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Generative modeling of single-cell time series with
PRESCIENT enables prediction of cell trajectories
with interventions

Grace Hui Ting Yeo® "2°, Sachit D. Saksena® "2 & David K. Gifford® 34

Existing computational methods that use single-cell RNA-sequencing (scRNA-seq) for cell
fate prediction do not model how cells evolve stochastically and in physical time, nor can they
predict how differentiation trajectories are altered by proposed interventions. We introduce
PRESCIENT (Potential eneRgy undErlying Single Cell gradlENTs), a generative modeling
framework that learns an underlying differentiation landscape from time-series scRNA-seq
data. We validate PRESCIENT on an experimental lineage tracing dataset, where we show
that PRESCIENT is able to predict the fate biases of progenitor cells in hematopoiesis when
accounting for cell proliferation, improving upon the best-performing existing method. We
demonstrate how PRESCIENT can simulate trajectories for perturbed cells, recovering the
expected effects of known modulators of cell fate in hematopoiesis and pancreatic f cell
differentiation. PRESCIENT is able to accommodate complex perturbations of multiple genes,
at different time points and from different starting cell populations, and is available at https://
github.com/gifford-lab/prescient.
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ARTICLE

odeling developmental landscapes is essential to

improving our understanding of how cells are driven to

transient and terminal states in vivo and to enable
precise manipulation of cell fates in vitro!. Single-cell RNA-
sequencing (scRNA-seq) has enabled the study of developmental
landscapes by the observation of gene expression in single cells
sampled at multiple stages of differentiation. However, these
studies provide snapshots of a given differentiation process and
do not directly observe lineage relationships between cells at
different time points in development. Recently, experimental
lineage tracing methods that couple various barcoding strategies
with scRNA-seq have been described that identify lineage
relationships?~#. These methods provide ground truth for com-
putational models of differentiation.

Existing computational approaches for modeling differentia-
tion typically summarize observations of cell states and couplings
emergent of the underlying process and have limited to no
capacity for modeling differentiation as a continuous process
(Fig. 1a). The predominant approach is pseudo-temporal infer-
ence, which orders cells along an arbitrary one-dimensional
measurement representing ‘differentiation time’, and hence can-
not model differentiation dynamics with respect to real, physical
time>~7. Other methods have also emerged for the specific task of
cell fate prediction. For example, Waddington-OT predicts long-
range cell-cell probabilistic couplings by reframing the task of
inferring cell relationships between population snapshots as an
unbalanced optimal transport problem®. Another method, Fate-
ID iteratively builds ensembled cell-type classifiers from labeled
terminal cell states®. However, these methods only summarize
observations of cell states and couplings emergent of the under-
lying differentiation process. Recently, a small number of meth-
ods have described approaches to modeling differentiation as a
process, but they have been limited either in how the model is
solved, or in modeling capacity. For example, Population Balance
Analysis (PBA) solves a reaction-diffusion partial differential
equation describing differentiation but is forced to use a non-
parametric solution due to computational constraints!?. Similarly,
pseudodynamics models a diffusion process but only in a one-
dimensional cell state!l.

We introduce PRESCIENT (Potential eneRgy undErlying
Single Cell gradIENTSs), a generative modeling framework fit
using longitudinal scRNA-seq datasets to model complex
potential landscapes. PRESCIENT extends previous work by
Hashimoto et al.!? that showed that a global potential function of
a time-series is recoverable via a diffusion-based model fit to well-
mixed, cross-sectional observations. PRESCIENT builds upon
this by enabling the model to operate on large numbers of cells
over many timepoints with high-dimensional features, and by
incorporating cellular growth estimates. We validate PRESCIENT
on a newly published lineage tracing dataset by evaluating
PRESCIENT’s ability to generate held-out timepoints and to
predict cell fate bias, i.e. the probability a cell enters a particular
fate given its initial state. We show that when accounting for cell
proliferation, PRESCIENT outperforms existing methods on
predicting cell fate bias. Unlike existing methods, PRESCIENT
learns a stochastic, parametric, queryable form of the differ-
entiation landscape via a generative neural network, which
enables simulations of high-dimensional trajectories with arbi-
trary initializations in physical time. This enables simulation of
trajectories for cells unobserved during training, including cells
with computationally perturbed gene expression profiles, which
none of the existing summarization methods or modeling
methods are able to do (Fig. 1a). This is also in contrast to other
generative methods like scGen, which was proposed for predict-
ing shifts in gene expression space in response to perturbations
via autoencoder latent space arithmetic!3. While scGen is a

promising approach for generating cell profiles under different
perturbations for initializations of PRESCIENT models (Discus-
sion), it is not time resolved, does not generate distributions of
cells, and does not explicitly model cellular differentiation. We
demonstrate how PRESCIENT can be used to model perturba-
tions of multiple genes, at different time points, and from dif-
ferent starting states. We are able to recover expected changes in
final cell fate distributions when interrogating our models using
perturbations of known regulators of cell fate in hematopoiesis
and pancreatic B cell differentiation. PRESCIENT enables large
unbiased in silico perturbation experiments to aid the design of
in vitro genetic perturbational screens.

Results

Learning a generative model of cellular differentiation from
high-dimensional scRNA-seq data. PRESCIENT models cellular
differentiation as a diffusion process over a gene expression
landscape parameterized by a potential function that we wish to
identify given only time-series population snapshots of single-cell
RNA expression. In this diffusion process, evolution of a cell’s
state at a given time is governed by a drift term, corresponding to
the force acting on that cell given its current state, and a noise
term, corresponding to stochasticity. In particular, the drift term
is defined to be the negative gradient of the potential function,
such that the potential induces a force that naturally drives cells
toward regions of low potential (Fig. 1b; Methods). This sto-
chastic process can then be simulated via first-order time dis-
cretization to sample trajectories for a given cell. The potential
function is fit by minimizing a regularized Wasserstein loss
between empirical and predicted populations at the observed time
points (Fig. 1c; Methods). Previous work has shown the reco-
verability of diffusion dynamics from cross-sectional observations
via this objective function!2,

To enable the modeling framework to operate on large scRNA-
seq datasets, we fit models on PCA projections of the scaled gene
expression data, which has been successfully used in down-stream
scRNA-seq analysis methods such as clustering and cross-dataset
integration!4-16, The potential function is given by a neural
network, which operates as a black-box function approximator,
hence enabling complex parameterizations of the landscape
(Fig. 1¢).

Finally, we take into account cell proliferation by weighting
each cell in the source population according to its expected
number of descendants in the objective. To assess the importance
of incorporating cell proliferation, we study models assuming a
priori knowledge of cell proliferation, which can be directly
estimated from the data by computing the number of descendants
for each starting cell given lineage tracing data, as well as models
where cell proliferation is estimated from gene expression®.

