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Abstract

We present a critical assessment of the role of transfer learning in training fully convolutional 

networks (FCNs) for medical image segmentation. We first show that although transfer learning 

reduces the training time on the target task, improvements in segmentation accuracy are highly 

task/data-dependent. Large improvements are observed only when the segmentation task is more 

challenging and the target training data is smaller. We shed light on these observations by 

investigating the impact of transfer learning on the evolution of model parameters and learned 

representations. We observe that convolutional filters change little during training and still look 

random at convergence. We further show that quite accurate FCNs can be built by freezing the 

encoder section of the network at random values and only training the decoder section. At least for 

medical image segmentation, this finding challenges the common belief that the encoder section 

needs to learn data/task-specific representations. We examine the evolution of FCN representations 

to gain a deeper insight into the effects of transfer learning on the training dynamics. Our analysis 

shows that although FCNs trained via transfer learning learn different representations than FCNs 

trained with random initialization, the variability among FCNs trained via transfer learning can be 

as high as that among FCNs trained with random initialization. Moreover, feature reuse is not 

restricted to the early encoder layers; rather, it can be more significant in deeper layers. These 

findings offer new insights and suggest alternative ways of training FCNs for medical image 

segmentation.
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1. Introduction

1.1. Background and motivation

Deep learning has made a significant impact in the field of medical image analysis. For 

semantic segmentation, fully convolutional neural networks (FCNs) have shown to be 

powerful models. Many studies have shown that deep learning methods achieve more 

accurate segmentations than alternative segmentation methods [3] [5] [27] [32] [61]. 

Commonly, FCNs are trained in a supervised manner, i.e., by minimizing some loss function 

that penalizes the disagreement between the ground truth and predicted segmentations on a 

set of labeled training images. In medical applications, obtaining ground truth labels is 

challenging because it requires detailed annotation of large 3D images by domain experts. 

To address this challenge, a wide range of techniques have been proposed. Some of the main 

categories of these methods include semi-supervised learning, transfer learning, learning 

from noisy labels, and learning from computer-generated labels. Recent reviews of these 

methods for medical image analysis can be found in [28, 11, 51]. The focus of this study is 

on transfer learning.

Transfer learning refers to any learning strategy that uses the knowledge gained in solving 

one problem, Problem S, in subsequently solving a separate problem, Problem T. Transfer 

learning is related to other training strategies such as multi-task learning. In order to 

distinguish transfer learning from related training strategies such as multi-task learning, it is 

assumed that Problem T is addressed separately after Problem S [47, 41]. A formal 

definition can be found in [41]. According to this formal definition, transfer learning 

involves the concepts of domain and task. A domain D is defined by a feature space X and a 

probability distribution P(X) defined over X. A task T, on the other hand, is defined by a 

label space Y and a prediction function f(x) = P(y|x) for x ∈ X and y ∈ Y. Now, consider a 

source domain and task DS, TS  and a target domain and task DT , TT , where either 

DS ≠ DT  and/or TS ≠ TT . Transfer learning aims at learning fS, and subsequently learning 

fT by utilizing the knowledge gained in learning fS. Whereas the above is a formal 

description of transfer learning, its implementation in practical applications can take many 

different forms, depending on what kind of information is transferred and how it is utilized 

in learning fT [16, 41].

Transfer learning, in its various manifestations, has been widely employed in training deep 

learning models. Some of the notable examples include studies that aim at learning deep 

representations that can be re-purposed for other tasks [60, 14], Deep Adaptation Networks 

for domain adaptation [36], and few/zero-shot learning [62, 59]. However, for vision 

applications, the most widely used approach is to pre-train a model on a source domain/task 

and then fine-tune that same model on the target domain/task [18]. In this approach, the 

knowledge that is transferred from the source to the target problem is in the form of the 

values of the network parameters.

Transfer learning has also been used in training deep learning models for various medical 

image analysis applications [11, 51]. However, for segmentation, which is the focus of this 

work, most of the previous studies have only reported segmentation accuracy measures, 
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without investigating how transfer learning takes place and in what ways the models learned 

with and without transfer learning differ. This paper aims at filling this gap by presenting a 

more comprehensive and more in-depth assessment of the effect of transfer learning for 

FCN-based medical image segmentation.

1.2. Related works

Many studies in recent years have used transfer learning for medical image segmentation. 

