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Abstract

Concerns over ACE inhibitor or ARB use to treat hypertension during COVID-19 remain 

unresolved. Although studies using more robust methodologies provided some clarity, sources of 

bias persist and it remains critical to quickly address this question. In this review, we discuss 

pernicious sources of bias using a causal model framework, including time-varying confounder, 

collider, information, and time-dependent bias, in the context of recently published studies. We 

discuss causal inference methodologies that can address these issues, including causal diagrams, 

time-to-event analyses, sensitivity analyses, and marginal structural modeling. We discuss effect 

modification and we propose a role for causal mediation analysis to estimate indirect effects via 

mediating factors, especially components of the renin–angiotensin system. Thorough knowledge 

Correspondence to Andrew M. South, MD, MS, Assistant Professor, Section of Nephrology, Department of Pediatrics, Brenner 
Children’s Hospital, Wake Forest School of Medicine, One Medical Center Boulevard, Winston Salem, NC 27157, USA. Tel: +1 336 
716 9640; fax: +1 336 716 9229; asouth@wakehealth.edu.
*Jordana B. Cohen and Lucy D’Agostino McGowan equally contributed to the writing of this article.

HHS Public Access
Author manuscript
J Hypertens. Author manuscript; available in PMC 2021 May 29.

Published in final edited form as:
J Hypertens. 2021 April 01; 39(4): 795–805. doi:10.1097/HJH.0000000000002706.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of these sources of bias and the appropriate methodologies to address them is crucial when 

evaluating observational studies to inform patient management decisions regarding whether ACE 

inhibitors or ARBs are associated with greater risk from COVID-19.
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INTRODUCTION

Early reports of the coronavirus disease 2019 (COVID-19) pandemic led to concerns about 

the relationship between ACE (angiotensin-converting enzyme) inhibitor (ACEi) or Ang II 

(angiotensin II) receptor blocker (ARB) therapy and COVID-19 in patients with underlying 

hypertension and associated comorbidities, because of the fact that ACE2 (angiotensin-

converting enzyme 2) is the binding site for severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) [1,2]. These case series and small descriptive cohorts had limited to no 

application of appropriate epidemiological or statistical methods, and thus are highly 

susceptible to bias, especially confounding by age and by indication associated with 

comorbidities, such as heart disease [3–6]. As such, this controversial topic quickly needed 

data to provide clarity and answer appropriately the question of whether ACEi/ARBs, 

compared with other antihypertensive agents, are associated with an increased risk of SARS-

CoV-2, COVID-19, and related outcomes in patients with hypertension [7–10]. This is of 

particular interest during the pandemic because of the potential for significant publication 

bias.

Recent studies employing more rigorous methods, especially in addressing confounding 

bias, have not demonstrated an association between ACEI/ARB use and SARS-CoV-2 

infection or COVID-19, though several important potential sources of bias remain 

unaddressed and characterized incompletely [11–15]. In order to better characterize these 

risks, one must more thoroughly understand, identify, and account for persistent sources of 

bias. Conceptualizing these important research questions in a causal model can often best 

distinguish these sources of bias and inform study design and analytic strategies as well as 

inform the key causal relationships.

Our objective is to apply a causal inference framework to highlight several key examples of 

persistent and overlooked sources of bias and examples of several methodological 

considerations that can address them, using a multidisciplinary approach with expertise in 

clinical care, epidemiology, statistics, and basic and translational science. Our goal is to 

facilitate the appropriate appraisal and interpretation of studies investigating this important 

topic, in order to ensure that appropriate conclusions are drawn to best influence patient care 

during the COVID-19 pandemic. We discuss bias in the context of our exposure of interest, 

ACEi/ARB use, and our outcomes of interest, SARS-CoV-2 infection, development of 

COVID-19, and COVID-19-related outcomes, as well as highlight how or how not existing 

studies that have investigated these questions have addressed these sources of bias (Table 1).
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SPECIFYING THE RESEARCH QUESTION

It is critically important to define the research question thoughtfully and explicitly, as this 

informs the appropriate study design and analytic plan as well as potential sources of bias. 