Fate outcomes generated by PRESCIENT align with experi-
mental lineage tracing when taking into account cell pro-
liferation. We validate our model on a recently published lineage
tracing dataset by Weinreb et al. which used DNA barcodes to
track clonal trajectories during mouse hematopoiesis3. We eval-
uate our model on two tasks: recovery of a held-out time point,
and cell fate prediction (Fig. 1d, e).

We first evaluated whether models were able to recover the
marginal cell population at a held-out time point, day 4, when
trained only on days 2 and 6, using cells that have lineage tracing
data available. We evaluated the Wasserstein distance between the
simulated and the empirically observed cell populations for days 4
(testing distance) and 6 (training distance) on the epoch with the
lowest training distance. Simulated populations generated by
our model outperform baselines, including the distance of the
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Fig. 1 A generative model of cellular differentiation. a Existing single-cell models of development can be described as operating in pseudo-time or real
time (x-axis), and by the extent to which they model the underlying differentiation process (y-axis). PRESCIENT is highlighted in red. b Observations of
population-level time-series data are used in a generative framework that models the underlying dynamic process in physical time. Evolution of a cell's
state is governed by a drift term and a noise term. The drift, depicted by solid arrows, is defined as the negative gradient of the potential function, depicted
by the color gradient in the background. Dashed lines correspond to noise. The model is fit using observations of population-level time-series data, depicted
as solid circles. Simulations of cell states are depicted as dashed circles. € Cartoon depicting model fitting process. The neural network parameterizing the
underlying drift function p takes as input the PCA projections of gene expression data at observed time points (again depicted as solid lines). The
stochastic process is then simulated via first-order time discretization to produce a population at the next time step, and so on. This proceeds until the next
observed time point, at which the loss between the simulated and predicted population is minimized. The model was validated using two tasks. d Held-out
recovery, where the model was asked to predict the marginal distribution of a held-out time point, and e-f, fate prediction, where the model was asked to
predict the fate distribution outcome of a given progenitor cell. Fate prediction can be applied to cells observed in the dataset (e) or cell states in which
some perturbation has been applied in silico (f). As shown, the perturbation results in a significant shift of fate distribution outcomes.

simulated population at day 4 to the actual populations at day 2
and 6, as well as a linearly interpolated population as predicted by
WOTS? (Fig. 2a, Supplementary Note).

We next evaluated on cell fate prediction, which we define to
be the task of predicting the clonal fate bias of a given barcoded
clone as described by Weinreb et al. This is defined as the number
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of neutrophils divided by the total number of neutrophils and
monocytes for that clone (Methods). To predict, we simulate 2000
trajectories initialized with only the starting cell of each clone
until the final time point. For each of these trajectories, we classify
the cell at the final time point as neutrophil, monocyte or other
using an approximate nearest neighbor (ANN) classifier that had
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been trained using cell-type labels provided by Weinreb et al.
(Methods). We then evaluate the clonal fate bias on the test set,
by ensembling predictions over the last 5 evaluated epochs
(Figs. 2c, d, S2a). We measure performance as the Pearson
correlation with respect to the actual clonal fate bias given by the
lineage tracing data, as well as AUROC of classifying a given cell
as having a clonal fate bias of >0.5, since the metric is strongly
bimodal (Fig. S2b).

We first fit a PRESCIENT model on the subset of data for which
lineage tracing data is available (Fig. 2e). Figure 2d depicts the
learned potential and drift functions for models trained with and
without cell proliferation. Qualitatively, we observe that incorpor-
ating cell proliferation changes the potential landscape near the
earliest time point. When the model does not take into account
cell proliferation, its performance is similar to existing fate

prediction methods like Waddington-OT with provided empiri-
cally derived cell proliferation (r=0.150, AUROC = 0.599) and
FateID (r =0.225, AUROC = 0.602), achieving r = 0.196 + 0.020,
AUROC =0.601 +0.006 over 5 seeds. Incorporating empirically
derived cell proliferation rates into the PRESCIENT modeling
framework greatly improves performance with mean r=0.347 +
0.029, AUROC =0.692 +0.012, more closely approaching the
upper-bound performance estimated using held-out clonal data of
r=0.487, AUROC = 0.771 (Figs. 2f, g; S2).

Accounting for cell proliferation improves the performance of
the fate prediction task. However, these models were fit with
empirically derived cell proliferation rates calculated from the
lineage tracing data, which is usually unavailable (Figs. 2e, S2c).
We next looked at whether cell proliferation rates derived from
gene expression could achieve similar performance. To this end,
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Fig. 2 Fate outcomes generated by PRESCIENT align with experimental lineage tracing when taking into account cell proliferation. a Testing
performance of models trained with and without proliferation on the task of recovering the held-out time point, day 4. Performance is reported as
Wasserstein distance of simulated population with respect to actual populations at the given time points for models trained without and with proliferation
over n =5 seeds. Dashed line indicates distance of linearly interpolated population with respect to the actual population on day 4. b Correlation of actual
and estimated proliferation rates on day 2 cells with lineage tracing data (n = 4638). ¢ Examples of n = 50 trajectories with starting cells assigned different
clonal fate biases. The color-scale indicates time corresponding to 100 time steps of dt = 0.1 starting from t = 2. Clonal fate bias is computed with respect
to monocyte/neutrophil populations at the final time point. d Visualizations of underlying potential and drift functions learned by models with and without
cell proliferation. Drift is visualized for a random sample of cells. Dotted circle indicates qualitative differences in potential landscape. @ Summary of
training/test splits of lineage tracing dataset. Training sets either include only cells with lineage tracing data, all cells, or cells without lineage tracing data.
f-h, Performance of other methods (far left, Smoothed fate probabilities given by held-out clonal data, PBA: population balance analysis'®, WOT:
Waddington-OT8, FatelD® evaluated using predictions provided by Weinreb et al.) in comparison to PRESCIENT (left-right) on predicting clonal fate bias
for the same test set (n = 335) given different training sets. Training sets either consisted of only cells for which lineage tracing data was available (left), all
cells (middle), or cells without lineage tracing data (right). Performance metrics evaluated include f Pearson r, g AUROC, and h fraction of test set in which
at least 1 simulated cell at the final time point is either classified as a neutrophil or a monocyte over n =5 seeds. In b, f-g, boxplots indicate median (middle
line), first and third quartiles (box), and the upper whisker extends from the edges to the largest value no further than 1.5 x IQR (interquartile range) from
the quartiles and the lower whisker extends from the edge to the smallest value at most 1.5 X IQR of the edge, while data beyond the end of the whiskers
are outlying points that are plotted individually as diamonds. In h, bar plots show the average fraction of cells with error bars representing the 95% ClI.

we modified an approach described by Schiebinger et al.8 to use
KEGG annotations of cell cycle and apoptosis genes which were
also highly variable in the dataset to estimate the number of
descendants a cell is expected to have. These estimates correlated
weakly but significantly (r = 0.207, p « le—45) with the empirical
rates calculated from the lineage tracing data (Fig. 2c). We
compared models fit to the same set of cells using either our gene-
expression-derived or empirical proliferation estimates. We found
that models incorporating gene-expression-derived estimates
achieved r=0.399 + 0.025 and AUROC = 0.725 +0.008, a slight
improvement over empirical proliferation rate based models
(Fig. 2f, g).