Recent reviews of these studies can be found in [11, 51]. Here we briefly review some 

typical examples. In fact, the way the segmentation problem is formulated and the approach 

used for transfer learning vary greatly between these studies, making some of them less 

relevant to our work. As an example, one study used transfer learning for segmentation of 

carotid intima-media boundary and found that transfer learning with a model pre-trained on 

natural images was useful [52]. However, they formulated the segmentation problem as a 

pixel-wise classification task and used a (non-FCN) classification network architecture. Such 

studies are not directly relevant to our work, which focuses on FCN segmentation models.

One study found that a model trained for liver and kidney segmentation on a dataset of 35 

MR images performed very poorly when applied on a second dataset of 45 images, even 

though the main difference between the two datasets were image size and resolution [54]. 

The authors found that fine-tuning the model trained on the first dataset for the segmentation 

on the second dataset performed equally with training a model from scratch. They proposed 

using Reverse Classification Accuracy, [53], to select the most useful images for annotation 

in the target domain and showed that with this strategy, using as few as five images in the 

target domain was sufficient to match the accuracy obtained with all 45 images, both with 

fine-tuning and with training from scratch.

For brain white matter hyperintensity segmentation in MRI, one study evaluated the effect of 

transfer learning when source and target domains differed in terms of acquisition protocol 

[17]. Compared with training from scratch, transfer learning achieved better results. As the 

number of training images in the target domain decreased, achieving good performance with 

transfer learning required limiting the fine-tuning to the top two layers. Similar observations 

were reported for multiple sclerosis lesion segmentation in multisite datasets in [55].

A transfer learning method for cross-modality domain adaptation was proposed in [15] and 

successfully applied for segmentation of cardiac CT images using models pre-trained on MR 

images. The method included a domain adaptation module, based on adversarial training, to 

map the target data to the source data in feature space. A GAN-based method for mapping 

the target images to the appearance of source images was proposed in [8]. This method also 

showed promising results on the segmentation of cross-site chest X-ray datasets.

Even though the studies reviewed above present useful knowledge regarding the 

effectiveness of transfer learning for medical image segmentation, they are all limited to a 

single dataset or application. Furthermore, they all lack any analysis of the role of transfer 

learning beyond the gross segmentation accuracy values. One recent paper reported an in-

depth study of transfer learning for medical image analysis [46]. However, that study was 

limited to 2D images and examined transfer learning with models pre-trained on natural 
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images, which is not relevant for 3D medical images. Moreover, that study was dedicated to 

classification tasks, whereas the work presented in this paper focuses on voxel-wise 

semantic segmentation.

1.3. Contributions of this work

The main contributions of this work include:

• We experimentally assess the impact of transfer learning in training FCNs for 

medical image segmentation. The difference between source and target domains 

in our experiments spans a wide range of important factors including image 

modality, organ of interest, image quality, and subject age. We show that 

although transfer learning reduces the training time on the target task, the 

improvement in segmentation accuracy is highly task/data-dependent and often 

very marginal.

• To shed light on our experimental observations, we carry out a detailed analysis 

of the dynamics of model parameters and learned representations during training. 

We show that the representations learned by the encoder section of the model do 

not change significantly from their randomly- initialized or pre-trained values 

during training/fine-tuning. Furthermore, we show that the filters of the encoder 

section of the converged models look random. We explain this behavior by 

arguing that the responses of such random filters are similar to useful operations 

such as edge detectors.

• We further show that it is possible to freeze the filters of the encoder section of 

the model at their initial random state and train only the decoder section. We 

show that this training strategy leads to very small or no loss of test accuracy, and 

may speed up the convergence too.

• We analyze FCN representations to gain a deeper understanding of the effects of 

transfer learning on these models. Our analysis shows that there is substantial 

variability among the converged models in terms of learned representations 

throughout the network. In this regard, models trained with transfer learning can 

be as diverse as models trained from scratch. Moreover, we show that feature 

reuse is not restricted to the early layers; rather, it can be even more significant in 

deeper layers, suggesting viable alternative approaches to model fine-tuning on 

the target task.

2. Materials and Methods

2.1. Data

Table 1 summarizes the information about the datasets used in this work. For all experiments 

with any of these datasets, we used 70% of the images for training and validation and the 

remaining 30% for test. Our data pre-processing included: 1) resampling images and 

segmentations for each dataset to an isotropic voxel size; depending on the original voxel 

spacing of the images in a dataset, the re-sampled voxel size ranged from 0.8 mm to 2.0 mm, 

2) intensity normalization: Computed Tomography (CT) images were normalized by linearly 
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mapping the Hounsfield Unit values in the range [−1000, 1000] to intensity range [0, 1], 

whereas Magnetic Resonance (MR) images were normalized by dividing each image by the 

standard deviation of its voxel intensities.