One must define adequately the specific study population and the exposures and outcomes of 

interest for each particular question, being mindful of time as it relates to causal 

relationships. For the purposes of this review, we will focus on the following three questions:

1. Among patients with hypertension, is use of ACEi/ARB vs. other 

antihypertensive medications associated with a differential risk of SARS-CoV-2 

infection (i.e. do these medications increase expression of ACE2 in the lungs and 

subsequently increase the likelihood of viral binding) (Fig. 1)?

2. Among patients with hypertension who tested positive for SARS-CoV-2, is use 

of ACEi/ARB vs. other antihypertensive medications associated with a 

differential risk of developing COVID-19 (i.e. does this hypothetical increase in 

ACE2 expression increase or decrease risk of disease)?

3. Among patients with hypertension who tested positive for SARS-CoV-2 and who 

developed COVID-19, is use of ACEi/ARB vs. other antihypertensive 

medications associated with a differential risk of worse outcomes (e.g. 

hospitalization, ICU admission, or death), that is, does this hypothetical increase 

in ACE2 expression and/or viral suppression of ACE2 expression impact disease 

severity?

Questions (1) to (3) focus on progressively narrower patient populations. In all instances, our 

exposure of interest is baseline (pre-SARS-CoV-2 infection) ACEi/ARB use. For questions 

(2) and (3), the continued use of ACEi/ARB after a positive SARS-CoV-2 test and/or 

hospitalization for COVID-19 becomes a crucial exposure and introduces the importance of 

index time, which we will discuss in detail.

For observational studies, it can be helpful to conceptualize these questions in the target trial 

framework; that is, the randomized trial we would conduct if it were feasible and ethical 

(Table 2) [16]. In each instance, we want to know if patients in the population of interest 

who are currently taking an ACEi/ARB should continue or discontinue their ACEi/ARB or 

switch to another antihypertensive medication. Similarly, we want to know if patients in the 

population of interest who are not currently taking an ACEi/ARB should continue their 

current medication or switch to an ACEi/ARB. In this context, we are attempting to create 

an observational setting in which we can emulate a randomized trial, building 

counterfactuals for each scenario (i.e. potential outcomes or ‘what would have happened if’) 

[17,18]. Once one defines appropriately the research question and study population in this 

causal context, we can begin to identify and address bias.

EXCHANGEABILITY AND CAUSAL DIAGRAMS

Inherent to the discussion of bias is the concept of exchangeability, which assumes that 

exposed individuals are exchangeable with unexposed individuals on all relevant factors 

except for exposure status (the counterfactual ideal) [19]. Bias in any form is rooted in the 
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violation of this exchangeability. Recent observational studies investigating ACEi/ARB use 

in patients with SARS-CoV-2 and COVID-19 have notably addressed exchangeability in 

regards to confounding bias but major additional sources of bias persist, which threaten 

exchangeability and which have not been fully discussed [11–15].

One of the most important first steps in establishing a causal model is to develop causal 

diagrams, which are important tools for assessing the potential violations of exchangeability 

in an observational study. Causal diagrams are graphical tools that have become increasingly 

popular to inform causal inference-based assessments of exposure–outcome relationships, 

moving beyond illustrating statistical associations and towards establishing inferred causal 

evidence [20–22]. With causal diagrams, or more specifically directed acyclic graphs 

(DAGs), one can construct a causal model representing the causal relationships between an 

exposure and outcome, as well as factors that are antecedents (causes) or descendants 

(effects) of these factors, and thus visualize opportunities for bias to arise [23]. Specifically, 

one can discriminate between the causal paths and noncausal (i.e. biasing) paths that exist 

for our research question. This includes colliding or mediating factors as well as 

confounding factors.

Through study design and analysis, we attempt to close off noncausal paths while leaving 

causal paths open, in order to mitigate confounding and other sources of bias. DAGs can 

inform a minimally sufficient adjustment set of factors that should be included in an adjusted 

multivariable regression model and can inform models used to build propensity scores (more 

below), in order to close off noncausal paths. In the following sections, we apply DAGs to 

illustrate potential sources of bias, using question (1) above as our motivating example of a 

causal model, to examine the association of ACEi/ARB use and SARS-CoV-2 infection (Fig. 

1). We also discuss examples from recently published studies that employed more robust 

methodologies [12,13].