Generative models can simulate trajectories for cells not
observed during training. We next hypothesized that PRES-
CIENT should be able to predict the fate of cells not observed
during training. We expect that the model has learned a good
approximation of the underlying potential function from the
training data and hence should be able to generalize to unseen
data points. To test our hypothesis, we used our proliferation
estimates to fit models to all cells with and without lineage
tracing data.

We found that model performance was similar when the cells in
the test set were included in the training dataset (r = 0.391 £ 0.035,
AUROC =0.723 £0.013), and when they were not (r=0.407 +
0.019, AUROC=0.727+0.014) (Fig. 2f, g). Furthermore,
although performance as measured by correlation and AUROC
is similar to when models were fit only on cells with lineage
tracing data, the fraction of test set cells for which the model
predicted at least one cell entering a neutrophil or monocyte fate
increased slightly from 0.74+0.01 to 0.80 £0.03 (all cells) and
0.83+£0.02 (only cells without lineage tracing data) (Fig. 2h),
suggesting that the models did benefit from observing more data.

PRESCIENT enables in silico simulations of perturbed cell
profiles. The ability to simulate trajectories for unobserved cells
allows the model to make predictions of the fate distribution
outcome of cells with perturbed gene expression profiles. We
demonstrate this ability on two model systems drawn from
published studies with time-series scRNA-seq measurements of
differentiation. For these experiments, we first simulate trajec-
tories for an unperturbed initialization (Fig. S2d, ). We then
introduce perturbations to the same initial cell population by
introducing different levels of overexpression or knock-down of
genes that have been reported in the literature to modulate cell

fate outcome (Methods). These perturbations can involve multi-
ple genes, or be introduced at different time points, or in different
starting populations. The resulting gene expression profile is then
transformed into PCA space to initialize simulations of perturbed
cell trajectories.

PRESCIENT predicts expected changes in cell fate when per-
turbing transcription factors involved in the regulation of
hematopoiesis. We hypothesized that a PRESCIENT model
trained on the Weinreb et. al. dataset should be able to recapi-
tulate the effects on cell fate when perturbing transcription factors
(TFs) known to be involved in regulation of neutrophil or
monocyte differentiation. (Figs. 3a, b, S3a, b). In particular, we
focus on a set of TFs previously identified to be potentially
antagonistically correlated with either monocyte and neutrophil
fate in progenitor cells by MetaCell analyses and CRISPR-seq
experiments of a haematopoietic stem cell dataset!”, many of
which are supported by existing literature!8-21,

We first introduced perturbations to Lmo4, Cebpe, Mxdl, and
Dachl, TFs previously identified to be involved in granulopoiesis,
the production of mature neutrophils. As expected, we observed
that down-regulation of these TFs led to a relative decrease in the
fraction of neutrophils while up-regulation of these TFs led to a
relative increase in the fraction of neutrophils with respect to the
unperturbed population. We next perturbed TFs involved in
monocyte development, including Irf8, Irf5, Kif4, and Nr4al, and
observed similar results (Fig. 3c).

We next tested if different magnitudes of the perturbation had
different effects (Methods). We found that increasing the
magnitude of the perturbation resulted in larger changes in the
relative cell fractions (Fig. 3d, e). Furthermore, while individual
perturbations resulted in a mixture of significant and non-
significant changes in the final neutrophil populations, ensemble
perturbations consistently resulted in significant changes (p <
0.05; Fig. 3f, g). We also tested multiple sets of randomly selected
non-TFs to ensure the changes in final cell fate were not simply a
result of perturbations causing random model changes. These
randomly selected non-TFs do not result in an observed shift in
neutrophil and monocyte fates in the final time point (Fig. 3h),
suggesting that our model is robust to random effects.

PRESCIENT predicts expected outcomes of transcription fac-
tor perturbations in endocrine induction introduced at dif-
ferent timepoints and developmental stages. We next applied
PRESCIENT to a 7 time-point scRNA-seq time course of another
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Fig. 3 In silico perturbations of hematopoiesis results in expected shifts in fate distribution. a The distribution of cells at the final time-point generated
by the model initialized with unperturbed cells (left) and cells with perturbations of Lmo4, Cebpe, Mxd1, and Dachl upregulated (z=10) during neutrophil
differentiation (right). b Proportions of generated cell types from day 2 to 6 initialized with unperturbed cells (left) and cells with perturbations of
transcription factors upregulated during neutrophil differentiation (right). ¢ Fraction of neutrophil and monocyte cells at final time point with single-gene
perturbations. Transcription factors involved in monocyte development are indicated in green, while transcription factors involved in neutrophil
development are indicated in orange. Control genes (in gray) indicate experiments when perturbing genes from a random set of non-TFs as in (h) d, e,
Individual genetic perturbations made to transcription factors involved in neutrophil and monocyte differentiation have an increased effect at higher
dosages. f-g Ensemble perturbations of transcription factors involved in neutrophil (orange) and monocyte (green) differentiation have a stronger effect.
h Ensemble random perturbations of non-transcription factors without proliferative signatures (gray). In c-h, boxplots are of randomly initialized
unperturbed vs. perturbed simulations (n =10) with 200 cells for each initialization, and red asterisks indicate Welch's independent two-sided t-test at p <
0.05. Boxplots indicate median (middle line), first and third quartiles (box), and the upper whisker extends from the edges to the largest value no further
than 1.5 x IQR (interquartile range) from the quartiles and the lower whisker extends from the edge to the smallest value at most 1.5 x IQR of the edge,
while data beyond the end of the whiskers are outlying points that are plotted individually as diamonds.

well-characterized differentiation system, the production of
pancreatic islet cell types in vitro?2. This dataset did not include
lineage tracing measurements.

