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Enhancing CRISPR-Cas9 gRNA efficiency
prediction by data integration and deep learning
Xi Xiang1,2,3,4,12, Giulia I. Corsi 5,12, Christian Anthon5,12, Kunli Qu1,6,12, Xiaoguang Pan1, Xue Liang1,6,

Peng Han1,6, Zhanying Dong1, Lijun Liu1, Jiayan Zhong7, Tao Ma7, Jinbao Wang7, Xiuqing Zhang3, Hui Jiang7,

Fengping Xu1,3, Xin Liu 3, Xun Xu 3,8, Jian Wang3, Huanming Yang3,9, Lars Bolund1,3,4, George M. Church10,

Lin Lin 1,4,11, Jan Gorodkin5,13✉ & Yonglun Luo 1,3,4,11,13✉

The design of CRISPR gRNAs requires accurate on-target efficiency predictions, which

demand high-quality gRNA activity data and efficient modeling. To advance, we here report

on the generation of on-target gRNA activity data for 10,592 SpCas9 gRNAs. Integrating

these with complementary published data, we train a deep learning model, CRISPRon, on

23,902 gRNAs. Compared to existing tools, CRISPRon exhibits significantly higher prediction

performances on four test datasets not overlapping with training data used for the devel-

opment of these tools. Furthermore, we present an interactive gRNA design webserver based

on the CRISPRon standalone software, both available via https://rth.dk/resources/crispr/.

CRISPRon advances CRISPR applications by providing more accurate gRNA efficiency pre-

dictions than the existing tools.
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C lustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-associated protein 9 (Cas9) has been success-
fully harnessed for programmable RNA-guided genome

editing in prokaryotes, humans and many other living
organisms1–5. A successful CRISPR gene editing application
depends greatly on the selection of highly efficient gRNAs. Several
machine and deep learning methods have been developed in the
past decade to predict on-target gRNA activity6–16. However,
some of these models exhibit discrepancies in the parameters
selected for model validation, and in the data used for testing,
which directly impact on the performances reported for such
tools (Supplementary Notes 1-2). For instance, the prediction
performances of the recent DeepSpCas9variants model7 appear to
be substantially higher when both canonical and noncanonical
PAMs are employed for testing compared to an evaluation based
solely on canonical PAMs, which are preferred for gRNA designs
(Spearman’s R= 0.94 decreases to R= 0.70, Supplementary
Fig. 1). While the application of more advanced machine learning
strategies has relatively modest impact on gRNA activity pre-
diction performances, a significant improvement can be achieved
by increasing the size and the quality of the training data (Sup-
plementary Note 1).

Recent models trained on large-scale data still lack full
saturation of their learning curve9,14, thus leaving space for fur-
ther data-driven improvement. At present, the amount of gRNA
efficiency data suitable to develop machine learning models
remains scarce, mostly due to the low homogeneity between
studies in terms of experimental design and cleavage evaluation
methodologies, which can vary from loss of function, e.g., Xu
et al. (2015), Hart et al. (2015), and Doench et al.
(2014–2016)14,17–19, to indels quantification, e.g., Chari et al.
(2015), Wang et al. (2019), and Kim et al. (2019–2020)7–9,20,21. It
is thus essential to produce additional data from gRNA activity
compatible with previous studies to develop more accurate pre-
diction methods. To overcome the scarcity of experimental on-
target efficiency data previous studies have employed techniques
such as data augmentation, widely known in the field of image
recognition, creating new input–output pairs by introducing
minor alterations in the input sequence of experimentally vali-
dated gRNAs while considering their output, the efficiency,
unaffected11. However, while two mirrored images are encoded
by highly different input matrices but maintain the same original
meaning, augmented gRNA data are highly redundant and do not
guarantee consistency in terms of cleavage efficiency. Thus, data
quantity remains the major bottleneck for improving
predictors9,14 (see also Supplementary Note 1).

Here, we show that lentiviral surrogate vectors can faithfully
capture gRNA efficiencies at endogenous genomic loci. Using this
approach, we generate on-target gRNA activity data for 10,592
SpCas9 gRNAs. After integrating them with complementary
published data (resulting in activity data for a total of 23,902
gRNAs), we develop a deep learning prediction model, CRIS-
PRon, which exhibits significantly higher prediction perfor-
mances on independent test datasets compared to existing tools.
The analysis of features governing gRNA efficiency shows that the
gRNA-DNA binding energy ΔGB is a major contributor in pre-
dicting the on-target activity of gRNAs. Furthermore, we develop
an interactive gRNA design webserver based on the CRISPRon
standalone software, both available via https://rth.dk/resources/
crispr/. The software may also be downloaded from GitHub on
https://github.com/RTH-tools/crispron/22.

Results and discussion
Massively parallel quantification of gRNA efficiency in cells. To
generate further high-quality CRISPR on-target gRNA activity

data, we established a high-throughput approach to measure
gRNA activity in cells (Fig. 1a) based on a barcoded gRNA oli-
gonucleotide pool strategy as described previously23,24. Several
optimizations of the original methods23,24 were introduced to
simplify and streamline vector cloning, lentiviral packaging and
enrichment of gene edited cells (see Supplementary Note 3,
Supplementary Fig. 2). To validate if the indel frequency intro-
duced at the 37 bp surrogate target site could recapitulate that at
the corresponding endogenous sites, we analyzed indel frequency
at 16 surrogate sites and their corresponding endogenous geno-
mic loci in HEK293T cells by deep sequencing. We obtained a
fine correlation between the surrogate and endogenous sites in
terms of indel frequencies and profiles (Supplementary Fig. 3,
Spearman’s R= 0.72, p-value= 0.0016), in agreement with pre-
vious findings8,9,23,24.

