
Bioscience Reports (2021) 41 BSR20210583
https://doi.org/10.1042/BSR20210583

*These authors contributed
equally to this work.

Received: 10 March 2021
Revised: 01 May 2021
Accepted: 10 May 2021

Accepted Manuscript online:
14 May 2021
Version of Record published:
27 May 2021

Research Article

Identification and validation of ADME genes as
prognosis and therapy markers for hepatocellular
carcinoma patients

Jukun Wang1,*, Ke Han2,*, Chao Zhang1,*, Xin Chen1, Yu Li1, Linzhong Zhu1 and Tao Luo1

1Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China; 2Department of Thoracic Surgery, Xuanwu Hospital of Capital Medical University,
Beijing, China

Correspondence: Tao Luo (TaoLuo35@126.com)

Purpose: ADME genes are genes involved in drug absorption, distribution, metabolism, and
excretion (ADME). Previous studies report that expression levels of ADME-related genes
correlate with prognosis of hepatocellular carcinoma (HCC) patients. However, the role of
ADME gene expression on HCC prognosis has not been fully explored. The present study
sought to construct a prediction model using ADME-related genes for prognosis of HCC.
Methods: Transcriptome and clinical data were retrieved from The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC), which were used as training
and validation cohorts, respectively. A prediction model was constructed using univariate
Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analysis.
Patients were divided into high- and low-risk groups based on the median risk score. The
predictive ability of the risk signature was estimated through bioinformatics analyses.
Results: Six ADME-related genes (CYP2C9, ABCB6, ABCC5, ADH4, DHRS13, and
SLCO2A1) were used to construct the prediction model with a good predictive ability. Uni-
variate and multivariate Cox regression analyses showed the risk signature was an inde-
pendent predictor of overall survival (OS). A single-sample gene set enrichment analysis
(ssGSEA) strategy showed a significant relationship between risk signature and immune
status. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment analyses showed differentially expressed genes (DEGs) in the high- and low-risk
groups were enriched in biological process (BP) associated with metabolic and cell cycle
pathways.
Conclusion: A prediction model was constructed using six ADME-related genes for predic-
tion of HCC prognosis. This signature can be used to improve HCC diagnosis, treatment,
and prognosis in clinical use.

Introduction
Hepatocellular carcinoma (HCC) is the most common liver cancer type [1]. It is the sixth-leading cause of
cancer morbidity and fourth cause of cancer mortality worldwide [2,3]. The main risk factors associated
with HCC pathogenesis include hepatitis virus infection, aflatoxin B1 exposure, and alcohol consumption
[4]. Prognosis of HCC patients is poor due to high malignancy and rapid progression. Despite advances
in treatment approaches, the 5-year survival rate of HCC patients in the United States is only 18% [5].
HCC prognosis and treatment selection is challenging due to its heterogeneity [6]. Therefore, it is nec-
essary to find novel tumor markers and therapeutic targets to improve management of HCC patients.
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ADME genes are genes involved in drug absorption, distribution, metabolism, and excretion (ADME). They mainly
encode Phase I and II drug-metabolizing enzymes, transporters, and modifiers and are involved in drug metabolism
and clearance of drugs by the liver [7]. PharmaADME Consortium identified 298 ADME genes, including 32 core
ADME genes and 266 extended ADME genes. In addition, ADME genes are involved in metabolism, transport, and
clearance of endogenous and exogenous substances, such as steroid hormones, bile acids, and carcinogens, which
can potentially promote cancer initiation [8,9]. Liver diseases, including HCC [10], affect ADME gene expression
levels, thus reducing hepatic metabolic capacity and ultimately affecting drug treatment efficacy [7]. Moreover, ADME
genes are expressed in extrahepatic and cancer tissues and are correlated with cancer progression and resistance to
anticancer drugs [11–13]. Therefore, it is necessary to explore the association between ADME gene expression level
and prognosis of cancer patients.

Previous studies have explored the role of ADME genes as prognostic cancer biomarkers and therapeutic targets. Hu
et al. [14] reported that approx. half of ADME genes are expressed in 21 cancers and they have prognostic value in these
cancers. In addition, most ADME genes are highly expressed in HCC. Moreover, several studies report differential
expression of ADME genes in HCC and non-cancerous tissues. Chen et al. [15] reported that CYP1A2 expression is
significantly decreased in HCC tissues compared with the level in normal tissues. Similarly, Yan et al. [16] reported
that expression levels of the nine CYPs and five UGTs in HCC and paired adjacent non-cancerous tissues are different
from the levels in normal tissues. These studies report that ADME genes are prognostic and diagnostic biomarkers
in HCC. However, no study has constructed an HCC prediction model using ADME genes.