POTENTIAL SOURCES OF BIAS

Confounding bias

A confounding factor is one that is associated with the outcome even in the unexposed group 

(in the direction of factor → outcome) and that is distributed heterogeneously between the 

different exposure levels (in the direction of factor → exposure). Additionally, confounding 

factors cannot lie on the causal pathway between a particular exposure and outcome [24]. 

These factors (or their antecedents) can introduce confounding bias, which has been a major 

issue in early COVID-19 studies (e.g. age, as demonstrated in Fig. 2). For example, 

appropriate adjustment for age blocks the noncausal path between ACEi/ARB use and 

SARS-CoV-2 infection, thus leaving the causal path between them open.

Recently published studies have made significant gains in addressing confounding bias 

[12,13]. However, among hospitalized participants in particular, several potential time-

varying confounding factors remain unaccounted for, such as hypotension, acute kidney 

injury, and hyperkalemia [25]. These factors can be challenging in that in addition to 

potentially confounding the relationship between ACEi/ARB use and COVID-19-related 

outcomes, they can lie on the causal path between prior ACEi/ARB exposure and 
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COVID-19 outcomes depending upon how one incorporates time in the causal model (i.e. 

the factor may mediate the causal relationship, see Causal Mediation). Time-varying 

confounding factors are important to consider for time-to-event analyses and have not been 

identified or addressed in studies to date (Table 1).

Collider bias

In causal language, we can introduce selection bias when we select or restrict a study sample 

based on a factor that is a common antecedent of the exposure and the outcome (i.e. a 

confounding factor), as this compromises exchangeability of our exposed and unexposed 

groups [15,26,27]. When we condition the study population on a common descendent of the 

exposure and outcome, we may introduce collider bias. Collider bias can induce a spurious 

association or distort the magnitude or direction of the association between an exposure and 

outcome [26] and is a significant limitation in COVID-19 research that has been under-

recognized to date [28].

As a possible risk factor for SARS-CoV-2 infection and COVID-19, hypertension (and its 

descendent comorbidities, such as heart failure) increases the likelihood of a patient being on 

an ACEi/ARB and being tested for SARS-CoV-2 (Fig. 3). As illustrated, if we select our 

study population conditional upon being tested; having a positive test result; being 

diagnosed with COVID-19; or being hospitalized for COVID-19, we can introduce collider 

bias, which can induce or distort an association between ACEi/ARB use and these outcomes 

(Table 1) [12,13]. Similarly, we can introduce collider bias if we adjust for or stratify on a 

collider, as was the case in studies that included participants with and without hypertension 

but that adjusted for or stratified on hypertension. Furthermore, often only a limited 

proportion of individuals undergo testing, and indications for and availability of testing can 

change over time and across regions. Similarly, criteria for hospitalization change over time 

and across regions depending on resource availability and evolution in treatment of disease. 

Thus, the presence of collider bias can be a dynamic process that is dependent upon the 

study time period and the potential population of interest.

Information bias

Errors in obtaining or documenting information that informs or characterizes a factor can 

induce information bias. In some instances, information bias can result in misclassification 

of exposure or outcome status. In the present example, as authors of recent studies and 

editorials have noted, information bias may be introduced through medical records-based 

definitions of diagnoses or medication use, heterogeneity of testing strategies and practices 

(e.g. within and between countries and across time), test characteristics (e.g. sensitivity and 

specificity of a SARS-CoV-2 test), and patient access to testing or medical care (Fig. 4) [15]. 

Indeed, as Mehta et al. [12] noted, testing practices changed during their study period. If the 

association between these factors is stronger than the association between observed and true 

disease status, the assessment will likely be highly biased [29].

Time-dependent bias

An important consideration for this discussion is how one approaches the influence of time 

as a factor, especially time-varying exposure. Time-dependent bias occurs when 
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methodological approaches fail to account appropriately for index time (i.e. the start of the 

study period, or the time at which we start to measure exposure status until an outcome 

occurs) or follow-up time, thus yielding results that can erroneously favor one exposure 

group over another [30]. When comparing treatment exposure to no treatment, this bias 

always favors the treatment group.