We next generated a large dataset of high-quality CRISPR
gRNA activity data in cells using this optimized approach. A pool
of 12,000 gRNA oligos, targeting 3834 human protein-coding
genes (Supplementary Data 1, Supplementary Note 4), were
array-synthesized and selected to avoid large overlap with existing
datasets. Targeted amplicon sequencing (depth > 1000) of the
surrogate oligo pool, surrogate gRNA plasmid library and
transduced wild-type HEK293T cells (multiplexity of infection
(MOI) of 0.3) revealed that over 99% of the designed gRNAs were
present in the 12 K gRNA plasmid pool and transduced cells
(Supplementary Figs. 4-5, source data). We transduced the
SpCas9-expressing and wild-type HEK293T cells with the gRNA
library with a MOI of 0.3 and a transduction coverage of ~4000
cells per gRNA. A pipeline was established to analyze CRISPR-
induced indels and remove sequence variants introduced by
oligo-synthesis, PCRs, and deep sequencing, as well as low
quantity sites (less than 200 reads, see Methods). Indel
frequencies in the cells 2, 8, and 10 days after transduction were
analyzed by targeted deep sequencing (Supplementary Fig. 6).
Following increased editing time and enrichment of edited cells
(puromycin selection), indel frequency rose significantly in cells
from day 2 to day 8–10 (Fig. 1b). Overexpression of SpCas9 by
doxycycline (Dox) addition leads to a skewed distribution of
gRNA efficiency (Supplementary Fig. 7, Supplementary Note 4),
thus gRNA efficiencies from Dox-treated SpCas9 cells were
excluded for gRNA efficiency prediction model establishment.
The indel frequency (on-target activity) of gRNAs from day 8 and
10 were well correlated (Fig. 1c, Spearman’s R= 0.91). Corrobor-
ating previous findings, the indel types introduced by SpCas9
comprise mainly small deletions and 1 bp insertion (Fig. 1d,
Supplementary Figs. 7-8) and compared to day 2 the indel types
from day 8–10 are better correlated with the indel profiles
predicted by inDelphi24 (Fig. 1e, Supplementary Fig. 7-8,
Supplementary Note 5), a machine learning algorithm for
predicting CRISPR-induced indels. Our data also revealed that
the inserted nucleotide of the most frequent indel type (1 bp
insertion) is most frequently the same as N17 nucleotide of the
protospacer (4 bp upstream of the PAM) (Fig. 1f, Supplementary
Fig. 7, Supplementary Note 5). The average gRNA activity from
day 8 and 10 was used for subsequent analyses and model
establishment. As a result, we obtained high-quality gRNA
activity data for 10,592 gRNAs, of which 10,313 gRNAs are
unique for this study (Supplementary Fig. 9, Supplementary
Data 1). To independently validate the CRISPR gRNA activity
captured by the lentiviral surrogate vector library, we compared
gRNA efficiencies commonly measured in our study to those of
Kim et al. (2019) and Wang et al. (2019)8,9 (Fig. 1g). We observed
a good correlation (Spearman’s R= 0.67 to both) between gRNA
activities measured by our study and others, higher compared to
the agreement between these two existing protocols (Spearman’s
R= 0.52). Our gRNA efficiency data match characteristics of
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previous findings, with a preferential range of GC content
between 40 and 90%25 and stable gRNA structures being
unfavorable, in particular for minimum folding energies (MFE)
<−7.5 kcal/mol26 (Supplementary Fig. 10). We conclude that the
high-quality gRNA activity dataset of 10,592 gRNAs measured in

cells by our study represents a valuable source to further improve
the quality of CRISPR-gRNA designs.

Enhanced gRNA efficiency prediction. We developed a deep
learning model, which combines sequence and thermodynamic
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Fig. 1 High-throughput quantification of gRNA efficiency in cells. a Schematic illustration of the lentiviral surrogate vector, oligo pool synthesis, PCR
amplification, golden-gate assembly, lentivirus packaging, and transduction. b gRNA editing efficiency of all surrogate sites measured by targeted amplicon
sequencing. Results are shown for HEK293T-SpCas9 cells at 2, 8, and 10 days after transduction. c Correlation between gRNA editing efficiency at 8 and
10 days after transduction. d Indel profiles (1–30 bp deletion, 1–10 bp insertion) for all surrogate sites introduced by SpCas9 in HEK293T-SpCas9 cells at 2,
8, and 10 days post transduction. e Correlation between the indel profiles measured in cells and those predicted by inDelphi. Data are presented as violin
plot with median and quartiles. f Dot plot of 1-bp insertion indel frequency (mean ± 95% confidence interval), stratified by the nucleotide at N17 position of
the protospacer and the type of nucleotide inserted (see also Supplementary Fig. 7). g Correlation between gRNA editing efficiencies measured in this and
other major studies for common gRNA+ PAM (23 nt) examples, also displayed in a Venn diagram.
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properties automatically extracted out of a 30 nt DNA input
sequence constituted of the protospacer, the PAM and neigh-
boring sequences for precise gRNAs activity predictions (Fig. 2a).
In addition to the sequence composition, the model embeds the
gRNA-target-DNA binding energy ΔGB, described by the energy
model used in CRISPRoff27, which encapsulates the gRNA-DNA
hybridization free energy, and the DNA-DNA opening and RNA
unfolding free energy penalties. ΔGB was observed to be a key
feature for predicting on-target gRNA efficiency (see Supple-
mentary Note 6 and feature analysis below). We first trained deep
learning models solely on our dataset (Supplementary Table 1)
and compared their predictions with those of existing tools on
both internal and external independent test datasets. To do that,
our CRISPR gRNA activity data were carefully partitioned into
six subsets ensuring clustering of the closest gRNA sequences
within the same partition (see Methods). The first model, pre-
CRISPRon_v0, was trained with a 5-fold cross-validation while
using a 6th partition as an internal independent test set solely for
measuring the performance. The pre-CRISPRon_v0 and
DeepSpCas9 models displayed remarkable and comparable gen-
eralization ability when tested on data from the study of one
another (Spearman’s R > 0.70 for both), confirming our data and
Kim et al. (2019) data as highly compatible (Supplementary
Data 2). The second model (pre-CRISPRon_v1, see Supplemen-
tary Table 1 and Supplementary Data 2) was constructed to
evaluate on external independent test sets by training on all six
partitions with a 6-fold cross-validation. This model displayed
performances similar to those of existing tools.