In the present study, mRNA expression data and corresponding clinical information of HCC patients were retrieved
from public databases. The Cancer Genome Atlas (TCGA) cohort was used to construct a prediction model based on
ADME-related genes, and its predictive ability was validated using International Cancer Genome Consortium (ICGC)
cohort. Furthermore, the relationship between the biological function and ADME-related signature risk score in HCC
was explored. The present study provides information for development of therapeutic strategies for HCC patients.

Materials and methods
Data collection
RNA-seq data and corresponding clinicopathological data of 371 HCC patients were retrieved from TCGA on 14
February 2021 (https://portal.gdc.cancer.gov/) and was used as the training cohort. Similarly, data for 231 HCC sam-
ples were retrieved from ICGC (https://dcc.icgc.org/releases) database (validation cohort). The samples were from
Japanese individuals [17]. A set of ADME-related genes (n=298) was acquired from previous literature [14].

Selection of prognostic ADME-related differentially expressed genes in
the TCGA cohort
Differentially expressed genes (DEGs) in HCC samples and adjacent nontumorous tissues from TCGA cohort were
screened using the R package ‘limma’, with a |log2FoldChange| ≥ 1 and a false discovery rate (FDR) < 0.05.
Prognosis-associated ADME-related genes were identified using univariate Cox regression analysis. Venn R pack-
age was used to determine genes that overlap for further analysis.

Construction and validation of a prediction model using ADME-related
genes
A prediction model was constructed using Least Absolute Shrinkage and Selection Operator (LASSO) regression
analysis by eliminating collinearity in genes using the R package ‘glmnet’. The risk score of each patient was then
calculated as follows:

Risk score = β1 × Exp1 + β2 × Exp2 + βi × Expi

where β represents the regression coefficient, and Exp represents ADME-related gene expression levels. Patients
were divided into high- and low-risk groups based on the median risk score. Moreover, ‘survival’ and ‘survivalROC’
packages were used to generate survival and receiver operating characteristic (ROC) curves to estimate the accuracy
of the prediction model. Principal component analysis (PCA) and T-distributed Stochastic Neighbor Embedding
(t-SNE) analysis were performed using ‘prcomp’ and ‘Rtsne’ packages to determine the distribution of the genes in
different groups. In addition, 231 HCC samples from ICGC database were used to validate the predictive ability of
the prediction model.
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ADME-related risk signature score and other clinicopathological features
ADME-related risk signature score was compared with conventional clinicopathological characteristics using uni-
variate and multivariate Cox regression analyses to determine if it was an independent prognostic factor for overall
survival (OS).

Single-sample gene set enrichment analysis
Levels of 16 types of infiltrating immune cells and activity of 13 immune-related pathways or functions were deter-
mined using the R package ‘gsva’ through single-sample gene set enrichment analysis (ssGSEA).

Functional enrichment analysis
The R package ‘clusterProfiler’ was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses using DEGs in the high- and low-risk groups. DEGs were selected using |log2FoldChange|
≥ 1 and FDR < 0.05. GO analysis included biological processes (BPs), cellular components (CCs), and molecular
functions (MFs).

Statistical analyses
R software (version 4.0.2) was used for all statistical analyses. DEGs in tumor tissues and adjacent non-tumor tis-
sues were identified using Wilcoxon test. Mann–Whitney test was used to compare ssGSEA scores of immune cells
or pathways between the high- and low-risk groups. Survival time in the high- and low-risk groups was estimated
using Kaplan–Meier curves. In addition, log-rank test was used to analyze differences in survival time. ROC curves
and corresponding area under the ROC curve (AUC) values were used to evaluate accuracy of the ADME-related
risk signature score. Independent predictors of OS were identified using univariate and multivariate Cox regression
analyses. P-values less than 0.05 were considered statistically significant, and all P- values were two-tailed.

Results
Identification of prognostic ADME-related DEGs in the TCGA cohort
The study flow chart is shown in Figure 1. Data of 365 HCC patients from the TCGA cohort were used as the training
dataset except for six patients (the follow-up of five patients was not conducted and one patient opted out of the
study). Data for 231 HCC patients from the ICGC cohort were used as validation datasets. Univariate Cox regression
analysis showed that 46 ADME-related genes were significantly correlated with OS (P<0.01). Out of the 46 genes,
21 genes were differentially expressed in cancerous tissues compared with adjacent non-cancerous tissues (Figure
2A,B). A heatmap was used to visualize differential expression levels of the 21 genes (Figure 2C). Protein–protein
interaction (PPI) network analysis and correlation analysis were used to explore the interactions among the 21 genes
(Figure 2D,E).