Immortal time bias, a specific type of time-dependent bias, occurs when the exposure group 

is unable to achieve an outcome (e.g. death) during a certain period of time, because of the 

fact that the study design and/or analytic plan excludes their ability to reach said outcome 

[31]. This can occur when exposure allocation (i.e. first prescription or use of a medication) 

is dependent upon survival to a certain point in time (i.e. occurs a period of time after index 

time). For example, if participant follow up starts at the time of hospital admission, but first 

ACEi/ARB use occurs at any point during the hospitalization, the ACEi/ARB-exposed group 

must survive long enough in the hospital to reach the time of first exposure (Fig. 5). Thus, 

participants who are ultimately assigned to the exposed group are protected from dying from 

the time the study starts (index time: the moment of hospitalization) to the time when they 

first receive the ACEi or ARB (time of exposure), as otherwise, if they died during that 

window of time, they would have been assigned to the unexposed group. This would then 

bias towards an underestimation of the exposure–outcome relationship in favor of the 

exposure [30], as has indeed been the case in several COVID-19 studies [25].

Lack of information on how exposure status changes over time (i.e. time-varying exposure) 

introduces another type of time-dependent bias, known as immeasurable time bias. With 

immeasurable time bias, participants may be defined as being exposed or unexposed for the 

full duration of the study follow-up period, even if there is insufficient information to 

determine if or for how long they actually received the medication during that time [32]. For 

example, studies evaluating inpatient exposure to ACEi/ARB vs. other antihypertensive 

medications may define someone as being exposed to these medications based on their 

medication list at the time of admission. However, this approach ignores the fact that ACEi/

ARBs are more likely to be held during a hospitalization compared with other 

antihypertensive medications because of the perceived risk of, or actual occurrence of, acute 

complications, such as hyperkalemia or acute kidney injury. We introduce immeasurable 

time bias when both the ACEi/ARB group and the other antihypertensive medication group 

are erroneously assigned the same accrued exposure time, even though the actual exposure 

times are unknown and potentially different between the groups. Several studies to date have 

been at risk of time-dependent bias, as briefly noted by some of the authors in their 

discussion of their studies’ limitations (Table 1) [12,13,33].

SUGGESTED APPROACHES

We advocate for strategies that separate study design from analysis to minimize the sources 

of bias described above, which existing literature in this area has not addressed consistently 

[34,35]. We provide examples of a few methods below and in the Appendix, http://

links.lww.com/HJH/B506. In order to optimally investigate these questions, and identify and 

address these sources of bias, in the context of a causal model approach, we recommend 
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using a cohort study design. We do acknowledge that a case–control study design can be an 

appropriate approach in select instances.

Study design

It is important to note that there have been very limited data about the effect of ACEi/ARBs 

on these ‘nontraditional’ outcomes (e.g. risk of mechanical ventilation) from observational 

studies and clinical trials prior to the pandemic. This limits the assumptions one can make 

about standard errors and probabilities of the exposure and outcomes, which in turn hinders 

adequate power and sample size calculations and adds additional uncertainty to estimates of 

effect sizes and their precision from current investigations of the pandemic. As discussed 

previously, inclusion and exclusion criteria have the potential to induce selection and 

collider bias and limit generalizability [15]. To prevent collider bias, one must ensure that 

the exposure and the outcome do not drive inclusion or selective retention, which can be 

difficult to do. The analytic phase can introduce collider bias through inappropriate 

adjustment or stratification on a certain factor. Thoughtfully and intentionally selecting 

covariates to include in an analysis, based on the causal model and by applying causal 

diagrams, can help mitigate this concern.

It is generally recommended to further refine the cohort through matching procedures when 

the distributions of confounding factors in the exposed and unexposed groups do not overlap 

(i.e. violate exchangeability), such as if the unexposed group is younger on average than the 

exposed group. Matching participants in the cohort before conducting the analysis reduces 

model dependence, i.e. study findings remain relatively consistent no matter which analytic 

approach one chooses. Propensity score matching (i.e. matching exposure groups on the 

conditional probability of exposure assignment based on observed covariates [36]) is a 

common approach but is not without limitations, including imbalance of potential 

confounding factors across exposure groups, residual unmeasured confounding bias, and 

selection bias because of selection of matches. Helpful alternative approaches include 

coarsened exact matching and distance-based matching but these have their own limitations 

[37–39]. Use of the high-dimensional propensity score method may help in situations where 

there is concern that covariates used for building the propensity score do not necessarily 

adequately approximate the propensity to treatment [40].