Since pre-CRISPRon_v0 and DeepSpCas9 held comparable
performances when trained on their respective datasets, we fused
our data with that of Kim et al. (2019) using a linear rescaling
based on the 30mer sequences found in both datasets, resulting in
a dataset of 23,902 gRNAs (30mer, Supplementary Fig. 9). We did
not fuse with the datasets measuring efficiency as indel frequency
of Wang et al. (2019) and Kim et al. (2020), because of their
scarce coverage of the general gRNA activity landscape
(Supplementary Note 2 and 7). After dividing the joint dataset
of our study and Kim et al. (2019) into six partitions as explained
above, we first developed CRISPRon_v0 with a 5-fold cross-
validation to evaluate the model on the internal independent test
set. The CRISPRon_v0 increased the performance over pre-
CRISPRon_v0 on the Kim et al. (2019) dataset, while only a
minor loss (<0.025 in Spearman’s R) was observed on our data
(Supplementary Table 1 and Supplementary Data 2). On the
internal independent test set, CRISPRon_v0 exceeded the
performance (Spearman’s R= 0.80) of notable predictors, such
as Azimuth (R= 0.56), DeepSpCas9 (R= 0.73), DeepHF (R=
0.74), and DeepSpCas9variants (Fig. 2b, Supplementary Fig. 11).
A final model, CRISPRon_v1 (hereafter called CRISPRon, see
Supplementary Table 1 and Supplementary Data 2), was then
trained on the full combined dataset with a 6-fold cross-
validation. External independent test sets with more than 1000
gRNAs (Fig. 2b) were employed for testing while again ensuring
no overlap between what the respective models were trained on
(see Methods). On these external independent test sets CRISPRon
achieved the highest prediction performance (R ≈ [0.46, 0.68])

Fig. 2 The CRISPRon model and generalization ability on independent test sets. a Schematic representation of the CRISPRon input DNA sequence and
prediction algorithm. The inputs to the deep learning network are the one-hot encoded 30mer and the binding energy (ΔGB). Note that only the filtering
(convolutional) layers and the 3 fully connected layers are shown explicitly and that the thin vertical bars are the output of one layer, which serves as input
for the next layer. b Performance comparison between CRISPRon and other existing models on independent test sets larger than 1000 gRNAs. N.a. not
available (all gRNAs were regarded as training data due to lack of explicit train-test separation). CRISPRon_v0 was employed for testing on the internal
independent test set (“Our merged set”, including gRNAs from both our study and Kim et al. (2019)). CRISPRon_v1, or simply CRISPRon, was used for the
external independent test sets (for a description of the CRISPRon versions, see Supplementary Table 1). The two-sided Steiger’s test P-values of all
comparisons are reported in Supplementary Data 2.
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compared to Azimuth (R ≈ [0.36, 0.45]), DeepSpCas9variants
(R ≈ [0.25, 0.31]), and to the so far top-performing models
DeepSpCas9 (R ≈ [0.44, 0.52]) and DeepHF (R ≈ [0.42, 0.46]).
Additional performance evaluations on datasets with less than
1000 gRNAs confirmed CRISPRon as top-performing model
(Supplementary Fig. 11, Supplementary Data 2). A web interface
for gRNA on-target efficiency predictions with the CRISPRon
model is made available via https://rth.dk/resources/crispr/. The
webserver interface utilizes the IGV javascript plugin available
from github28.

Features important for predicting gRNA efficiency. To char-
acterize the gRNA features with the highest impact on gRNA
efficiency predictions we trained a gradient boosting regression
tree (GBRT) model based on the combined data from our study
and Kim et al. (2019) and applied two methods for feature ana-
lysis: the Shapley Additive exPlanations (SHAP)29 and the Gini
importance30 (Supplementary Fig. 12, full details in Supplemen-
tary Note 6). Both methods highlight that thermodynamic
properties, above all ΔGB, give a considerable contribution to the
learning process. The most notable sequence-composition fea-
tures include the two nucleotides proximal to the PAM, where G
and A are favored over C and T and the presence of the dinu-
cleotide TT, which relates with weak binding free energies and is
unfavorable.

Limitations to the study. A few limitations of using the lentiviral
surrogate vectors to capture CRISPR gRNA efficiency are high-
lighted for the need of future improvements. The DSBs generated
by CRISPR-Cas9 are predominantly repaired by the non-
homologous end joining (NHEJ) and microhomology-mediated
end joining (MMEJ) pathways, which leads to the introduction of
small indels at the DSB site. However, large deletions or chro-
mosomal rearrangements have also been reported in CRISPR
editing as outcomes of repaired mediated by e.g., homology-
directed repair (HDR) or single-strand annealing (SSA) in
cells31,32. The gRNA efficiency quantification approach in this
study is based on a 37 bp surrogate target site. Thus, SpCas9
editing outcomes such as large deletions or chromosomal rear-
rangements are not captured by our method. Earlier, we have
discovered that chromatin accessibility at the editing sites affects
CRISPR gene editing efficiency26. Since the 12 K lentivirus library
was randomly inserted in the genome of the targeted cells, the
chromatin accessibility state of the surrogate site might be dif-
ferent from the endogenous target site.

Concluding remark. In summary, we report on the generation of
on-target gRNA activity data for 10,592 SpCas9 gRNAs and the
development of a deep learning model, CRISPRon, which exhibits
more accurate gRNA efficiency predictions than other
existing tools.

Methods
DNA vectors. The 3rd generation lentiviral vector backbone was generated by
synthesis (Gene Universal Inc) and cloning. The human codon-optimized SpCas9
expression vector was based on a PiggyBac transposon vector, carrying a hygro-
mycin selection cassette. All DNA vectors have been Sanger sequenced and can be
acquired from the corresponding author YL’s lab. The lentiviral vector generated
by this study for cloning surrogate oligos has been made available through
Addgene (plasmid # 170459). A detail protocol is also made available at the shared
protocols platform33.