Prediction model construction using the TCGA cohort
LASSO regression analysis was used for construction of the prediction model to minimize risk of overfitting. Six
genes (including CYP2C9, ABCB6, ABCC5, ADH4, DHRS13, and SLCO2A1) were chosen for the construction of
the prediction model based on LASSO regression analysis results (Figure 2F). Differential expression levels of the six
genes between tumor tissues and adjacent normal tissues are shown in Figure 3. The risk score of each sample was
calculated as follows:

Risk score = (−0.060 × CYP2C9) + (0.277 × ABCB6) + (0.236 × ABCC5) + (−0.041 × ADH4)

+(0.204 × DHRS13) + (−0.008 × SLCO2A1)

Prediction model evaluation using TCGA cohort
TCGA cohort samples were divided into high- (n=182) and low-risk (n=183) groups based on the median risk score
and were used to evaluate the predictive ability of the model (Figure 4A). Risk plot showed that high-risk score pa-
tients had a shorter survival time compared with the low-risk score patients (Figure 4B). Moreover, PCA and t-SNE
analyses showed that the different groups had distinct layout modes (Figure 4C,D). Furthermore, Kaplan–Meier anal-
ysis showed that the high-risk group had poorer OS compared with the low-risk group (P=1.358e-05) (Figure 4E).
AUC values of the risk signature scores were 0.790 at 1 year, 0.727 at 2 years, and 0.699 at 3 years (Figure 4F).
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Figure 1. Flow chart of data analysis

Prediction model validation using ICGC cohort
ICGC cohort samples were used as the validation dataset to test the performance of the prediction model. ICGC co-
hort samples were divided into high- (n=115) and low-risk (n=116) groups using the formula for the TCGA cohort
(Figure 5A). Risk plot showed that high-risk score patients had shorter survival compared with that of the low-risk
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Figure 2. Prediction model construction using ADME-related genes

(A) Venn plot showing intersection of genes related to OS and differentially expressed in tumor and adjacent normal tissues. (B)

Forest plots showing the relationship between expression of intersecting genes and OS. (C) Heatmap showing relative expression

of intersecting genes in tumor and adjacent normal tissues. (D) PPI network of intersecting genes. (E) Correlation analysis of

intersecting genes. (F) Prediction model construction using LASSO regression analysis.
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Figure 3. Expression levels of the six ADME-related genes between HCC and adjacent normal tissues

mRNA expression levels of (A) CYP2C9 and (D) ADH4 were significantly lower in HCC tissues compared with those in adjacent

normal tissues, whereas mRNA expression levels of (B) ABCB6, (C) ABCC5, (E) DHRS13, and (F) SLCO2A1 were significantly higher

in HCC tissues compared with adjacent normal tissues. ****P<0.0001.

score patients, which was consistent with TCGA cohort results (Figure 5B). Dimensionality reduction analysis us-
ing PCA and t-SNE showed that patients in different risk groups were distributed in two directions (Figure 5C,D).
Kaplan–Meier analysis confirmed that high risk score patients had a poorer prognosis compared with those with
low-risk scores (P=2.728e-04; Figure 5E). AUC values of the risk signature scores were 0.746 at 1 year, 0.693 at 2
years, and 0.704 at 3 years (Figure 5F).

Independent prognostic role of the ADME-related risk signature score
using TCGA and ICGC cohorts
The independent prognostic value of the ADME-related risk signature score for OS in TCGA and ICGC cohorts was
determined using univariate and multivariate Cox regression analyses. Univariate Cox regression analysis showed
that the risk score was an independent factor in the TCGA cohort (Figure 6A). Similarly, multivariate Cox regression
analysis showed that the risk score was an independent predictor of OS (Figure 6B). In addition, analysis showed that
the risk score was an independent predictor of OS in the ICGC validation cohort (Figure 6C,D).

Functional enrichment analysis of DEGs in the high- and low-risk groups
GO and KEGG pathway enrichment analyses were performed explore the relationship between biological func-
tions of DEGs in the high- and the low-risk groups and ADME-related risk score. GO analysis showed that DEGs
were enriched in several metabolism-related MFs, such as steroid hydroxylase, oxidoreductase, and arachidonic acid
monooxygenase activities, heme binding, iron ion binding, tetrapyrrole binding, and oxidoreductase activity in both
TCGA and ICGC cohorts (Figure 7A,B). Similarly, KEGG analysis showed that DEGs in TCGA and ICGC cohorts
were implicated in metabolism-related pathways, such as metabolism of xenobiotic metabolism through cytochrome
P450, retinol metabolism, fructose, and mannose metabolism, glycolysis/gluconeogenesis, and drug metabolism
(Figure 7C,D). Moreover, DEGs in both TCGA and ICGC cohorts were enriched in BPs involved in cell cycle, such
as mitotic nuclear division, nuclear division, organelle fission, sister chromatid segregation, and chromosome segre-
gation regulation.
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Figure 4. Estimation of ADME-related risk signature using the TCGA cohort