Inherent to which specific question one is asking, one must account for index time, time-

varying exposures, and time to outcomes (i.e. follow-up time). Accordingly, it is important 

to consider the timing of ACEi/ARB exposure for a particular participant, especially for 

studies investigating question 3. Whether the study defines ACEi/ARB exposure as pre-

COVID-19 diagnosis only or the study design and analysis account for continued 

ACEi/ARB use, or newly prescribed ACEi/ARBs, during the COVID-19 course will have 

important implications for how we interpret the exposure–outcome relationships [12,13]. 

Furthermore, certain outcomes that may occur more than once, such as admission to the 

hospital or acute kidney injury, may be better classified as count data and thus require 

different analytic approaches.
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Analysis

We can apply several analytical techniques to compare groups, including regression models 

that incorporate the minimally sufficient adjustment set identified by a DAG and models that 

include the propensity score, either as an adjustment term or as an inverse probability weight 

[41]. If the objective is to infer causal relationships, we recommend utilizing a separate 

model for each exposure-outcome to avoid the Table 2 fallacy, which has plagued the 

interpretation of several COVID-19 studies [42–45]. It is essential to select the confounding 

factors a priori for each exposure-outcome model by applying a DAG specific to that 

exposure–outcome relationship. Additionally, it is best to specify the anticipated analyses a 

priori; hypothesis-generating studies must be clearly defined as such and often have to 

account for multiple hypothesis testing.

In the context of ACEi/ARB use and either SARS-CoV-2 infection or COVID-19 diagnosis 

(questions 1 and 2), one optimal approach is to apply a generalized linear model with a log-

link and either a binomial or a Poisson distribution for outcome status as a function of 

ACEi/ARB exposure and to report the effect estimate as a relative risk with the 

corresponding 95% confidence interval, being mindful of time-dependent exposure [46,47]. 

We recommend this approach because of the fact that estimating effect sizes with odds ratios 

(using a logit-link and binomial distribution) can overestimate effect sizes when outcomes 

are relatively common [48]. To examine ACEi/ARB use and COVID-19 outcomes (question 

3), we suggest conducting a time-to-event analysis to account appropriately for censoring 

and reporting the hazard ratio as the effect estimate of ACEi/ARB use on time to a given 

outcome (e.g. time from admission to death), with the corresponding 95% confidence 

interval. In studies evaluating ACEi/ARB use following initial diagnosis of COVID-19, we 

suggest methods that account for time-varying exposure that address time-dependent bias, 

such as time-varying Cox proportional hazards modeling and joint modeling. To date, the 

majority of studies have not employed these approaches [12,13].

We also emphasize that all time-to-event analyses should consider competing risks [49]. 

Standard time-to-event analyses treat participants who do not experience an event as right-

censored, that is, the event could occur after last-known follow-up. A competing risk is 

another type of event (e.g. death from other causes) that makes reaching the event of interest 

(e.g. mechanical ventilation) impossible. Failing to account for competing risks can lead to 

biased estimates of the survival function, as occurred in Grein et als [50,51] study on 

compassionate use of remdesivir in patients with COVID-19.

Sensitivity analyses

ACEi/ARBs are by definition distinctly different medication classes that act at different parts 

of the renin–angiotensin system (RAS) and that have significant within-class heterogeneity. 

As such, we recommend conducting sensitivity analyses, that is, methods to quantify 

uncertainty in a model because of bias related to assumptions that one makes in the primary 

analyses [52], to examine three distinct treatment exposure groups: ACEis, ARBs, and other, 

though to date this has not generally occurred. There are propensity score-based methods to 

compare three or more exposure groups, such as probit regression [53], generalized boosted 

models [54], or tree-based methods [55].
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Sensitivity analyses, such as the E-value [56], Gamma sensitivity [57], or tipping point 

analysis [58,59] can assess how sensitive the results are to unmeasured confounding bias. 

For example, the E-value demonstrates the strength of association required of an 

unmeasured confounding factor in order to reverse the observed association between the 

exposure and outcome [56]. Various sensitivity analyses can estimate selection and collider 

bias as well [28,60,61].