2.2. Network architecture and training details

Figure 1 shows the main network architecture used in this study. The overall architecture is 

similar to the 3D U-Net and V-Net [12, 38], with additional connections between different 

feature maps in the encoder section of the network. Such connections have been recently 

shown to improve the segmentation accuracy in natural image segmentation. The model 

accepts 963-voxel image blocks as input, which are sampled from random image locations 

during training. The number of feature maps in the first stage of the network was set to 14, 

which was the largest number of feature maps possible on the memory of our GPU. In the 

encoder section, the number of these feature maps increase in each stage by factors of 2; i.e., 

the number of feature maps in the subsequent encoder layers are 28, 56, 112, and 224. At the 

same time, the size of the feature maps decrease by factors of 2; that is the size of feature 

maps in the subsequent encoder layer are 483, 243, 123, and 63. The reverse takes place in 

the decoder section, where the feature maps increase in size while the number of feature 

maps decrease, again by factors of 2. The feature maps computed in each stage of the 

encoder go through a residual block with short and long skip connections (as shown in the 

lower part of Figure 1) and are concatenated to the decoder feature maps of the same size. 

All convolutional kernels are of size 3 and all convolutional operations are followed by 

ReLU activations. In Figure 1, we have marked three layers in the encoder section and three 

layers in the decoder section. These are six layers that we will focus on below when we 

investigate the training dynamics and the effects of transfer learning.

Many differeent network architectures have been proposed for medical image segmentation. 

Recent review of these architectures can be found in [50, 9]. Based on these reviews, we 

chose four additional network architectures in this study. These are briefly explained below. 

We refer the reader to the original papers for detailed description of each architecture.

• HRNet [58]. The novelty of this architecture is that it allows the network to 

maintain high-resolution features through the network. The network starts with a 

high-resolution stream of representations and gradually adds high-resolution to 

low-resolution paths. As a result, the ith stage of the network will have i streams 

of representations, each with a different resolution.

• UNet++ [63]. As the name implies, this is an extension of the UNet [12, 48]. It 

includes deep supervision. Moreover, it connects encoder and decoder 

subnetworks using a series of nested, dense skip connections.

• Method of [25], which we refer to as Tiramisu. This architecture is an extension 

of DenseNet [23] for semantic segmentation. Densely-connected networks are 

among the most common architectures used in vision applications, including 

segmentation.

• Autofocus [43]. This network is based on autofocus convolutional layer, which 

aims to improve multi-scale processing of the image in segmentation. It includes 
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multiple parallel convolutional paths, each with a different dilation rate. Other 

specific aspects of the network include weight sharing between parallel paths as 

well as an attention mechanism.

In addition to our own network (Figure 1) and the above four architectures, in some 

experiments we also use the original V-Net architecture [38]. Please note that our aim is not 

to compare the segmentation accuracy of different network architectures. By experimenting 

with different architectures, we aim at showing that our findings in terms of the impact of 

transfer learning are not limited to a certain architecture.

At test time, a sliding window approach with a 24-voxel overlap between adjacent blocks 

was used to process an image. In addition to random shifts, other data augmentations used 

during training included flip, rotation by integer multiples of π/2, and addition of random 

Gaussian noise to voxel intensity values. When training from scratch, we use the 

initialization method proposed in [20]. This method initializes convolutional filters with 

zero-mean Gaussian random variables with a standard deviation of 2/n, where n is the 

number of connections to the convolutional filter from the previous layer. The network was 

trained by minimizing the negative of the Dice Similarity Coefficient (DSC) between the 

predicted and target segmentation maps using Adam [34]. We used an initial learning rate of 

10−4, which was reduced by 0.90 after every 2000 training iterations if the loss did not 

decrease.

For our transfer learning experiments, we reduced the initial learning rate by half and fine-

tuned all model layers. This has been referred to as deep fine-tuning [52]. Some studies, e.g., 

[17], have reported that fine-tuning only certain network layers could be preferable in some 

applications. However, in our experiments we found that fine-tuning the entire network 

invariably led to models that were better than or as good as models fine-tuned partially. We 

use the terms “training with random initialization” and “training from scratch”, 

interchangeably, to refer to model training without transfer learning. To quantify 

segmentation performance, we mainly use DSC, Average Symmetric Surface Distance 

(ASSD), and the 95 percentile of the Hausdorff Distance (HD95). In experiments with brain 

lesion segmentation, we also report the lesion-count F1-score for completeness.