We first hypothesized that PRESCIENT should be able to
recapitulate the effects on cell fate when perturbing TFs known to
be involved in the regulation of endocrine induction and
specification in the starting population (Fig. 4a, b). Previous
work has shown that NEUROG3 and NKX6 activation is
associated with the endocrine lineage, while PTFIA and HESI
is associated with the exocrine lineage?3-28. When introducing
ensembled in silico perturbations of NEUROG3 and NKX6.1 at
day 0, we observe an increase in endocrine cell types that scales
with the magnitude of perturbations (p < 0.05) with a reciprocal

6

decrease in exocrine cell types. PTFIA and HESI overexpression
results in the opposite effect (Fig. 4c). We also observed
corresponding decreases in endocrine and exocrine cell propor-
tions with knock-downs of NEUROG3/NKX6.1 and PTF1A/HES],
respectively (Fig. S4a, b).

We next simulated the effects of TFs involved in the
specification of cell types post-endocrine induction, where ARX
and PAX4 have previously been shown to have an antagonistic
effect on the specification of endocrine precursors to a and p-cell
fate, respectively?429-31, Overexpression of ARX in progenitor
cells at day O resulted in significant increases in the final
proportion of a cells at the expense of B cells (Fig. S4c). The same
overexpression of PAX4 resulted in a significant increase in the
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Fig. 4 PRESCIENT predicts expected temporal dynamics of in silico perturbations of the endocrine/exocrine axis. a Simplified model of in vitro
endocrine induction. Progenitor cells first bifurcate along the endocrine-exocrine axis, and then are specified into more specific pancreatic cell fates.

b Schematic of steps for different perturbational experiments. First, cells are sampled from either a specific timepoint in the scRNA-seq timecourse or by a
specific subtype label. Next, either individual genes or ensembles of genes are perturbed by setting target genes to a higher or lower z-score in scaled gene
expression space. This profile is then reduced to principal components. These perturbed cells are then used to initialize a simulation of an already trained
PRESCIENT stochastic process, which is simulated forward to the final timepoint. Finally, a pre-trained ANN classifier is used to evaluate the cell-type
distribution at the final time-step of the simulation. This distribution is then compared to an unperturbed simulation via a two-sided paired t-test. ¢ Final
fractions of endocrine and exocrine cells as a result of ensembled perturbations of endocrine- and exocrine- associated TFs (top, bottom) on day O and day
4 (left, right) with increasing magnitude. Boxplots (as described previously) are of randomly initialized unperturbed vs. perturbed simulations (n =10) with
200 cells for each initialization, and red asterisks indicate Welch's independent two-sided t-test at p < 0.05. d In silico perturbations are introduced at
different time points to the corresponding unperturbed population. The different outcomes of the cell type of interest are then calculated as the difference
in fraction at the final time point starting from the perturbed and unperturbed populations. Bar plots show average differences over n =10 randomly
sampled cell populations of 200 cells each from each timepoint with error bars representing the 95% CI.

final proportion of B cells (p <0.05) at the expense of a cells
(Fig. S4c).

To demonstrate the scale at which in silico experiments can be
conducted, we next did a larger screen of 200+ TFs (Fig. 5a-c).
At FDR<0.01 and log,(FC) > 0.5, we found that this unbiased
screen identified 10 (a-specification increase) and 18 (P-
specification increase) TFs that significantly increased final cell
fate distribution (Fig. 5a). This includes several known fate-
specific factors, such as ARX and IRX2 for a-cells3%32 and

NKX2.2, NKX6.1, PAX4, PDXI, and MAFA for B-cells33-37. We
also identified factors common to both cell lineages, including
MAFB, PAX6, and ISL1. PAX6 has previously been reported to be
associated with both a and B-cell fate, but Pax6 mutant mice
show a more significant decrease in a-cells, which we also
observed3839, In addition, we identified 19 TFs for specification
of the less well-studied enterochromaffin (SC-EC) (FDR < 0.01
and log,(FC) > 0.5) identified by Veres et al., hence showing how
PRESCIENT can be used to generate hypotheses for genetic

NATURE COMMUNICATIONS | (2021)12:3222 | https://doi.org/10.1038/s41467-021-23518-w | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Endocrine specification

B-cells a-cells EC-cells
MAFB IRX2y FEV,
o $ect ‘ AR5 POU2F2
NKX6.1 10 8- NKx6.1"
N PAXE
NEUROD4 28
PDX1 9
TSH)ZPI ISL1 Jst ISL1  SALL4 NEUROD1 NKX2.27N5M1
6 RXRG )\ 8- PAX6 LN284 T~ __MNX1
NFKBL, | EBF1 - soxr V1 ~6- O )QFAM = oui LMXIBEZ’H Twaa
© sox4 POUSlog PAX6 ] NKX6.1g, @ Srxa paxe 3 ARXg IRXDSY sy HEYL HES6
> NEUROD4 K ki > z PDX1 EmMx2 PROXI > T5C22D1
> FOXQI™ASCL2 s 64 SOX48 NR2F1 HX1 1 soX3 KLF5 MXI1
= Wz*zwo;/ MsC TBX3 ara s baxa Mx1 ELFS ) JONECUT, Fos‘ri = X1 o o 8RO2_ER0A" Sopy3rs
S 4 NROBT %
S4 saLLa Ers? —PFOX2A o6 o} Esr1_PBX3 = NFE2LE, . ALCORL POU3EZe N g e = EPASL & o6 3e
o MECOM—— PHOXZgJ simy Tixz.2 2 PHO2A CL118 o 3
o JELES EPAS1™ ] 7yj—NEURODI = 47 o
! PITX1  e" o
e
2 - i
2 2
0 0 0
1 4 ! T T T T 10 -05 00 05 10 15 T T ! T
-1.5 -1.0 -05 0.0 05 10 15 T l0g2(FC) : ' ' -2 -1 0 1
log2(FC) 9 log2(FC)
Fold-change in final population of target cell type
b
c
progsox2 0.209 ® progsox2
prognkx61 N prognkx61
S o015 neurog3early | < E neurog3early
£ H = neurog3mid | 2 015 ° === neurog3mid
ks 5 {
2 S
3 2
[s} 5] °
S o104 l 2 a0 g,
g .. - . i l
@ o8 ° 3
£ 0051 f - E N i £ o005
D AT T TR | B e I TR R I PRPRR e
£ 0004 . 3 F o $ = . ¢ 7 ;
5 ooy Wt oiV f*f' *Eg-r' i i?ﬁ 5 i . i} 2 8
i : H ° -0.054 . °
=0.054 E
NEUROD1 ARX NKX2-2 IsL1 MAFA NIWG-L oaa NEUROD1 ARX NKX2-2 1sL1 MAFA NKX6-1 PAXS
Early TFs Early/Late TFs Early TFs Early/Late TFs

Perturbed gene (TFs)

Perturbed gene (TFs)