Additional sensitivity analyses may be appropriate to use to address potential time-varying 

confounding bias, as several time-varying factors may lie on the causal path between 

ACEi/ARB exposure and COVID-19 outcomes, depending upon the specific point in time. 

One recommended approach in this setting is to employ marginal structural modeling, which 

uses stabilized inverse probability of treatment weights (analogous to time-updated 

propensity scores) to create a pseudo-population in which potential confounding factors are 

balanced across the population [62,63]. This approach attempts to mimic randomization at 

various time points and would be particularly useful to evaluate time-updated exposure to 

ACEi/ARB among hospitalized patients, in order to address time-updated confounding by 

indication for continuation vs. withdrawal of ACEi/ARBs. To date, no study has utilized this 

approach.

Sensitivity analyses that employ carefully selected negative controls can help to address 

unmeasured confounding, information, and selection bias [64]. Negative controls act as 

surrogate markers for the actual exposure or outcome of interest. If selected appropriately, 

negative controls should be subject to the same potential sources of bias as the exposure or 

outcome but would not be expected to have the same exposure–outcome relationship.

Sensitivity analyses accounting for repeated outcome events (i.e. count data) from 

differential follow-up windows, also known as recurrent event analyses, may also be 

performed [65]. These methods can provide useful information about prognosis in the 

setting of recurrent SARS-CoV-2 infection or re-hospitalization, while also improving 

statistical power to evaluate relationships between the exposure and outcome events that can 

occur more than once.

Some authors suggest that machine learning and artificial intelligence-based approaches, or 

even having a large enough data set, may overcome many of the issues described above [66]. 

However, these approaches are still subject to many of the same limitations as more 

traditional methodological approaches and may benefit from consideration of a causal model 

and causal inference methods, including many of the sensitivity analyses described here, 

especially if the goal of the research question is inference rather than prediction [67].

Effect modification

Effect modification occurs when the magnitude of the association between the exposure and 

outcome differs across strata or levels of a third factor. Sex and obesity are examples of 

factors that have been associated with distinctive differences in hypertension phenotype, the 

RAS (and by extension ACEi/ARB use), and SARS-CoV-2/COVID-19 [68–72]. These 

factors, therefore, may modify the strength of the effect size between ACEi/ARB use and the 

outcomes and should be assessed as potential effect-modifying factors, rather than assuming 
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that they are confounding factors. Indeed, inappropriately treating these factors as 

confounding factors can induce bias. Studies may also consider time and region as effect-

modifying factors to help address dynamic changes in testing and indications for 

hospitalization, for example, that have varied substantially over the course of the pandemic 

[44]. If present, one should present effect size estimates across strata (including 95% 

confidence intervals) along with measures of interaction on both the additive and 

multiplicative scales [73,74].

Incorporating race or ethnicity as factors in these exposure–outcome relationships deserves 

special attention. Prior research supports potential differential responses to ACEi/ARBs 

compared with other antihypertensive medication classes (e.g. calcium channel blockers and 

thiazide diuretics) in patients who are Black vs. those who are not Black [69,75]. However, 

recent emphasis is now appropriately placed on the complexity of race and ethnicity in 

biomedical research, especially during the pandemic [76,77]. Race is primarily a social 

construct that has often been applied inappropriately to biologic (often genetic) risk, despite 

being a poor marker of this [78]. Rather than race, it would be ideal to use more objective 

and precise measures of ancestry as well as carefully collected information on distinctive 

social factors that contribute potentially to disparities across different groups, such as 

systemic racism, access to healthcare, individual income, education, neighborhood 

segregation, and social support, depending upon which of these factors are most relevant to 

the particular research question. Unfortunately, this level of detailed information is often not 

available, especially from retrospective study designs. We must consider carefully these 

issues when designing research studies moving forward [79].

Causal mediation

Causal models inform us that we must give special attention to intermediate factors that lie 

on the causal and temporal paths between an exposure and outcome, as these factors may 

mediate the causal relationship. As usually occurs, investigators will estimate the total effect 

(i.e. association) a given exposure has on an outcome. However, in some instances, 

disentangling the indirect effects an exposure has on an outcome from the direct effects, 

using causal mediation analysis, allows us to gain insight into how altering or blocking a 

given intermediate factor on the causal path could alter the outcome. Mediation analysis also 

allows us to estimate the relative direct effects that several exposures have on an outcome. 