2.3. Analysis of model training

Due to their deep hierarchical structure and large number of parameters, deep learning 

models are considered to be more difficult to interpret and understand than many other 

machine learning models. Nonetheless, there exist methods for probing the inner workings 

of these models. In this study, we use some of the recent methods that have been developed 

for investigating how neural network representations evolve over time and for comparing the 

representations learned by different networks [45, 39, 46].

These methods are based on canonical correlation analysis (CCA) [1]. Given two vectors of 

random variables, x ∈ ℝn and y ∈ ℝm, CCA seeks projection vectors u1 ∈ ℝn and v1 ∈ ℝm

such that the correlation between the projected random variables, ρ1 = corr u1
Tx, v1

Ty , is 

maximized. This process can be carried out min(m, n) times, with the condition that the next 

pair of projection vectors, ui and vi, are pairwise-orthogonal to the previously-computed 
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ones. It has been shown that CCA can be used to compare the representations learned by 

different neural networks [45, 39]. In this setting, elements of vectors x and y correspond to 

individual neurons of a fully-connected layer or (as in this work) different channels of a 

convolutional feature map. These random vectors can be sampled by passing data through 

the network and recording the neuron activation values. In our experiments, we sampled 

blocks from random locations in the test images and recorded the values of the convolutional 

layer neurons.

The output of CCA is a set of projection directions, {ui, vi}, and a measure of how strongly 

the two representations are correlated along those directions, {ρi}. In [45], it was suggested 

to use the average of ρis as a measure of similarity of two convolutional layers. It was later 

shown in [39] that the computed directions can vary greatly in terms of the amount of 

variability in the original data that they explain. Therefore, a weighted average of ρis was 

proposed for estimating the similarity between two convolutional layers:

RSIM L1, L2 = ∑αiρi, (1)

where L1 and L2 denote the convolutional layers being compared and αi are the normalized 

weights that are proportional to the amount of variability explained by each direction [39]. 

In this study, we use this method to compute the similarity of convolutional representations 

within and across networks to understand the effect of transfer learning.

3. Results and Discussion

In this section, we first present the results of a series of experiments to assess the impact of 

transfer learning in medical image segmentation with FCNs. Each experiment displays a 

distinct difference between source and target domains or tasks.

3.1. Transfer across acquisition protocols

A recurring theme in medical image data involves varying image quality, such as when 

different scanners or acquisition protocols are used. As an example of this scenario, we 

consider the TSC dataset. The TSC dataset included 165 scans from five different centers, 

with 18–47 scans per center. The MRI scans were acquired using 3T scanners. The imaging 

protocol for each patient included the following: (1) a T1-weighted high-resolution 

magnetization-prepared rapid-acquisition gradient echo (MPRAGE) image. The voxel size 

was 1.0 × 1.0 × 1.0 mm3, echo time (TE): 1.66âĂŞ3.39 ms, repetition time (TR): 

1,130âĂŞ2,530 ms, field of view (FOV): 19.2âĂŞ25.6 cm, and flip angle: 7 – 9°; (2) a T2-

weighted turbo spin echo (TSE) image with 0.4 mm2 in-plane resolution with 2mm slice 

thickness; and (3) sagittal 3D isotropic T2 fluid-attenuated inversion recovery (FLAIR) with 

voxel size of 0.90 × 0.90 × 1.0 mm, number of excitations of 1, TR=5,000 ms, TE= 

390âĂŞ400 ms, echo train length 141, flip angle= 20°, FOV: 19âĂŞ26 cm, acquisition 

matrix 256× 256. Imaging protocols were harmonized to the extent permitted by each 

platform. All scans had been manually annotated in detail. Nonetheless, two or three scans 

from each center (for a total of 12 scans) were selected for more accurate and detailed 

annotation by two annotators; these scans were used as test data and the remaining 16–44 

scans per center were used for training. For one of these centers, which we refer to as Center 
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5, the images had reduced gray matter - white matter contrast and resolution compared to the 

other centers due to the capabilities of the acquisition device in that center. Sample FLAIR 

images from centers 1, 3, and 5 are shown in Figure 2. When we trained and tested models 

separately on data from each center, the segmentation accuracy on Center 5 was much lower 

than the other four centers, confirming that the reduced image contrast and resolution 

resulted in poor model accuracy.