Fig. 5 PRESCIENT predicts the outcome of transcription factor perturbations in a large perturbational screen as well as the different effects of
perturbations in early progenitors vs. cells further along endocrine induction. a Perturbational screen (z =5) of all the TFs in the highly variable gene set
of in vitro p-cell differentiation. The x-axis is the log, fold-change (FC) of the final cell-type fraction of the target cell fraction between perturbed and
unperturbed simulations. The y-axis is the -log;o p values of two-sided paired t-tests between target cell fate outcomes between unperturbed and
perturbed simulations over n =10 randomly sampled starting populations at the final time step consisting of 200 cells each. Points are colored if they are a
hit (FDR < 0.01 and log2(FC) > 0.5) and B-cell fractions are shown in purple, a-cells in red, and EC-cells in blue. b Difference in final p-cell populations when
introducing perturbations (z=15) in different cell populations for different TFs. ¢ Difference in final a-cell perturbations when introducing perturbations

(z=15) in different cell populations for different TFs. In b, ¢, different starting populations correspond to cell stages as labeled by Veres et al.:

SOX2+

progenitors (progsox2), NKX61+ progenitors (prognkx61), and cells with early/middle/late NEUROG3 signatures (neurog3early, neurog3mid, neurog3late,
respectively). Bar plots show average paired differences over n =10 randomly sampled cell populations of 200 cells from each early subpopulation with
error bars representing the 95% ClI. Figure S4e, f show boxplots of this data.

screens (Fig. 5a). Mean expression of TFs on day 0 was not
correlated with predicted log,(FC) of cell fraction, showing that
we could predict the effects of TFs even if their relative expression
was low on day 0 (Fig. S4d).

We next asked if PRESCIENT could recapitulate the known
timing of TFs during endocrine induction by introducing
perturbations to the same endocrine/exocrine axis TFs described
above at multiple timepoints (Methods). Endocrine/exocrine
induction is known to occur early in the time-course, and the
results corroborate this as early perturbations to NKX6.1 and
NEUROG3 (z=10) result in an increase in endocrine cells, but
this effect diminishes with perturbations induced at later time
points (Fig. 4d).

PRESCIENT also enables perturbations of cells sampled from
different starting cell populations along a given differentiation
trajectory. To demonstrate this, we introduced perturbations of
selected TFs from the above screen to cells sampled from different
stages of the endocrine induction pathway as labeled by Veres
et al. (Fig. 5b, NKX2.2, NKX6.1, PAX4, and ARX are found early
in endocrine specification and are often the first signal of the
production of specific terminal endocrine cell fates*3. We found

that perturbations of these TFs in pancreatic progenitors result in
a significant increase in final p-cell proportion (p < 0.05) and this
effect is minimal in cells further along the endocrine induction
pathway (Figs. 5b, S4e, f). In contrast, PDX1 has been shown to
continue to promote B-cell neogenesis late into the endocrine
induction pathway%). We show that perturbations to PDXI
increase the fraction of B-cells in both progenitor cells and cells
with late NEUROG3 expression (neurog3late), recapitulating the
multiple contexts in which perturbations to PDXI can modulate
endocrine fate. Similarly, MAFA and MAFB are known to
continue to modulate fate late into endocrine induction3741, and
we show that perturbations to both MAFA and MAFB result in
increases in [-cell proportion when introduced to both early
pancreatic progenitors and cells in late endocrine induction.
While ISL1 has been previously reported to stimulate islet cell
production, the timing of ISLI activation is less well character-
ized. Our model suggests that ISLI has a role in p-cell
specification in both early pancreatic progenitor phase and late
in the endocrine induction pathway.

Finally, we observed that modulation of a-cell fate largely
occurs via perturbations induced in the pancreatic progenitor
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phase of the stage 5 differentiation protocol, with diminished
effects of all endocrine-specification TFs in cells with early/mid/
late NEUROG3 expression (Fig. 5¢). This could suggest that a-cell
determination occurs early in the differentiation protocol. We
again observe similar outcomes with in silico knockdown
experiments (Fig. S4b, e) as well as no effect of perturbations to
randomly sampled non-TF genes that are not involved in
apoptotic/proliferative signatures (Fig. S5).

Discussion

PRESCIENT is a generative modeling framework for learning
potential landscapes from population-level time series scRNA-seq
data. PRESCIENT marks a departure from the predominant
methods for analyzing scRNA-seq studies of cellular differentia-
tion. Computational methods for lineage inference have been
dominated by pseudo-time approaches that do not attempt to
model the stochastic or dynamic nature of cell fate determination.
More recent fate prediction methods either summarize observa-
tions of the emergent process or suffer from modeling limitations
(see Introduction)®10. However, we have demonstrated an
important predictive advantage to fully generative models that
seek to describe the underlying differentiation landscape. After
the model has learned the landscape, it can generate trajectories
for unseen data points.

We can hence interrogate PRESCIENT to propose hypotheses
for possible perturbations. We show that inducing perturbations
in well-studied regulatory genes of hematopoiesis and p-cell dif-
ferentiation result in expected changes in fate outcome. We also
show that we can model the differentiation outcomes of complex
perturbations consisting of multiple genes, or at different time
points or in different starting populations. This enables large,
combinatorial in silico experiments that can help limit the
number of in vitro experiments needed to achieve a desired cell
fate. PRESCIENT can be used to identify targets for genetic- and
small molecule-based screens and aid the design and fine-tuning
of mnew directed differentiation and reprogramming
protocols#2-44, We show an example of this type of unbiased,
large-scale screen for in vitro B-cell differentiation in which we
perturbed 200+ TFs and identified target genes that could cause
significant shifts in B-cell, a-cell, and EC-cell fates. While this
work was limited to TFs to show the utility of the method, non-
TF targets, such as signaling pathway effectors, can also be tested
using PRESCIENT. However, the model is subject to constraints
and assumptions, for example requiring that the final time point
of the dataset be at steady-state. The model also improves when
incorporating growth rates, and would likely benefit from better
estimates of proliferation. There also remain challenges to con-
fidently suggest gene sets for experimental perturbation. One
problem is that information is lost about individual genes when
transforming data into PCA space, and lowly-expressed genes
important to cell fate decisions may be dropped altogether in the
scRNA-seq data. This can be addressed by methods that have
proposed ways to directly generate gene expression counts from
latent cell states*®, or by approaches that model perturbation
profiles in the original gene expression space!346, These profiles
can then be used to initialize PRESCIENT simulations or even
extend PRESCIENT to include end-to-end encoding. Another
problem is that the association of certain genes with specific cell
fates does not necessarily imply causality.