Design of the 12 K surrogate oligo pool. Each oligo consists of the BsmBI
recognition site “cgtctc” with 4 bp specific nucleotides “acca” upstream, following
the GGA cloning linker “aCACC”, one bp “g” for initiating transcription from U6
promoter, 20 bp gRNA sequences of “gN20”, 82 bp gRNA scaffold sequence, 37 bp
surrogate target sequences (10 bp upstream sequences, 20 bp protospacer and 3 bp

PAM sequences, 4 bp downstream sequence), the downstream linker “GTTTg”,
and another BsmBI-binding site and its downstream flanking sequences “acgg”.

For the 12 K oligo pool was designed as below: (1) Select ~7000 genes from the
drugable gene database (http://dgidb.org)34; (2) Discard all the exons which the
DNA length is less than 23 bp with filtering; (3) Select the first three coding exons
of each gene. If the exons number is less than 3, retain all the exons; (4) Extract all
the possible gRNA sequences (including the PAM sequence “NGG”) in the filtered
exons sequence; (5) Look up off-target sites of each gRNA with FlashFry (v 1.80)35

and discard gRNAs with potential off-target of 0–3 bp mismatches in human
genome hg19 and rank each gRNA based on the number of off-target site in an
ascending order; (6) Map and extract the 10 bp upstream and 4 bp downstream
flanking sequence of each selected gRNA, construct the surrogate target sequence
as 10 bp upstream+ 23 bp gRNA (include PAM)+ 4 bp downstream= 37 bp;
(7) Filter out surrogate sites with BsmBI recognition site, because of GGA cloning;
(8) Compare all the selected gRNAs with the database of CRISPR-iSTOP36; (9)
Construct the full-length sequence of each synthetic oligo, which is 170 bp; In total,
the 12 K oligos target 3832 genes. The 12 K oligo pools were synthesized in
Genscript® (Nanjing, China), and sequences are given in Supplementary Data 1.

12 K surrogate plasmid library preparation. First, the 12 K oligos were cleaved
and harvested from the microarray and diluted to 1 ng/µl. Next, we performed
surrogate PCR1 (Supplementary Data 1). The PCR reaction was carried out using
PrimeSTAR HS DNA Polymerase (Takara, Japan) following the manufacturer’s
instruction. Briefly, each PCR reaction contained 1 µl oligo template, 0.2 µl Pri-
meSTAR polymerase, 1.6 µl dNTP mixture, 4 µl PrimeSTAR buffer, 1 µl forward
primer (10 uM), and 1 µl reverse primer (10 uM) and ddH2O to a final volume
of 20 µl.

The thermocycle program was 98 °C 2min, (98 °C/10 s, 55 °C/10 s, 72 °C/30 s)
with 21 cycles, then 72 °C for 7 min and 4 °C hold. To avoid amplification bias of
oligos introduced by PCR, we conducted gradient thermocycles and performed
PCR products gray-intensity analysis to determine the optimal PCR cycles of 21.
The best thermocycles should be in the middle of an amplification curve. In this
study, the PCR cycle as 21 for oligos amplification. Instead, for PCR amplification
of surrogate sites from cells integrated with lentivirus, the PCR cycle was 25. The
final PCR product length was 184 bp. We performed 72 parallel PCR reactions for
12 K oligos amplification, then these PCR products were pooled, and gel purified by
2% agarose gel. One microgram purified PCR product were quantified with PCR-
free next generation sequencing (MGI Tech).

The PCR products of 12 K oligos were then used for Golden Gate Assembly
(GGA) to generate the 12 K plasmids library. For each GGA reaction, the reaction
mixture contained 100 ng lentiviral backbone vector, 10 ng purified 12 K oligos-
PCR products, 1 µl T4 ligase (NEB), 2 µl T4 ligase buffer (NEB), 1 µl BsmBI
restriction enzyme (ThermoFisher Scientific, FastDigestion) and ddH2O to a final
volume of 20 µl. The GGA reactions were performed at 37 °C 5min and 22 °C
10 min for 10 cycles, then 37 °C 30 min and 75 °C 15min. Thirty six parallel GGA
reactions were performed and the ligation products were pooled into one tube.

Transformation was then carried out using chemically competent DH5a cells.
For each reaction, 10 µl GGA ligation product was transformed in to 50 µl
competent cells and all the transformed cells were spread on one LB plate (15 cm
dish in diameter) with Xgal, IPTG and Amp selection. High ligation efficiency was
determined by the presence of very few blue colonies (also see Supplementary
Fig. 2). To ensure that there is sufficient coverage of each gRNA of the 12 K library,
42 parallel transformations were performed, and all the bacterial colonies were
scraped off and pooled together for plasmids midi-prep. For NGS-based quality
quantification of the library coverage, midi-prep plasmids were used as DNA
templates for surrogate PCR2, followed by gel purification and NGS sequencing.
The PCR primers for surrogate PCR2 are showed in Supplementary Data 1.

12 K lentivirus packaging. HEK293T cells were used for lentivirus packaging. All
cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (LONZA)
supplemented with 10 % fetal bovine serum (FBS) (Gibco), 1% GlutaMAX (Gibco),
and penicillin/streptomycin (100 units penicillin and 0.1 mg streptomycin/mL) in a
37 °C incubator with 5% CO2 atmosphere and maximum humidity. Cells were
passaged every 2–3 days when the confluence was ~80–90%.

For lentivirus packaging: (Day 1) Wild-type HEK293T cells were seeded to a
10 cm culture dish, 4 × 106 cells per dish (10 dishes in total); (Day 2) Transfection.
Briefly, we refreshed the medium with 7 mL fresh culture medium to 1 h before
transfection (gently, as the HEK293T cells are easy to be detached from the bottom
of dish); Next, we performed transfection with the PEI 40000 transfection method.
For 10 cm dish transfection, the DNA/PEI mixture contains 13 µg lentiviral 12 K
plasmid DNA, 3 µg pRSV-REV, 3.75 µg pMD.2 G, 13 µg pMDGP-Lg/p-RRE,
100 µg PEI 40000 solution (1 µg/µl in sterilized ddH2O), and supplemented by
serum-free optiMEM without phenol red (Invitrogen) to a final volume of 1 mL.
The transfection mixture was pipetted up and down several times gently, then kept
at room temperature (RT) for 20 min, then added into cells in a dropwise manner
and mix by swirling gently. (Day 3) Changed to fresh medium; (Day 4) Harvest
and filter all the culture medium of the 10 cm dish through a 0.45 µm filter, pool
the filtered media into one bottle. Each 10 cm dish generated ~7–8 mL lentivirus
crude. Add polybrene solution (Sigma–Aldrich) into the crude virus to a final

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23576-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3238 | https://doi.org/10.1038/s41467-021-23576-0 | www.nature.com/naturecommunications 5

https://rth.dk/resources/crispr/
http://dgidb.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


concentration of 8 µg/mL. Aliquot the crude virus into 15 mL tubes (5 mL/tube)
and store in −80 °C freezer.