In order to investigate the potential of transfer learning to improve the segmentation 

accuracy on data from Center 5, we trained models using three strategies: 1) training from 

scratch on data from Center 5, 2) fine-tuning models pre-trained on each of the other four 

centers, 3) fine-tuning a model pre-trained on the pool of all data from the other four centers. 

With respect to the formalism of transfer learning that we presented in Section 1.1, clearly in 

this experiment the source and target tasks are the same TS ≡ TT  because they both 

involve TSC lesion segmentation. On the other hand, the source and target domains are 

different DS ≠ DT  because of the change in image quality and hence the change in the 

distribution P(X). Table 2 shows the results of these experiments, where for the second 

training strategy we show the average of four trials. The results show a remarkable 

improvement in the segmentation accuracy of this challenging dataset with transfer learning. 

Fine-tuning the model trained on the pool of data from all four centers led to better results 

than fine-tuning the model trained on data from one center. Interestingly, as can be seen in 

the table, we observed similar improvements in DSC and F1 score due to transfer learning 

with the other four architectures as well.

3.2. Transfer across imaging modalities

Here, the source and target organs of interest are the same, but the imaging modalities are 

different. Hence, with respect to the framework presented in Section 1.1, in this case the 

source and target domains are different, but the tasks are the same DS ≠ DT , TS ≡ TT . 

The example considered here is liver segmentation. We train a model for segmentation of 

liver in the pool of the three liver MRI datasets (Table 1). We then fine-tune that model for 

segmentation of the Liver-CT dataset. The comparison with training from scratch is shown 

in Table 3 for two sets of experiments with 15 and 6 target training images for all five 

network architectures. In this table, and henceforth in the paper, we use T.L. and R.I. as short 

for transfer learning and random initialization (i.e., training from scratch), respectively. 

Figure 3 shows the test DSC as a function of training iteration count. We see that transfer 

learning improves the convergence speed. However, in terms of segmentation accuracy, the 

difference between models trained with transfer learning and learned from scratch is 

marginal. Paired t-tests did not reveal any significant differences at p = 0.05 between T.L. 

and R.I. for experiments with 15 and 6 target training images. This observation was the same 

with all five network architectures. In terms of segmentation accuracy, there were slight 

differences between different network architectures. However, in terms of the impact of 

transfer learning, there were no differences between the five networks.
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3.3. Transfer across subject age

Often the source and target tasks can be different due to a shift in factors such as subject age 

or body size. An example of such a shift is represented by the three cortical plate 

segmentation datasets used in this work. As shown in Figure 4, the shape of the cortical plate 

undergoes significant changes during early brain development. Therefore, in this case, with 

respect to the formalism presented in Section 1.1, the source and target domains are the 

same DS ≡ DT  but the tasks are different because of the substantial change in the shape of 

the cortical plate to be segmented TS ≠ TT .

The numbers of images in CP-younger fetus, CP-older fetus, and CP-newborn datasets were, 

respectively, 27, 15, and 558. We trained a model on CP-newborn, achieving a DSC of 0.93. 

We then fine-tuned this model on CP-younger fetus and CP-older fetus datasets, both with 

their entire training set as well as with subsets of 5 images from each dataset. The results 

obtained with two different network architectures are presented in Table 4.. Figure 5 shows 

the convergence for the network architecture shown in Figure 1. They show faster 

convergence with transfer learning. However, improvements in model performance are 

generally small. Statistically significant improvements were only observed for segmentation 

of CP-older fetus when 5 images were used from the target domain. In Table 4 and the rest 

of the tables in this paper, we use an asterisk (*) to denote statistical significance at p = 0.05 

due to transfer learning. These results suggest that transfer learning may be more effective 

when source and target domains are more similar and the target training data is smaller. The 

results with the other three network architectures (i.e., HRNet, Tiramisu, and Autofocus) 

were very similar to those of our network and UNet++, and therefore they were not included 

in this table. In particular, with these three networks, too, the only statically significant 

differences were observed for segmentation of CP-older fetus when 5 images were used 

from the target domain.

3.4. Transfer across segmentation tasks

A common scenario arises when a source dataset from the same modality is available but the 

organ of interest is different between source and target domains. We present two sets of 

experiments representing this scenario.