Future extensions of PRESCIENT would accommodate other
data or modeling approaches. For example, PRESCIENT’s
objective can be modified to maximize the likelihood of observing
individual trajectories given lineage tracing data. Further, first-
principle approaches to modeling dynamics such as RNA velocity
are complementary approaches that are non-generative but can

be used to constrain PRESCIENT models, e.g. RNA velocity has
been proposed for constraining flows across timepoints to local
velocities within time points*/~4%. We expect that integrating
additional sources of information or increasing sampling density
of timepoints should improve the quality of the underlying
landscape inferred.

Methods

Identifying the latent dynamics of cellular differentiation. Following Hashi-
moto et al.'? we model cellular differentiation as a diffusion process X(t) given by
the stochastic differential equation

dX(t) = u(X(t))dt + v202dW(t) 1)

where X(f) represents the k-dimensional state of a cell at time t, u(X(t)) is a drift
term representing the force acting on a cell given its state, and W(¢) corresponds to
unit Brownian motion. In particular, the drift function is defined to be the negative
of the gradient of a potential function, u(x) = —V¥(x), such that intuitively, the
potential function ¥(x) can be thought of as inducing a gradient field driving cells
from regions of high potential to low potential. Within the conceptual framework
of Waddington’s epigenetic landscape, this potential function corresponds to the
height of the landscape. This process can be simulated via first-order time dis-
cretization

X(t 4 At) = X(8) + p(X(H)At + V202 AtZ(t) (2

where Z(t) are i.i.d. standard Gaussians. This converges to the diffusion process as
At — 0.

We define the marginal distribution at time ¢ to be p(x,t) = P(X(t) = x). The
inference task identifies the potential function ¥(x), and hence the underlying drift
function y(x), given only samples from the marginal distribution
{x(t); ~ p(x, 1))i € {1..m, },t € {1..n}}, where m,is the number of cells sampled at
time ¢ and # is the number of time points where data was observed. In practice, this
data corresponds to gene expression profiles of cells sampled over the course of a
time-series experiment.

Inference proceeds by finding the potential function ¥ in a family of functions
K that minimizes the objective

n m, Y(x,
I\},]Ell? igl Wz(i’(tiﬁx)va(tisx))z +Tj§ ( J)

= 6)
where 37, W, (p(t;, X), py (t;, x))? is the Wasserstein distance between the
empirically observed distribution p(t;, x)and the predicted distribution for a
candidate potential function py(t;,x), and 7 is a parameter controlling the strength
of the entropic regularizer. To motivate this loss metric, it is helpful to compare to a
case in which we can actually observe ground-truth trajectories of a diffusion
process X(t), in which case prediction error can be directly measured as the
Euclidean distance between observed points along the trajectory and samples from
predicted distribution of X(t) under the model. Wassertein distance is the direct
analog of Euclidean distance when instead considering cross-sectional observations
of indistinguishable particles along trajectories of a given diffusion process®. In
our case, each time point in longitudinal scRNA-seq is a cross-section of cell
populations along multiple differentiation trajectories.

Incorporating cell proliferation. Using notation from Feydy et al.>! computing
the Wasserstein distance involves solving the optimization problem

N M
<rn”)1Cn>%7I,<JC,<J»S.t.‘v’z,], 7;; 20, El m = txi,%:nij =p; 4)

where 7;is an optimal transport plan mapping points from the source measure to
the target measure, C;; = |Ix; — yj||zis the squared euclidean distance between
point x; and point y;, and «; and B; are positive weights associated with the samples
x; and y;. Previous models minimizing the Wasserstein loss as described by
Hashimoto et al. as well as Schiebinger et al. set the weights a; and f3; to be

constant, hence assuming uniform sampling over the source and target densities.
We incorporate cell proliferation into the modeling framework simply by setting
a;to the number of descendants the cell x; is expected to have, where in this case x;
corresponds to samples from the predicted population. The intuition behind this is
that a cell that has a larger number of descendants should be mapped to a larger
number of cells at the later time point. Weights associated with the empirical
population f3; remain constant. Note that in contrast, Schiebinger et al. incorporate
cell proliferation by instead using the cell proliferation rates to weaken the marginal
constraints, hence reframing the problem as unbalanced optimal transport.

Where lineage tracing data is available, we define the number of descendants a
cell is expected to have at time f to be the number of cells sharing a particular clonal
lineage barcode at ¢ divided by the number of cells sharing that clonal lineage
barcode at the current time. A pseudocount of 1 is added to allow for dropout.

In the absence of lineage tracing data, we estimate the number of descendants
using a modified approach from Schiebinger et al. Let n be the number of

| (2021)12:3222 | https://doi.org/10.1038/s41467-021-23518-w | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

descendants, b be the birth rate, d be the death rate, and g be growth. Then using a
birth-death process, for a given clone,

n = exp (dt* (b — d)) (5)

g:b— == 6)

To estimate the birth and death scores (s?,s?), we first calculate the mean of the
z-scores of genes annotated to birth (KEGG_CELL_CYCLE) and death
(KEGG_APOPTOSIS). We use these alternative annotations as many of the genes
in the original gene sets proposed by Schiebinger et al. were not present in the set of
variable genes in the Weinreb et al. datasets. Then, following Weinreb et al., we
smooth these scores over the cells using an iterative procedure:

Bsi + X (1=P)s (7)

N K,, keK,,
where s; is the score for a given cell i at the current iteration, s, are the scores for
the k = 20 neighbors of the cell i computed on euclidean distance in PCA space,
and y = 0.1. This smoothing procedure is performed over 5 iterations.
Then, the birth and death scores are fit to logistic functions to obtain the birth
and death rates,

L

b=Ly+—— 8
0 (1+ exp (—kys;) ®
L
d=L, 44— —— 9
0 (1 + exp (—kys,) ©)
To simplify the fitting procedure, we reasoned that we might expect —s,; to be
close to 1 to flatten outliers. Hence, we set k to be 0.001 = exp(—ks,,;,). Then

we set L, and Lbased on the expected minimum and maximum growth rates. For
the Weinreb et al. dataset, we set Ly = 0.3 and L = 1.2, and found the minimum
and maximum number of descendants to be similar to that observed in the clonal
lineage tracing data at days 4 and 6. We used the same procedure for estimating
growth rates on the Veres et al. dataset.

Model implementation and optimization. We use deep learning methods to
learn the parameters of the potential function W(x). Automatic differentiation
can be used to evaluate the drift function y(x) = —A¥(x) without having to
derive the analytical form. Then, by retaining the computation graph, losses can
be calculated with respect to the drift function while gradients are accumulated
with respect to the potential function. This allows for more flexible para-
meterizations of the drift function. For all models, we set dt and o to be 0.1, and
T to be le—6.