As often occurs, simply ‘adjusting’ for the intermediate factor in one’s analysis may violate 

key assumptions and bias one’s results [80]. Mediation analytic methods exist that allow us 

to disentangle a variety of these direct and indirect effects, including in the presence of time-

varying exposures, outcomes, and mediators and in the presence of multiple mediators [81–

84]. To date, we are unaware of studies applying these methods in COVID-19 research.

For example, one can apply causal mediation analysis to determine if the RAS does indeed 

have a causal role in the association between ACEi/ARB use and SARS-CoV-2 infection 

(Fig. 6). Simply stated, there are two generally opposing theories about the role of the RAS 

in SARS-CoV-2 and COVID-19:
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1. There is concern, based on animal studies, that ACEi/ARBs could increase 

ACE2 lung expression, thereby increasing the risk of SARS-CoV-2 infection and 

possibly development of COVID-19 [1];

2. SARS-CoV-2 may downregulate ACE2 expression in the lungs, which could 

increase Ang II (pro-inflammatory) at the expense of suppressing Ang-(1–7) 

(anti-inflammatory), thereby potentially mediating COVID-19-related acute lung 

injury and lung fibrosis [8].

In order to use clinical data to investigate these particular theories, we can measure 

components of the RAS in the blood (e.g. ACE2), as a surrogate biomarker for ACE2 

expression in the lungs, and estimate the direct effect of ACEi/ARB use on SARS-CoV-2 

infection as well as the indirect effect mediated through ACE2. This could provide vital 

mechanistic (and therefore, causal) evidence to clarify the RAS’s role in COVID-19. In 

addition, one can apply causal mediation analysis to data from ongoing clinical trials that are 

measuring RAS components to better define these causal mechanisms, which traditional 

clinical trial methods cannot necessarily do [85].

We should note, however, that measurement of RAS peptides and enzymes is complex and 

susceptible to significant measurement error and variability, which can introduce 

information bias. Low concentrations, interfering substances, ongoing metabolism, and 

sequence similarity/cross-reactivity with other angiotensin peptides are important 

considerations for sample collection, processing, storage, and analysis as well as 

interpretation of results [70,86–88]. Specific assays require optimal conditions and precise 

methods, including extraction/purification and validation against mass spectrometry/high-

performance liquid chromatography [86,87]. Furthermore, the tissue sources of the RAS in 

circulation are not known, and normative values do not exist [87]. Thus, appropriate 

methodology and analysis in experienced laboratories and interpretation of results by 

experienced investigators are critical in this approach, especially when comparing results 

across studies and patient populations [89].

CONCLUSION

Well designed observational studies remain crucial to investigate rigorously whether ACEi/

ARBs, compared with other antihypertensive medication classes, are associated with an 

increased risk of SARS-CoV-2 infection, developing COVID-19, and worse outcomes in 

patients with hypertension. Although multiple recently published observational studies have 

begun to evaluate these relationships, significant limitations to the interpretation of their 

results remain. This discussion is highly relevant to related questions pertaining to 

ACEi/ARB use during the pandemic in patients with heart failure and chronic kidney 

disease, in whom clinical trials are not ethical. Knowledge of important sources of bias and 

the high-quality epidemiologic methods needed to address them, using a causal model 

framework, are critical in evaluating studies investigating this important topic and to 

applying the results to patients.
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FIGURE 1. 
Directed acyclic graph demonstrating research question 1: Is ACEi/ARB Use Associated 

with SARS-CoV-2 Infection? Exposure and outcome are shown in ovals whereas ACE2 

expression in the lungs is shown in a box. As also represented by Fig. 6, ACE2 can also be 

conceptualized as a mediator of the ACEi/ARB–SARS-CoV-2 relationship. ACE2, 

angiotensin-converting enzyme 2; ACEi, angiotensin-converting enzyme inhibitor; ARB, 

angiotensin II receptor blocker; SARS-CoV-2, severe acute respiratory syndrome 

coronavirus 2.
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FIGURE 2. 
Directed acyclic graph representing confounding bias in the association between 

angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker use and severe acute 

respiratory syndrome coronavirus 2 infection. The prevalence of ACEi/ARB use and the risk 