The first set of experiments is on segmentation of the Pancreas-CT dataset. We trained 

models from scratch using 150 and 15 training images. We also pre-trained a model on the 

Liver-CT dataset and fine-tuned it on the same number of target (Pancreas-CT) images. With 

respect to the definition of transfer learning in Section 1.1, clearly in this setting the source 

and target tasks are different TS ≠ TT . In addition, the source and target domains are not 

the same because the distribution of representations in the feature space, P(X), between the 

source and target are different, especially at the deeper network layers. Comparison of test 

accuracy for this experiment is shown in Table 5. The improvement in segmentation 

accuracy was small when 150 target training images were used in the target domain. With 

only 15 training images in the target domain, statistically significant improvements were 

observed for DSC, HD95, and ASSD. As shown in Table 5, we made the same observation 

with all five network architectures.
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The second set of experiments was on segmentation of brain lesions in the TSC dataset. This 

dataset was briefly described above in Section 3.1. As we mentioned there, the images in 

this dataset came from five different centers. We ran two experiments on data from each 

center: 1) training from scratch, 2) transfer learning by fine-tuning a model pre-trained on 

the BRATS dataset. With regard to the formalism of transfer learning presented in Section 

1.1, in this experiment the source and target are different in terms of the task TS ≠ TT
because the source and target tasks involve segmentation of two different types of lesions. 

Specifically, the BRATS dataset involves segmentation of brain tumors (glioma) [37], 

whereas the TSC dataset involves segmentation of Tuberous Sclerosis Complex lesions [13].

Therefore, in this experiment the BRATS dataset is the source dataset and the TSC dataset is 

the target dataset. We compared transfer learning and training from scratch in two different 

scenarios: 1) using all training images in the target (TSC) dataset, and 2) using only 3 scans 

from each center in the target (TSC) dataset. Table 6 shows the accuracy on the 12 test 

scans. Results show only a marginal improvement when 16–44 training scans were available 

in the target domain. With only 3 training scans in the target domain, the improvements 

gained with transfer learning were statistically significant. As shown in this table, we made 

very similar observations with UNet++ and Tiramisu in terms of the impact of transfer 

learning in this experiment. The results with HRNet and Autofocus were also very similar 

and therefore were not shown.

3.5. Scalability

In this section, we present the results of a set of experiments to investigate the impact of the 

number of training images in the source and target domains on the effectiveness of transfer 

learning. Please note that our experiments presented in Sections 3.2, 3.3, and 3.4 also 

investigated this factor. For example, in Section 3.2 we presented the results of transfer 

learning with both 6 and 15 target training images. However, in the experiments presented in 

this section we consider two larger datasets in the source and target domains. In this 

experiment, we first trained a model for brain segmentation in the Whole-Brain-MRI dataset 

and then transferred the model for brain cortical plate segmentation in CP- newborn dataset. 

Whole-Brain-MRI dataset is the source dataset and contains 2500 images. CP- newborn 

dataset is the target dataset and contains 558 images. We used 108 images in the CP- 

newborn dataset as test set in the target domain. We used 50, 250, or 2500 images from the 

Whole-Brain-MRI dataset for pre-training the model. Then we used 50, 150, or 450 images 

from the CP- newborn dataset for fine-tuning the transferred model. For each of 50, 150, or 

450 images from the CP- newborn dataset we also trained models with random initialization. 

Table 7 shows the detailed results of this experiment. Note that in this table using zero 

images in the source domain corresponds to training from scratch (R.I.). The results show 

that the number of training images in the target domain has a slightly larger impact than the 

number of images in the source domain. When the number of training images in the target 

domain was 150 or 450, there was very little difference between training from scratch (R.I.) 

and transfer learning models trained with 50, 250, or even 2500 images in the source 

domain. Even with 50 target training images, the impact of transfer learning was minimal 

and not statistically significant in terms of DSC and HD95. We ran the same experiment 

with HRNet and UNet++, and we made the same observation. This agrees with our 
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experiments reported in the above subsections; i.e., it seems that the impact of transfer 

learning is not significant when there are more than a few tens of target training images.

3.6. Investigation of the dynamics of learned representations

We used the tools described in Section 2.3 to investigate the dynamics of learned 

representations to gain a deeper understanding of the effects of transfer learning. Results 

reported in this section are mainly based on the network shown in Figure 1. Our 

observations with the other architectures were very similar, as we occasionally discuss.