Optimization of W(x) was performed using the Adam optimizer with a batch
size of 1/10th the size of the training set. Fully connected 2-layer, 400-unit models
using softplus as the activation function was used as the architecture for all models.
This architecture was chosen using performance on the held-out recovery task on
the Weinreb et al. dataset (Supplementary Note, Figs. S1, S3). Models were pre-
trained as previously described by Hashimoto et al. by first optimizing only the
entropic regularizer via contrastive divergence using stochastic gradient descent
with a learning rate of 1le—9. Then, training proceeds at the learning rate described
below, with a scheduler that multiplied the learning rate by 0.9 every 100 iterations,
and using gradient clipping with a max norm of 0.1. The Wasserstein error is
approximated using a multi-scale Sinkhorn algorithm as implemented by the
GeomlLoss library (v0.2.3), with a scaling of 0.7 and a blur of 0.1. The GeomLoss
library allows for efficient, stable computation of gradients that bypasses naive
backpropagation®!.

All models were trained using a single NVIDIA Titan RTX GPU (24GB RAM).
All forward simulations, including perturbation simulations, were run on either a
single NVIDIA Titan RTX GPU (24GB RAM) or a single GeForce GTX 1080 Ti
(11GB RAM). Runtime estimates for training and simulations are provided
(Fig. S1f, g). Training runtimes were computed using two different individual
GPUs on dataset sizes ranging from 1000 to 130,000 cells and the range of training
times are ~13 min-1h. Training with GPU acceleration is necessary for training
times to be tractable, and is a one-time cost. For those without access to GPUs, we
recommend utilizing Amazon Web Services or Google Cloud GPU resources for
training, which should be very low-cost for training a PRESCIENT model.
Simulation runtimes were computed by measuring the time to run forward
simulations of random initializations of n = 400 for a fixed number of steps with 1,
10, 100, 1000, and 10,000 random initializations serially. Simulations can tractably
be generated using CPUs or GPUs.

All nearest-neighbors calculations (for eg. for cell-type classification) were
calculated using the approximate nearest-neighbors library annoy (https://github.
com/spotify/annoy).

Visualization of potential landscapes. The potential landscape learned by the
model was visualized by evaluating the potential on a uniform grid in UMAP space.

The drift function is visualized as unit arrows, where the point of origin is given by
the same grid and the vector is given by the drift evaluated at the point of origin.

Preprocessing of existing scRNA-seq datasets. Preprocessed data for the
Weinreb et al. experiments was downloaded from https://github.com/AllonKlein
Lab/paper-data/blob/master/Lineage_tracing_on_transcriptional_landscapes_
links_state_to_fate_during_differentiation/README.md (commit: d8f0969)3. The
set of highly variable genes was determined as by Weinreb et al. by first filtering for
highly variable genes, and then excluding genes correlated with cell cycle (SPRING,
commit: a37bbd0). Normalized gene expression for variable genes was scaled and
projected to 50 dimensions via PCA, which was then used as input to the modeling
framework. For experiments evaluating the model on the held-out time point,
preprocessing was fit to only the training set consisting of days 2 and 6, and then
used to transform all data including day 4. For all other experiments, preprocessing
was fit to all data across time points. All visualizations using umap were fit with 30
neighbors.

Data for the Veres et al. experiments was downloaded from GEO
(GSE114412)%2. Raw counts were first pre-processed using the standard Seurat
pipeline (v3.1.5)°2 to obtain normalized counts. For feature selection, genes were
first filtered for those observed in at least 10 cells. Then, the ‘FindVariableFeatures*
function was used to identify the top 2500 most variable genes. Scaled gene
expression was then computed as for the Weinreb et al. dataset. For projection into
PCA space (30 PCs), the variable gene set was filtered again to remove genes
correlated with TOP2A (r> 0.15), as described by Veres et al. This was used as
input to the modeling framework, and for visualization via UMAP. For estimation
of proliferation rates, the full variable gene set was used (Fig. S3a, b, e, f).

Experiments on recovery of a held-out time point. For comparison to
Waddington-OT (WOT)8, which uses held-out recovery (interpolation) as a
benchmark, we fit models via pre-training on day 6 and then trained on days 2 and
6 for evaluation on day 4. Models were fit using only the subset of data for which
lineage tracing data was available to enable comparison of models incorporating
empirically derived cell proliferation rates. All models were trained for 2500 epochs.

To evaluate the models at a given time point, 10,000 cells were sampled at day 2
with replacement according to the expected cell proliferation rate. Then, the model
was used to sample a single trajectory for each of the sampled cells until the time
point under evaluation. The Wasserstein distance was then computed between the
simulated cell population and the empirically observed cell population. Models
were evaluated at day 4 (held-out, testing) and day 6 (training) every 100 training
epochs. The testing distance is reported for the epoch with the lowest training error
(Fig. Slc).

To compute the linear interpolation baseline, we used Waddington-OT (WOT),
which uses a similar optimal transport formulation but lacks an explicit parametric
form8. WOT enables recovery of a held-out time point via linear interpolation
using transport maps built between sets of cells in early and late time points. To
run WOT, we used python code available on GitHub (https://github.com/
broadinstitute/wot). The input to WOT is a set of time-point labeled gene
expression profiles and growth rates and the output is an optimal transport map.
The optimal transport map was built with the full set of cells with lineage barcodes
from day 2 (n = 4638 cells) to day 6 (n = 29,679 cells). The empirical proliferation
rates derived from clonal expansion of this set of cells from day 2 to 6 were
provided to WOT and three growth iterations were permitted. The parameters for
building the optimal transport map were as follows: \; =1, \, =50, e =1, 1=
10,000. With the transport map built between day 2 and day 6, 10,000 cells at day 4
were interpolated using the interpolate_with_ot() function from WOT. This maps
a point at the midpoint of each of the pairs in the optimal transport map. The
testing distance of these interpolated points from the observed day 4 cells was
computed as reported above.

Predicting clonal fate bias. To predict clonal fate bias, models were first trained
on data from all three time points. Models were fit on three sets of data; (a) the
subset of cells for which lineage tracing data is available, (b) the subset of cells for
which no lineage tracing data is available, and (c) all cells. Models were trained for
2500 epochs and evaluated every 500 epochs. Then, cells were simulated until the
final time point via the first-order discretization as parameterized by the

trained model.