Lentivirus titer quantification by flow cytometry (FCM). As the 12 K lentiviral
vector expresses an EGFP gene, the functional titer of our lentivirus prep was
assayed by FCM. Briefly, (1) split and seed HEK293T cells to 24-well plate on day
1, 5 × 104 cells per well. Generally, 18 wells were used to perform the titter
detection, a gradient volume of the crude lentivirus was added into the cells and
each volume was tested by replicates. In this experiment, the crude virus gradients
were 10, 20, 40, 80, and 160 µl for each well (Supplementary Fig. 5). Another two
wells of cells were used for cell counting before transduction; (2) Conduct lentivirus
transduction when cells reach up to 60–80% confluence on day 2. Before trans-
duction, detach the last two wells of cells using 0.05% EDTA-Trypsin to determine
the total number of cells in one well (Ninitial). Then change the remaining wells with
fresh culture medium containing 8 µg/mL polybrene, then add the gradient volume
of crude virus into each well and swirling gently to mix; (3) On day 3, change to
fresh medium without polybrene; (4) On day 4, harvest all the cells and wash them
twice in PBS. Fix the cells in 4% formalin solution at RT for 20 min, then spin
down the cell pellet at 500 × g for 5 min. Discard the supernatant and re-suspend
the cell pellet carefully in 600 µl PBS, and conduct FCM analysis immediately. FCM
was performed using a BD LSRFortessaTM cell analyzer with at least 30,000 events
collected for each sample in replicates.

The FCM output data was analyzed by the software Flowjo vX.0.7. Percentage
of GFP-positive cells was calculated as: Y%=NGFP-positive cells/Ntotal cells × 100%.
Calculate the GFP percentage of all samples. For accurate titter determination,
there should be a linear relationship between the GFP-positive percentages and
crude volume. The titter (Transducing Units (TU/mL) calculation according to this
formula: TU/mL= (Ninitial × Y% × 1000)/V. V represents the crude volume (µl)
used for initial transduction.

Generation of SpCas9-expressing stable cell lines. SpCas9-expressing
HEK293T (HEK293T-SpCas9) cells were generated by a PiggyBac transposon
system. HEK293T cells were transfected with pPB-TRE-spCas9-Hygromycin vector
and pCMV-hybase with a 9:1 ratio. Briefly, 1 × 105 HEK293T cells were seeded in
24-well plate and transfections were conducted 24 h later using lipofectamine 2000
reagent following the manufacturer’s instruction. Briefly, 450 ng pPB-TRE-spCas9-
Hygromycin vectors and 50 ng pCMV-hybase were mixed in 25 µl optiMEM (tube
A), then 1.5 µl lipofectamine 2000 reagent was added in another 25 µl optiMEM
and mix gently (tube B). Incubate tube A and B at RT for 5 min, then add solution
A into B gently and allow the mixture incubating at RT for 15 min. Add the AB
mixture into cells evenly in a dropwise manner. Cells transfected with pUC19 were
acted as negative control. Culture medium was changed to selection medium with
50 µg/ml hygromycin 48 h after transfection. Completion of selection took
~5–7 days until the negative cells were all dead in the untransfected cells. The cells
were allowed to grow in 50 µg/ml hygromycin growth medium for 3–5 days for
further expansion. PCR-based genotyping was carried out to validate the integra-
tion of Cas9 expression cassette (Supplementary Data 1). Although the expression
of SpCas9 was controlled by a TRE promoter, we observed significant editing
efficiency in cells without addition of doxycycline. Thus, the cells were used as a
normal SpCas9-expressing model, while SpCas9 overexpression can be induced by
Dox induction.

12 K lentivirus library transduction. HEK293T-SpCas9 cells were cultured in
growth medium with 50 µg/ml hygromycin throughout the whole experiment. For
12 K lentivirus library transduction, (1) on Day −1: 2.5 × 106 cells per 10 cm dish
were seeded (in 12 dishes). For each group, one dish was used for cell number
determination before transduction and one dish for drug-resistance (puromycin)
test control and the remaining 10 dishes were used for the 12 K lentivirus library
transduction (transduction coverage per gRNA exceeds 4000×); (2) Day 0: We first
determined the approximate cell number per dish. This was used to determine the
volume of crude lentivirus used for transduction using a multiplicity of infection
(MOI) of 0.3. The low MOI (0.3) ensures that most infected cells receive only 1
copy of the lentivirus construct with high probability [41]. The calculation formula
is: V=N × 0.3/TU. V= volume of crude lentivirus used for infection (ml); N= cell
number in the dish before infection; TU= the titter of crude lentivirus (IFU/mL).
The infected cells were cultured in a 37 °C incubator; (3) Day 1: 24 h after trans-
duction, split the transduced cells of each dish to three dishes equally; (4) Day 2:
For the three dishes of split (30 dishes in total, three divided into sub-groups),
subgroup 1 (10 dishes) were harvested and labeled as the Day 2 after the 12 K
lentivirus library transduction. All cells from this subgroup were pooled into one
tube and stored in −20 °C freezer for genomic DNA extraction; The subgroup 2
(10 dishes) was changed to fresh D10 medium contains 50 µg/ml hygromycin+
1 µg/mL puromycin (Dox-free group); The subgroup 3 (10 dishes) was changed to
D10 medium contains 50 µg/ml hygromycin+ 1 µg/mL puromycin+ 1 µg/mL
doxycycline (Dox-addition group). (5) The transduced cells were spitted every
2–3 days when cell confluence reaches up to 90%. Cells from Day 2, 8, and 10 were
harvested and stored in −20 °C for further genomic DNA extraction. Parallel
experiments were performed using wild-type HEK293T cells.