Figure 6 shows the evolution of learned representations for segmentation of CP-younger 

fetus dataset for two transfer learning trials as well as training from random initialization. As 

we explained in Section 2.3, RSIM(L1, L2) quantifies the similarity between the two 

representations L1 and L2. In order to investigate the evolution of learned representations 

with RSIM, we need a reference point during training. As suggested in [46], we chose the 

“convergence epoch”, which we defined as the epoch when the DSC on the validation set 

reached within 0.5% of its maximum. We then computed the similarity of the learned 

representations between each training epoch and the convergence epoch using Eq. (1). Given 

the large number of convolutional layers in our network, we present this evaluation for the 

six layers shown in Figure 1.

Several interesting observations can be made from Figure 6. First, as expected, the model 

converged much faster with transfer learning, compared with training from scratch. The 

convergence epoch can be identified as the point where RSIM=1 since, as we mentioned 

above, we are comparing the representations in each epoch with those at the convergence 

epoch. The second observation is that the representations in all layers continue to change 

significantly well after the model’s segmentation accuracy has converged. Since we are 

comparing each representation at a certain epoch with the representation at a fixed reference 

(i.e., the convergence epoch), this indicates that the representations continue to change after 

network’s performance has converged. Please note that RSIM is not a measure of 

segmentation performance; rather, it is a measure of change in the learned representations 

with respect to the reference (here, the convergence epoch). It is worth noting that after the 

convergence epoch, the training and test accuracies changed very little. This indicates that 

the model weight values that can result in a specific test accuracy are far from being unique. 

This is evidenced by the fact that after the convergence epoch the network’s segmentation 

accuracy remains almost constant while the network weights continue to change as shown in 

Figure 6. The third observation is the effect of the dataset used in pre-training. In this 

experiment we used two different pre-trained models for transfer learning: one trained on 

CP-newborn dataset and the other trained on Hippocampus dataset. Figure 6 shows that the 

model pre-trained on CP-newborn led to faster convergence and smaller changes in the 

representations compared with the model pre-trained on Hippocampus. We should point out 

that for all three training trials in this experiment, the test accuracy of the final models were 

very close. Therefore, the difference is mainly in terms of the convergence speed. 

Nonetheless, this experiment suggests that the more similar the source domain is to the 

target domain, the faster will be the convergence of the model on the target task and less 

significant will be the changes in the representations during fine-tuning.
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We show another example of the evolution of representations for segmentation of Liver-CT 

dataset in Figure 7. This figure displays some of the observations explained above for 

cortical plate segmentation. In one of the transfer learning trials in this experiment, we pre-

trained the model on Pancreas CT and Spleen CT datasets, which share the imaging 

modality (CT) with the target task. In the other transfer learning experiment, we pre-trained 

on the three liver MRI datasets (see Table 1). An interesting observation is that, compared 

with the model pre-trained on Pancreas and Spleen CT datasets, the model pre-trained on 

liver MRI went through less changes in the decoder section during fine-tuning. This makes 

intuitive sense because the network pre-trained on liver MRI had to learn many high-level 

shape representations that were relevant for liver CT segmentation as well. On the other 

hand, in terms of the encoder representations, networks pre-trained on MRI and CT images 

were not very different. This may seem counter-intuitive because one may expect that for 

segmentation of liver in CT a model pre-trained on CT images should go through less 

changes in the encoder section during fine-tuning. We will further explain this observation 

later in this section.

Another interesting observation from both Figures 6 and 7 is that, both with transfer learning 

and with training from scratch, the encoder representations changed much less than the 

decoder representations. The early encoder layer representations, in particular, changed very 

little even when trained from random initializations. To further confirm this observation, in 

Figure 8 we show randomly-selected convolutional filters from the encoder and decoder 

sections of the network at the beginning and end of training, both for training from scratch 

and for transfer learning. The most striking observation is that the filters change very little 

during training, and the shape of the filters remain almost unchanged. This example is for 

brain lesion segmentation on the TSC dataset, and the transfer learning was performed on 

the BRATS dataset. When training from scratch, the network weights at convergence look 

random and still very close to the weights at initialization. Some of the filters of the network 

pre-trained on BRATS look more “organized” as edge detectors, but still there are random-

looking filters, and during fine-tuning on the TSC dataset weights changed very little. We 

made similar observations in experiments with other datasets as well as with other 

architectures. In our experiments, the average relative change in the norm of the filters at 

convergence was typically below 25% of the filter norm at the start of training. We also 

found that, in most cases, the filters in the intermediate layers of the network changed more 

than the early and late layer filters. This may be related to the observation in previous studies 

that optimization of the middle layers is more difficult [60]. The reason why decoder 

representations change much more than encoder representations (as shown in Figures 6 and 

7) is because the change in each representation is the “cumulative” effect of the changes in 

all its preceding convolutional layers.