We evaluated the clonal fate bias metric described by Weinreb et al. on the test
set as defined in their paper. The ANN classifier that we used to classify cells as
Neutrophil, Monocyte or other at the final time point was fit with 10 trees, 20
neighbors and using Euclidean distance in PCA space (50 pcs). The model was
first fit on a random 80% split of the data. When evaluated on the held-out 20%
test split, the model achieved a macro-average f1-score of 0.98. Splits were
stratified by cell type. The model was then re-fit to the full dataset. After
classification, the clonal fate bias was then computed as the number of neutrophils
divided by the total number of monocytes and neutrophils. Since the model did
not always predict any cell within the 2000 sampled trajectories to be a monocyte
or neutrophil, we also added a pseudocount of 1. In those cases, clonal fate bias
would hence be 0.5.
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We observed variation in predictions made by models at each epoch (Fig. S2a).
Since no validation set is available to formulate a stopping criterion, we chose to
ensemble predictions over the last 5 epochs evaluated (i.e., epoch 2100, 2200, 2300,
2400, 2500) by taking the mean across the estimated clonal fate bias across those
epochs.

In most cases, performance metrics for WOT, PBA, and FateID were calculated
using the predictions already pre-computed and made available by Weinreb et al.3.

Introducing and evaluating in silico perturbations. Perturbation experiments
were performed similarly to the clonal fate bias experiments, except using per-
turbed cells as input to the first-order discretization. Generally, perturbations were
introduced in silico by setting the scaled normalized expression of target genes to
z-score values less than 0 for knockdowns and greater than 0 for overexpression.
The resulting perturbed gene expression profile was then transformed via PCA
into lower-dimensional space for input to forward simulation of the

trained model.

For the in vitro hematopoiesis dataset?, the trained PRESCIENT model used for
predicting the effect of in silico perturbations to this dataset was seed 1 and epoch
2500 of a model trained with a neural network architecture of 2 layers of 400 units.
For all experiments, 200 undifferentiated cells (annotations from Weinreb et al.)
were randomly sampled from day 2 weighted by KEGG-derived growth rate
estimates, resulting in biased sampling for actively proliferative cells. These
sampled cells were simulated forward 40 steps with a dt of 0.1 to the final time
point (day 6). This process was repeated with random initializations of both
unperturbed cells and perturbed cells. Cells at the final time point were then
classified using the same ANN classifier used for the clonal fate bias experiments.
Relevant TFs for the target cell fate were identified by searching the literature for
studies that had experimentally verified sets of TFs involved in early cell fate
decisions by progenitor populations and the highly variable feature set was filtered
for these TFs. Perturbations were focused on monocytes and neutrophils due to the
availability of experimentally correlated or confirmed perturbations for these two
cell types and the focus of neutrophil/monocyte fate in the Weinreb et al. lineage
tracing data. Neutrophil-associated transcription factors were Lmo4, Cebpe, Mxdl,
and Dachl. Monocyte-associated transcription factors were Irf8, Irf5, Kif4, and
Nr4al. First, the effect of perturbations to individual genes were tested by
perturbing each target gene with a z-score of —2.5 for knockdown and 5 for
overexpression. To test if there was a significant shift in neutrophil/monocyte cell
fractions at the final time point, Welch’s independent two-sided t-tests were
performed between unperturbed simulations and perturbed simulations for each
target TF. Next, the effect of perturbational magnitude was evaluated by
introducing perturbations of —2.5, —1, —0.5, 2, 5, and 10 to each target gene
individually. The same statistical test was performed in comparison to unperturbed
simulations. Next, we tested the effect of ensembled perturbations to cell fate
outcome by perturbing sets of TFs with z-scores of —2.5, —1, —0.5, 2, 5, and 10. As
a control, the ensembled perturbation was repeated with following randomly
selected non-TF control genes: Gchl, Pfn2, Dhrs2, Trafl, Lrrk2, Lgmn, 1113, and
Sgk1. The same statistical test was performed in comparison to unperturbed
simulations.

For the in vitro beta-cell differentiation dataset?2, we trained PRESCIENT
models with a learning rate of 0.001 to prevent model divergence. All other
parameters were as in the models trained for clonal fate bias prediction in the
Weinreb et al. dataset. The trained PRESCIENT model used for predicting the
effect of in silico perturbations to this dataset was seed 1 and epoch 1500 of a model
trained with 2 layers of 400 units. The 400-unit model was chosen as it achieved a
lower training distance, and epoch 1500 was chosen based on the training curves to
prevent overfitting, since we observed that training performance had appeared to
have plateaued by that epoch (Fig. S3¢, d). As with the Weinreb et al. dataset, an
ANN classifier with 10 trees, 20 neighbors, and using Euclidean distance in PCA
space (30 PCs) was trained to predict cell type on a training set of 80%. On a
randomly held-out test set of 20%, the model achieved a macro-average f1 score of
0.939 when discriminating between sc-a, sc-f, sc-EC and other cells. The ANN
classifier was then re-fit on the full dataset. For time point sampling experiments,
200 cells were sampled from each time point weighted by KEGG-derived growth
rates, based on metadata from Veres et al. Cells were iteratively sampled from days
0-6 and simulated forward with a dt (step size parameter of 0.1) to the final time
point (day 7) under both unperturbed and perturbed conditions. Perturbations
(z=—-2.5, —1, —0.5, 2, 5, 10) were introduced to sampled cells from each
timepoint. To test if there was a significant shift in neutrophil/monocyte cell
fractions at the final time point, Welch’s independent two-sided t-tests were
performed between unperturbed simulations and perturbed simulations for each
target TF. For cell-type subpopulation experiments, 200 cells were randomly
sampled from the SOX2+ progenitor, NKX6.1+4 progenitor, and NEUROGS3 early/
mid/late, weighted by KEGG-derived growth rates. For the screen of 200+ TFs,
200 cells were first simulated without perturbations and the same cells were
simulated with perturbations (z = 5) of each TF. This was repeated with 10 random
initializations. For each TF, to test for a significant change in final cell-type
fractions, two-sided paired ¢-tests were conducted between the unperturbed and
perturbed simulations. To show that TF expression at static timepoints is not
necessarily indicative of fate bias, a control analysis was completed on the Veres
et al. 2019 dataset by computing the log-fold change of each TF between cell types

of interest at day 7 and plotted against the log-fold change in cell fraction predicted
by PRESCIENT perturbational analysis (Fig. S4d).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data for the Weinreb et al. experiments was downloaded from https://github.com/
AllonKleinLab/paper-data/blob/master/Lineage_tracing_on_transcriptional_land
scapes_links_state_to_fate_during_differentiation/README.md (commit: d8f0969)3.
Data for the Veres et al. experiments was downloaded from GEO (GSE114412)22.
Trained models from this study are available at https://zenodo.org/record/4687963#.
YHeXOBNKiU9 or https://www.github.com/gifford-lab/prescient-analysis.

Code availability

An open-source implementation®3, documentation, and tutorial vignettes of
PRESCIENT is available at https://cgs.csail. mit.edu/prescient/. Source code can be found
at https://github.com/gifford-lab/prescient. Notebooks to reproduce figures and analyses
are available at https://github.com/gifford-lab/prescient-analysis.
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