PCR amplification of surrogate sites from cells. Genomic DNA was extracted
using the phenol-chloroform method. The genomic DNA were digested with
RNase A (OMEGA) to remove RNA contamination (In this study, 50 µg RNase A
worked well to digest the RNA contamination in 100–200 µg genomic DNA after
incubating in 37 °C for 30 min). Then the genomic DNA was purified and sub-
jected to surrogate PCR2 (Supplementary Data 1). In this study, 5 ug genomic
DNA was used as temperate in one PCR reaction, which contained ~7.6 × 105

copies of surrogate construct (assuming 1 × 106 cells contain 6.6 µg genomic DNA),
which covered about 63 times coverage of the 12 K library. In total, 32 parallel PCR
reactions were performed to achieve approximately 2016 times coverage of each
gRNA and surrogate site. For each PCR reaction, briefly, 50 µl PCR reaction system
consists of 5 µg genomic DNA, 0.5 µg PrimeSTAR polymerase, 4 µl dNTP mixture,
10 µl PrimeSTAR buffer, 2.5 µl forward primer (10 uM), and 2.5 µl reverse primer
(10 uM) and supplemented with ddH2O to a final volume of 50 µl. The thermo-
cycle program was 98 °C 2 min, (98 °C for 10 s, 55 °C for 10 s, 72 °C for 30 s) with
25 cycles, then 72 °C for 7 min and 4 °C hold. Then purify all the PCR products by
2% gel, pool the products together and conduct deep amplicon sequencing.

Deep amplicon sequencing. MGISEQ-2000 (DNBseq-G400) was used to perform
the amplicons deep sequencing following the standard operation protocol. First,
PCR-free library was prepared using MGIeasy FS PCR-free DNA library Prep kit
following the manufacturer’s instruction. Briefly, measure the concentration of
purified PCR products using Qubit 4 TM fluorometer (Invitrogen) and dilute the
concentration of each sample to 10 ng/µl. Ten microliters diluted PCR product was
mixed with an A-Tailing reaction which contained A-Tailing enzyme and buffer,
incubated at 37 °C for 30 minutes then 65 °C for 15 min to inactive the enzyme.
Then the A-Tailed sample was mixed with PCR Free index adapters (MGI.), T4
DNA Ligase and T4 ligase buffer to add index adapter at both 3’ and 5’ ends of
PCR products. The reaction was incubated at 23 °C for 30 min and then purified
with XP beads. Then denature the PCR products to be single-strand DNA (ssDNA)
by incubating at 95 °C for 3 min and keep on 4 °C for the subsequent step.
Transform the ssDNA to be circles using cyclase (MGI) at 37 °C for 30 min and
then digested to remove linear DNA using Exo enzyme at 37 °C for 30 min. Purify
the products again by XP beads and assay the concentration of library by Qubit 4
TM fluorometer. The amplicons libraries were subjected to deep sequencing on the
MGISEQ-2000 platform. In this study, for each lane four samples (6 ng each) were
pooled together for deep sequencing. To avoid sequencing bias induced by base
unbalance of surrogate PCR products, 12 ng whole-genome DNA library (balance
library) was mixed with the four PCR samples in a final concentration of 1.5 ng/µl
and sequenced in one lane. All the samples were subjected to pair-ended 150 bp
deep sequencing on MGISEQ-2000 platform.

Data analysis. In order to evaluate the sequencing quality of amplicons and filter
the low-quality sequencing data, Fastqc-0.11.3 and fastp-0.19.637 were used with
default parameters for each sample. The clean sequencing reads of pair-ended
segments were merged using FLASh-1.2.138 to obtain full-length reads. In order to
obtain the amplified fragment reads of each surrogate reference sequence, BsmBI
Linker was removed from the surrogate reference sequence. The BWA-MEM
algorithm39 of bwa was used for local alignment, and the reads of all samples were
divided into 12,000 independent libraries. Due to the existence of sequencing or
oligo-synthesis introduced errors, each library was then filtered. As SpCas9 mainly
causes insertions and deletions, the length of surrogate sequence is expected to
change from its original 37 bp. We adopt the following steps for data processing
and filtering: (1) Obtain the sequence containing gRNA+ scaffold fragment as
dataset1. (2) Obtain the sequence containing GTTTGAAT in dataset1 as dataset2
(BsmBI linker fragments changed in orientation (GTTTGGAG− > GTTTGAAT)).
(3) Extract the intermediate surrogate sequence from dataset2, which removed the
length limit. In order to eliminate the interference of background noise before
analyzing editing efficiency, all mutations or indels found in WT HEK293T cells
group were removed.

The total editing efficiency for each gRNA was calculated according to the
following formula:

Total editing efficiency ¼ ðNum: reads with length≠37 bpÞ
ðTot: num: of readsÞ % ð1Þ

The average fraction of indels from 30 bp deletion to 10 bp insertion was
calculated according to the following formula:

Average indels fraction ¼ ðNum: reads with length range½7; 47� bpÞ
ðTot: num: of reads of 12K libraryÞ % ð2Þ

Data collection and preprocessing for machine learning. The 12 K dataset was
preprocessed by removing gRNAs supported by less than 200 reads and by
intersecting the datasets of gRNAs with efficiencies measured at day 8 (N= 10,655)
and day 10 (N= 10,933), thus retaining data for 10,592 gRNAs. For training,
efficiencies measured at day 8 and day 10, positively correlated (Pearson’s r= 0.91),
were averaged. The following additional datasets were downloaded: Kim
(2019–2020)7,9; Wang (2019)8; Xu (2015)17,21, Chari (2015, 293 T cells)20; and
Hart (2015) Hct1162lib1Avg18 as collected by Haeussler et al.40; Doench
(2014–2016) from the public repository of the Azimuth project14,19. For the dataset
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by Doench et al. (2014) only data from human cells was used, while for the later
dataset (2016) we filtered for the genes CCDC101, CUL3, HPRT1, MED12, NF1,
NF2, TADA1, TADA2B, as previously recommended14,40, and excluded gRNAs
marked for low early time point (ETP). The Wang (2019) dataset was filtered from
gRNAs for which no context was defined in the corresponding study8. Based on the
method used to evaluate gRNA activity, datasets were distinguished into two
categories: loss of gene function studies, which comprises Xu (2015), Hart (2015),
and Doench (2014–2016) and indel-based, including Kim (2019–2020), Wang
(2019), Chari (2015) and this study.

