajectories are shown for all 31 tested characters. Intended 2D pen tip 

velocity was linearly decoded from the neural activity using cross-validation (each character 
was held out), and decoder output was denoised by averaging across trials. Orange circles 

denote the start of the trajectory. e, A 2-dimensional visualization of the neural activity made 

using t-SNE. Each circle is a single trial (27 trials for each of 31 characters).
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Figure 2. Neural decoding of attempted handwriting in real-time.
a, Diagram of the decoding algorithm. First, the neural activity (multiunit threshold 

crossings) was temporally binned and smoothed on each electrode (20 ms bins). Then, a 

recurrent neural network (RNN) converted this neural population time series (xt) into a 

probability time series (pt-d) describing the likelihood of each character and the probability 

of any new character beginning. The RNN had a one second output delay (d), giving it time 

to observe each character fully before deciding its identity. Finally, the character 

probabilities were thresholded to produce “Raw Online Output” for real-time use (when the 

‘new character’ probability crossed a threshold at time t, the most likely character at time t
+0.3s was emitted and shown on the screen). In an offline retrospective analysis, the 

character probabilities were combined with a large-vocabulary language model to decode the 

most likely text that the participant wrote (using a custom 50,000-word bigram model). b, 
Two real-time example trials are shown, demonstrating the RNN’s ability to decode readily 

understandable text on sentences it was never trained on. Errors are highlighted in red and 

spaces are denoted with “>”. c, Error rates (edit distances) and typing speeds are shown for 

five days, with four blocks of 7–10 sentences each (each block is indicated with a single 

circle and colored according to the trial day). The speed is more than double that of the next 

fastest intracortical BCI7.
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Figure 3. Performance remains high when daily decoder retraining is shortened (or 
unsupervised).
a, To account for neural activity changes that accrue over time, we retrained our handwriting 

decoder each day before evaluating it. Here, we simulated offline how decoding 

performance would have changed if less than the original 50 calibration sentences were 

used. Lines show the mean error rate across all data and shaded regions indicate 95% CIs. b, 
Copy typing data from eight sessions were used to assess whether less calibration data are 

required if sessions occur closer in time. All session pairs (X, Y) were considered. Decoders 

were first initialized using training data from session X and earlier, and then evaluated on 

session Y under different retraining methods (no retraining, retraining with limited 

calibration data, or unsupervised retraining). Lines show the average raw error rate and 

shaded regions indicate 95% CIs.
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Figure 4. Increased temporal variety can make movements easier to decode.
a, We analyzed the spatiotemporal patterns of neural activity corresponding to 16 

handwritten characters (1 second in duration) vs. 16 handwritten straight-line movements 

(0.6 seconds in duration). b, Spatiotemporal neural patterns were found by averaging over 

all trials for a given movement (after time-warping to align the trials in time)11. Neural 

activity was resampled to equalize the duration of each set of movements, resulting in a 192 

× 100 matrix for each movement (192 electrodes and 100 time steps). c, Pairwise Euclidean 

distances between neural patterns were computed for each set, revealing larger nearest 

neighbor distances (but not mean distances) for characters. Each circle represents a single 

movement and bar heights show the mean. d, Larger nearest neighbor distances made the 

characters easier to classify than straight lines. The noise is in units of standard deviations 

and matches the scale of the distances in c. e, The spatial dimensionality was similar for 

characters and straight lines, but the temporal dimensionality was more than twice as high 

for characters, suggesting that more temporal variety underlies the increased nearest 

neighbor distances and better classification performance. Error bars show the 95% CI. 

Dimensionality was quantified using the participation ratio. f-h, A toy example to give 

intuition for how increased temporal dimensionality can make neural trajectories more 

separable. Four neural trajectories are depicted (N1 and N2 are two hypothetical neurons 

whose activity is constrained to a single spatial dimension, the unity diagonal). Allowing the 

trajectories to vary in time by adding one bend (increasing the temporal dimensionality from 

1 to 2) enables larger nearest neighbor distances (g) and better classification (h).
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Table 1.
Mean character and word error rates (with 95% CIs) for the handwriting BCI across all 5 
days.

“Raw online output” is what was decoded online (in real-time). “Online output + offline language model” was 

obtained by applying a language model retrospectively to what was decoded online (to simulate an autocorrect 

feature). “Offline bidirectional RNN + language model” was obtained by retraining a bidirectional (acausal) 

decoder offline using all available data, in addition to applying a language model. Word error rates can be 

much higher than character error rates because a word is considered incorrect if any character in that word is 

wrong.

Character Error Rate [95% CI] Word Error Rate [95% CI]

Raw online output 5.9% [5.3, 6.5] 25.1% [22.5, 27.4]

Online output + offline language model 0.89% [0.61, 1.2] 3.4% [2.5, 4.4]

Offline bidirectional RNN + language model 0.17% [0, 0.36] 1.5% [0, 3.2]
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