of SARS-CoV-2 infection (ovals) increase with increasing age (dashed arrows), thus making 

age (box) a confounding factor in the association between ACEi/ARB use and SARS-CoV-2 

infection. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor 

blocker; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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FIGURE 3. 
Directed acyclic graph demonstrating collider bias in the association between angiotensin-

converting enzyme inhibitor/angiotensin II receptor blocker use and severe acute respiratory 

syndrome coronavirus 2 infection. The solid black arrow represents the apparent association 

between the exposure and outcome (ovals). Patients who take an ACEi/ARB and those with 

symptoms concerning for SARS-CoV-2 infection (e.g. cough or fever, represented by dashed 

grey box), as well as patients with hypertension (dashed black box), may be more likely to 

be tested for SARS-CoV-2 (grey arrows). If study inclusion is conditional upon a positive 

test (solid black box), these patients may be preferentially more likely to be included in the 

study, thus making testing a collider. We can also induce collider bias if we adjust for or 

stratify on the collider. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II 

receptor blocker; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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FIGURE 4. 
Directed acyclic graph representing information bias in the association between angiotensin-

converting enzyme inhibitor/angiotensin II receptor blocker use and severe acute respiratory 

syndrome coronavirus 2 infection. The large solid black arrow represents the causal 

relationship between the exposure (ACEi/ARB use) and the outcome (observed SARS-

CoV-2 infection), represented by solid ovals. Information bias can be introduced via 

heterogeneity in access to healthcare (black box and small solid black arrow) and test 

availability and test characteristics (grey boxes and grey arrows), which limit one’s ability to 

estimate the association between the exposure and the true outcome (dashed oval), 

represented by the long dashed arrow. The short dashed arrow represents the association of 

observed with true infection. Note, not all arrows are included for simplicity. ACEi, 

angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; SARS-

CoV-2, severe acute respiratory syndrome coronavirus 2.
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FIGURE 5. 
Time-dependent bias in the association between angiotensin-converting enzyme inhibitor/

angiotensin II receptor blocker use and outcomes among patients hospitalized with 

coronavirus disease 2019. Study-assigned exposure status (left side of the figure in italics) is 

characterized by use of ACEi/ARB at any point (yes/no) during the hospitalization, starting 

at the time of hospitalization (i.e. index time) but without regard to when exposure occurred 

during the hospitalization (right side of the figure). Solid dark grey arrows represent no 

ACEi/ARB exposure while dashed light grey arrows indicate either ACEi/ARB use or 

potential ACEi/ARB use, if the participant had lived long enough to have the opportunity to 

take an ACEi/ARB. Note that if one does not account for the exact timing of initial 

ACEi/ARB exposure (black line with round cap), then study exposure allocation becomes 

dependent upon survival up to that point in time (i.e. the patient must be stable enough to 

receive the medication). Thus, exposed individuals cannot die (i.e. are immortal) prior to 

reaching the time of initial exposure, or else they would be classified as an unexposed 

individual. This distorts the relationship between ACEi/ARB use and adverse outcomes and 

biases towards greater survival in the exposed group as those participants classified as 

unexposed never had the opportunity to be exposed prior to dying. ACEi, angiotensin-

converting enzyme inhibitor; ARB, angiotensin II receptor blocker; COVID-19, coronavirus 

disease 2019.
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FIGURE 6. 
Directed acyclic graph demonstrating that angiotensin-converting enzyme 2 may mediate the 

association between angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker 

use and severe acute respiratory syndrome coronavirus 2 infection. ACEi/ARB exert direct 

effects on SARS-CoV-2 infection (ovals with solid arrow) as well as indirect effects 

mediated via changes in circulating ACE2 levels (box with dashed arrows), a proxy for 

ACE2 expression in the lungs. Thus, measurement of circulating ACE2 would serve as a 

biomarker of infection and could provide mechanistic evidence that ACE2 may be involved 

in COVID-19 pathophysiology. ACEi, angiotensin-converting enzyme inhibitor; ACE2, 

angiotensin-converting enzyme 2; ARB, angiotensin II receptor blocker; SARS-CoV-2, 

severe acute respiratory syndrome coronavirus 2.
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