The datasets were preprocessed by removing gRNAs matching one of the
following criteria: (1) Not present in hg38 (except for exogenous constructs);
(2) No match to the target gene based on GENCODE annotations (v 32); (3) High
variance in efficiency between different experimental settings, above the threshold:
upper quartile+ 1.5× variance interquartile range; (4) Target gene with less than 10
designed gRNAs; (5) Related to a PAM different from 5’-NGG-3’ (6) Expressed
from a tRNA system; (7) Targeting the last 10% of the merged coding sequences
(CDSs) annotated for a target gene (nonsense mediated decay or polymorphic
pseudogene transcripts were excluded). Points 2, 4, and 7 were applicable only in
the case of loss of function studies. The Kim (2019–2020) datasets were further
processed by averaging duplicated 30mer gRNA+ context entries (avg. difference
between max. and min. indel frequency of replicates= 8.6 and 6.7 in the studies of
2019 and 2020, respectively). Efficiency values not reported as indel frequencies
were ranked-normalized with the SciPy rankdata function41 and normalized
efficiencies were averaged between experimental conditions.

After preprocessing, each dataset contained the following number of unique
30mer, gRNA+ context sequences: Kim (2019): 13,359; Kim (2020): 8742; Xu
(2015): 971; Chari (2015): 1,224; Hart (2015): 4001; Doench (2014): 781; Doench
(2016): 2145; Wang (2019): 55,022; this study: 10,592. See Supplementary Table 2
for more details about filtered data. Ours and Kim (2019) datasets were combined
by building a linear regression model on overlapping elements (49 pairs) and
applying it to scale gRNA efficiencies from our study to those of Kim et al. (2019).
Efficiencies were averaged for overlapping 30mers. The merged dataset consisted of
23,902 gRNA+ context sequences (30mers).

Generation of gRNA and target DNA features. Features were extracted from a
30mer DNA sequence composed by the target DNA protospacer (20 nt) and the
following flanking regions: 4 nt upstream, 3 nt PAM, and 3 nt downstream from
the PAM. Position-specific single and di-nucleotides were one-hot encoded,
binarizing the presence/absence of a certain nucleotide with the values 0 (absent) or
1 (present). They were denoted as N_X, with N in the set [A,T,G,C] and X being
the position on the 30mer. Nucleotides surrounding the “GG” Cas9 binding site
were also binarized and denoted as NGGX_YZ, where Y and Z are the nucleotides
upstream and downstream from the motif. Sliding windows of 1 and 2 nt were used
to count the occurrences of each single and dinucleotide in the 30mer sequences.
These position-independent features were labeled by the nucleotide or dinucleotide
they account for. The GC content was obtained as the sum of Gs and Cs in the
protospacer sequence. The melting temperatures were computed with the Biopy-
thon 1.77 Tm_staluc method42 for three nonoverlapping segments of the proto-
spacer, at positions 3–7, 8–15, and 16–20, referred to as MT_[S,E], where S and E
are the start and end positions of the segment. The spacer folding free energy of
ensemble and the ΔGB RNA–DNA binding energy were computed using the
energy function in the CRISPRoff pipeline 1.1.127, provided with RNAfold 2.2.542.

Generation of dataset partitions. The datasets used for training were divided into
partitions of approximately equal size (±1 gRNA) accounting for data similarity, to
assign highly similar gRNAs to the same partition. This was implemented as fol-
lows: (1) we computed the pairwise Hamming distance between all gRNAs based
on their on-hot encoded 30mer sequences (gRNA+ context) with the SciPy pdist
function41 (normalized distances from pdist were multiplied by the size of the one-
hot encoded array (1 × 120)); (2) for each gRNA x we stored a list of all gRNAs
with Hamming distance ≤ 8 in the one-hot space, which corresponds to a sequence
difference ≤ 4 nt; these were regarded as gRNAs “similar” to gRNA x; (3) gRNAs
similar to at least one other gRNA in the dataset were the first to be distributed,
randomly, in the partitions; whenever a gRNA x was assigned to a partition, all the
gRNAs y, z… similar to it (and recursively those similar to y, z,…) were also added
to the same partition; (4) once all similar gRNAs were exhausted the remaining
gRNAs, not similar to any other, were split into three subsets based on their
efficiency (inefficient: up to efficiency percentile 25 (25p), medium-efficient: from
25 to 75p, and highly efficient: above 75p) and the gRNAs in these three subsets
were distributed to the partitions pseudo-randomly by assigning a balanced
amount of inefficient, medium-efficient and highly efficient gRNAs to each of the
partitions until they reached their predetermined size. To preserve gRNAs from the
test set of Kim et al. (2019) in a single partition, used as internal independent test
set to compare the performances of CRISPRon and DeepSpCas9, the gRNAs in the
test set of Kim et al. (2019) were collected in an initial group, which was assigned to
the partition destined for usage as internal independent test set prior any other data
partitioning. Other gRNAs in the merged dataset similar to any of the gRNAs
present in this initial group were added to it during the generations of the parti-
tions, to maintain the internal test set fully independent.