(A) Distribution of risk scores. (B) Distribution of survival status, survival time, and risk scores. (C) PCA of risk scores. (D) t-SNE

analysis of risk scores. (E) Kaplan–Meier curves for OS of patients in the high- and low-risk groups. (F) ROC curves and AUCs

showing the predictive performance of the risk signature.
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Figure 5. Validation of ADME-related risk signature using the ICGC cohort

(A) Distribution of risk scores. (B) Distribution of survival status, survival time, and risk scores. (C) PCA of risk scores. (D) t-SNE

analysis of risk scores. (E) Kaplan–Meier curves for OS of patients in the high- and low-risk groups. (F) ROC curves and AUCs

showing predictive performance of the risk signature.
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Figure 6. Estimation of the independent prognostic value of the risk signature

Univariate Cox regression analysis of OS for HCC patients using the TCGA (A) and ICGC (C) cohorts. Multivariate Cox regression

analysis of OS for HCC patients using the TCGA (B) and ICGC (D) cohorts.

Analysis of differences in immune status between the high- and low-risk
groups
Enrichment scores of immune cell subtypes and immune-related functions and pathways were determined by ssGSEA
to explore the correlation between the risk signature score and immune status. Scores of activated dendritic cells
(aDCs), inhibited dendritic cells (iDCs), macrophages, regulatory T (Treg) cells, and pathway activations related to
major histocompatibility complex (MHC) class I were higher in the high-risk group compared with the scores in the
low-risk group. On the contrary, scores of B cells, mast cells, neutrophils, natural killer (NK) cells and pathways related
to cytolytic activity, type I interferon (IFN) response, type II IFN response were higher in the low-risk group compared
with the high-risk group (Figure 8A,B). Moreover, validation using the ICGC cohort showed that macrophage scores
were higher in the high-risk group compared with the scores in the low-risk group, whereas B cells, neutrophils, and
NK cell scores and pathways related to the type I IFN response and type II IFN response were higher in the low-risk
group compared with the high-risk group (Figure 8C,D).

Discussion
HCC is a common malignant tumor with complex pathogenesis and high mortality thus it poses a significant threat
to global public health. Although significant advances in therapeutic strategies have been achieved, HCC prognosis
remains poor, mainly due to late diagnosis and poor response to conventional treatment. Recent studies report mul-
tiple molecular markers for prediction model construction in multiple cancers. In addition, these markers have been
used for development of therapeutic targets through high-throughput sequencing technology, thus greatly improving
early diagnosis and long-term survival of patients.
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Figure 7. GO and KEGG pathway enrichment analyses

GO enrichment analysis of DEGs in the high- and low-risk groups in the TCGA (A) and ICGC (B) cohorts. KEGG pathway analysis

of DEGs in the high- and low-risk groups in the TCGA (C) and ICGC (D) cohorts.

In the present study, a prediction model was constructed using six ADME-related genes including, CYP2C9,
ABCB6, ABCC5, ADH4, DHRS13, and SLCO2A1. CYP2C9, encodes a member of cytochrome P450 superfam-
ily of enzymes, and is down-regulated in HCC tissues, and patients with low CYP2C9 expression have poor OS and
disease-free survival [18,19]. ABCB6 is a mitochondrial transporter that regulates porphyrin biosynthesis and is
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Figure 8. Comparison of the enrichment scores for immune status between the high- and low-risk groups based on ssGSEA

Scores of 16 immune cells in the TCGA (A) and ICGC (C) cohorts. Scores of 13 immune-related functions or pathways in the TCGA

(B) and ICGC (D) cohorts. Abbreviation: CCR, cytokine–cytokine receptor. *P<0.05, **P<0.01, ***P<0.001.

up-regulated in HCC tissues. ABCB6 overexpression enhances HCC cell proliferation and tumorigenicity by tar-
geting the cell cycle [20]. ABCC5 is a member of the MRP subfamily implicated in transport of various molecules
across extra- and intra-cellular membranes [21]. It is associated with multidrug resistance in HCC. Wei et al. reported
that ADH4 is significantly down-regulated in HCC tissues compared with adjacent non-cancerous tissues [22]. In
addition, lower ADH4 expression is significantly correlated with higher pathology grade and poor OS. SLCO2A1
(OATP2A1) encodes organic anion transporters and is highly expressed in primary and metastatic HCC [23]. High
SLCO2A1 expression level is associated with a poor prognosis [24]. The findings of the current study were consistent
with findings from previous studies except for DHRS13 since no study has explored its role in HCC.