Test settings for the evaluation and comparison of models. Test datasets (both
internal and external) were made fully independent by removing all gRNAs highly
similar to a gRNA in the training sets of any of the models being compared as
follows: (1) the pairwise Hamming distance between the gRNAs in the test and
training datasets was computed using the on-hot encoded 20 nt gRNA sequences
with the SciPy cdist function41 (normalized distances from cdist were multiplied by
the size of the one-hot encoded array (1 × 80)); (2) gRNAs with Hamming dis-
tance ≤ 6 in the one-hot space, which corresponds to a sequence difference ≤ 3 nt,
were removed. While for the generation of dataset partitions gRNA similarities
were computed on 30mer gRNA+ context sequences, the sole 20 nt gRNA spacers
were employed during the processing of the test datasets because in the dataset of
Wang et al. (2019) target contexts are highly different from those in other datasets
for identical gRNAs. More restrictive thresholds of similarity (sequence differ-
ence ≤ 4 or 5) were also tested. No difference in the general performance of
CRISPRon (v0 and v1) and in the comparison with other models were observed,
and all of the significant improvements remained as such (Supplementary Data 2).
Notably, the fluctuations in performances given by different similarity thresholds
were both positive and negative.

Gradient boosting regression trees (GBRTs) for features analysis. Validation
hyperparameters were chosen from the following screen: learning rate chosen from
[0.08, 0.09, 0.1], maximum tree depth chosen from [3, 5, 7], minimum number of
samples to generate a new split chosen from [5, 10, 15, 20], minimum number of
samples to be present in a leaf node chosen from [5, 10, 15, 20], total number of
trees in the model chosen from [400, 600, 800, 1000]. The validation of hyper-
parameters was made twice, the first time on five out of six partitions of the dataset,
preserving the 6th partition as internal independent test set, and the second time
on all six partitions. Selected hyperparameters are reported in Supplementary
Table 3. During the validation, each GBRT was initialized five times with different
seeds and the best model of the 5 was chosen for each fold/validation set. Pre-
dictions were computed by averaging the output of the best GBRTs chosen for each
fold. When comparing multiple predictors, independent test datasets were cleaned
from gRNAs with ≤3 nt difference on the 20 nt sequence of a gRNA in the training
set of any compared predictor.

The CRISPRon deep learning model. The training of our deep learning models
uses the Keras/Tensorflow 2.2.043 neural network framework with Python 3.8.3.
Our strategy takes outset in the deep learning strategies by Wang et al.8 and Kim
et al. (2019, 2020)7,9. We employed a one-hot encoding of the input sequence
(30mer gRNA+ context), which was fed into a number of 3, 5, and 7 sized filters
acting directly on the one-hot encoded sequence. The convolutions, which are the
outputs of the filters, were flattened and fed into two sequential fully connected
layers before giving the gRNA efficiency as the final output (for the full model
layout see Supplementary Fig. 13). The number of weights and the layout of the
convolutions as well as those of the two final fully connected layers are identical to
the architecture used in Kim et al. 2019 and since the hyperparameters and layout
of their model was substantially interrogated, we have not attempted further
optimizations of this part of our model for CRISPRon. However, the inclusion of
an important biological parameter in the deep learning framework was optimized
as detailed below.

The partitioning of the data in to 6 subsets used for the GBRT were reused in
the training of the deep learning models (see Supplementary Table 1). As in the
regular machine learning above, the deep learning models were initially trained on
5-fold cross-validation with the 6th partition set aside for internal independent
testing. Each training in the 5-fold cross-validation was repeated 10 times using
random seeds and the best model of the 10 was chosen for each fold/validation set.
The final output is the average of the output of the best models chosen for each
fold. Finally, the process was repeated using all six data partitions for 6-fold cross-
validation without an internal independent test set.

The most important biological parameters obtained from the GBRT model Gini
and SHAP analysis were ΔGB, the GC content of the 30mer and the folding energy
of the spacer gRNA. Of these, ΔGB was a far better representative of the on-target
efficiency and we therefore decided to include ΔGB in our deep learning model27.
Direct inclusion of ΔGB along-side the convolutions led to an improvement of the
mean square error (MSE) from 143.15 to 141.76 on the average of the 5-fold cross-
validations of the combined dataset from our study and Kim et al. (2019) (see
Supplementary Table 4 and Supplementary Figs. 13-14 for the model layouts,
Supplementary Table 5 for the results). Collecting the convolutions in a separate
fully connected layer before combining the fully connected layer with ΔGB led to a
further improvement of the average MSE on the 5-fold cross-validation from
144.73 with three fully connected layers but without ΔGB to 140.83 with ΔGB (see
Supplementary Table 4 and Supplementary Figs. 15-16 for the model layouts,
Supplementary Table 5 for the results). The model with convolutions collected in a
fully connected layer before combination with ΔGB thus became our final
CRISPRon model as outlined in Fig. 2a with details in Supplementary Fig. 16. This
model was trained on the combined dataset from our study and Kim et al. (2019)
dataset, split in six partitions, using 6-fold cross-validation. The final CRISPRon-
v1.0 output is the average output of the best models obtained from each of the six
validation sets after 10 repetitions (see Supplementary Table 6).
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All the models were trained and evaluated using the MSE and the training was
performed in epochs, where the weights were updated after each batch of 500
examples. The training was stopped when the performance on the validation set
did not improve for 100 consecutive epochs and the best performing model by
MSE on the validation set was kept. In effect, the training typically ran for
500–1500 epochs in total. The introduction of ΔGB in the model changed the
convergence behavior and we therefore screened for optimal learning rates testing
learning as follows. We trained deep learning models on the LK-5 datasets using
the layouts with only two fully connected layers and direct inclusion of ΔGB and
tested learning rates of 0.001, 0.0005, 0.0001, and 0.00005 in ten repetitions on each
of the 5-fold validation sets (Supplementary Table 7). The optimal learning rate
was 0.0001 using ADAM optimization and as above using a batch size of 500. The
hyperparameters were used in the further training of the final CRISPRon deep
learning model, which includes an extra fully connected layer for collection of the
convolutions prior to the inclusion of ΔGB.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
High-throughput sequencing data have been deposited to the China National GeneBank
(accession number CNP0001031) and the GEO repository (accession number
GSE173708). The gRNA efficiency data are provided in Supplementary Data 1. The
Drugable gene database can be accessed to the link http://dgidb.org. The lentivirus vector
used for cloning surrogate oligonucleotides is made available through Addgene (Plasmid
#170459). Source data are provided with this paper.

Code availability
CRISPRon website and source via: https://rth.dk/resources/crispr/ and on https://github.
com/RTH-tools/crispron22.
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