Tumor node metastasis (TNM) staging system is widely used in clinical practice to guide cancer treatment because
it is simple and provides clinicians and patients with vital prognostic determinants. However, TNM staging system
has some pitfalls. For instance, patients at the same stage may have a different prognosis since the stage system was
based on the anatomy of tumor invasion and did not consider the functional status of tumor cells or the patient body
[25]. Therefore, this staging system does not fully reflect intratumor heterogeneity, result in ineffective treatment.
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Therefore, it is essential to screen novel molecular biomarkers to supplement TNM staging for HCC diagnosis and
treatment. HCC patients can be divided into high- and low-risk groups based on the median of hypoxia-related risk
score [26]. High-risk score patients have a poor prognosis. Several studies have identified novel molecular biomark-
ers, such as ferroptosis-related genes [27], immune-related genes [28], and metabolism-related genes [29] as prog-
nostic markers and therapeutic targets in HCC. Moreover, the National Comprehensive Cancer Network (NCCN)
recommends a 21-gene expression assay (Oncotype DX, Genomics Health) for assessing the prognosis of patients
with hormone receptor-positive breast cancer [30]. In this study, a systematic ADME-related genes were analyzed to
explore HCC pathogenesis and provide a basis for identification of novel drug targets.

Functional enrichment analysis showed that DEGs in high- and low-risk groups were significantly associated with
metabolism-related pathways. A previous study reported that cytochrome P450 is significantly down-regulated in
HCC tissues compared with the adjacent non-cancerous tissue. and its expression is correlated with the histological
grade of the tumors [31]. Liu et al. [32] also reported that the risk signature of cytochrome P450 can be used for
prognosis of HCC patients. Besides, Hu et al. [33] reported that glycolysis plays an important role in HCC progression
by providing sufficient energy to meet energy demands for the rapidly proliferating HCC cells. Findings in the current
study show that DEGs in different groups were enriched in pathways associated with the cell cycle. Polireddy et al. [34]
reported that attenuation of ABCB6 expression delays G2/M phase of the cell cycle, whereas ABCB6 overexpression
promotes HCC cell growth and proliferation.

Tumor immune microenvironment (TIME) is plays important roles in HCC initiation and progression. ssGSEA
showed that macrophage enrichment score was higher in the high-risk group compared with the score in the low-risk
group in both TCGA and ICGC cohorts. This finding is consistent with finding from a previous study that an in-
creased number of macrophages in the TIME is positively correlated with HCC progression and poor prognosis
[35]. Furthermore, the high-risk group had higher Treg cell infiltration compared with the low-risk group. Several
studies have explored the immunosuppressive role of the Treg cells in the TIME. Treg cells are implicated in promo-
tion of immune escape of cancer cells through contact-dependent interactions between check-point molecules and
their ligands [36]. In addition, Treg cells enhance immunosuppressive environment by releasing inhibitory cytokines
[37,38]. Therefore, understanding key mechanisms of modulation of immune escape and immunosuppression by
ADME-related genes may provide new strategies for immunotherapy.

To the best of our knowledge, this is the first study to construct a prediction model using ADME-related genes for
HCC prognosis. An external validation cohort was used to test the accuracy of the model. In addition, this risk signa-
ture can be used to explore the functional states of immune cells and immune signaling pathways. ADME genes can
be used as novel biomarkers and targets for HCC diagnosis and treatment. However, this study has some limitations.
First, the results should be validated using a large-scale, prospective study since the data used in the present study
were retrospectively obtained from public databases. Second, inadequate treatment information, including surgery,
ablation, TACE, and target therapy, may reduce the statistical reliability of the findings from the present study. In
addition, these findings are based on bioinformatics analysis, therefore, additional validation should be carried out
through experimental studies. ADME genes used to construct the prediction model were selected from genes that
were differentially expressed between tumor tissues and adjacent normal tissues, and the study did not consider that
expression of ADME genes can be affected by different inducers of HCC, including hepatitis viruses B, C, liver cir-
rhosis, and alcohol liver disease.

Conclusion
In summary, six ADME-related genes were used for prediction model construction to estimate prognosis of HCC
patients. The ADME-related risk signature showed strong predictive ability and was an independent predictor of OS
in HCC patients. Therefore, the six ADME-related genes are potential targets for HCC immunotherapy.
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