Figure 9 shows randomly-selected filters from encoder and decoder sections of V-Net at 

random initialization and at convergence for segmentation of the Liver-CT dataset. V-Net 

has larger convolutional filters of size 5. Nonetheless, similar to Figure 8, filters at 

convergence have changed little compared with those at initialization and still look random. 

We further investigate this observation in the following subsection.
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3.7. Segmentation networks with random encoders

The observation that convolutional filters of fully-trained models look random and only 

slightly change from their initial random values may seem surprising at first. One may 

speculate that this is due to limited training data. However, we conducted a multi-task 

segmentation experiment in which we trained a single model to segment 10 of the datasets 

listed in Table 1, consisting of more than 1200 images. We observed similar patterns as those 

shown in Figure 8. We should point out that, even on small datasets, if we continue training 

the network well beyond the convergence, the weights will continue to change and become 

more different from the weights at initialization. However, we are only interested in the 

“necessary” change that occurs from the start of training until convergence.

The above observation may seem to contradict the expectation that “useful” filters such as 

edge detectors and Gabor-type filters should emerge in the encoder section of the network. 

However, this observation can be explained by prior studies on neural networks with random 

weights [49, 7]. Well before the recent surge of deep learning, studies had shown that neural 

networks with completely random weights could perform well on various vision tasks [24, 

42]. Saxe et al. explained these observations by showing a remarkable response similarity 

between sinusoidal and random convolutional filters [49]. Specifically, they showed that for 

both sinusoidal and random filters, the maximum-response input was in the form of a 

sinusoid with a frequency equal to the maximum frequency of the filter. We can visually 

confirm this by looking at the feature maps of the encoder section of our network at 

convergence. Figure 10 shows example feature maps of a network trained on the CP-

newborn dataset. Although the filters of this network looked random (similar to those shown 

in Figure 8), the extracted features do not look random; rather, they embody meaningful 

low-level and high-level features.

Given the above observations, two questions are worth further investigation. First, how 

would an FCN with completely random filters (i.e., not undergone any training) in the 

encoder section perform on medical image segmentation tasks? Second, if a network with 

random filters is a viable model, can we say anything about the space of the models that can 

successfully perform a segmentation task, and does transfer learning constrain this space? 

Below, we report experiments that aim at shedding some light on these questions.

In a set of experiments, we initialized the network shown in Figure 1 at random, and then 

froze the encoder section of the model, only training the decoder section. This network 

includes 33 convolutional layers in the encoder section and 18 convolutional layers in the 

decoder section. Figure 11 shows a comparison of this training strategy with the standard 

approach of training the entire network on two datasets, i.e., CP-younger fetus and Liver-CT. 

The time to run one optimization operation on our GPU was 1.08 and 0.63 seconds, 

respectively, for optimizing the entire network and optimizing the decoder alone. Therefore, 

the horizontal axis is shown in hours, rather than iteration count. For Liver-CT dataset, the 

test DSC at convergence was 0.967 and 0.940, respectively, for the experiments with the 

trained encoder and with the random frozen encoder. For CP-younger fetus dataset, the DSC 

at convergence was 0.896 and 0.884, respectively, for experiment with trained encoder and 

with random frozen encoder. This indicates a small drop in performance when the encoder 
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section was frozen at its initial random state. On the other hand, the network with frozen 

encoder converged in shorter time compared to the network with trained encoder.

The above experimental results suggests that the encoder section does not have to be trained. 

We cannot claim that this would be the case for every medical image segmentation task. 

Nonetheless, we made the same observation on many experiments with various datasets in 

Table 1 as well as with other network architectures. As a concrete example with a very 

different dataset than the two datasets used above, in an experiment with the TSC dataset 

from one of the five centers, we obtained DSC and F1 score, respectively, of 0.678 and 0.758 

when the entire network was trained and 0.670 and 0.758 when the encoder section was 

frozen at its random initialization. These observations clearly challenge the common belief 

that the encoder filters have to learn data/task-specific features.

Based on our observations with FCNs with random encoders and the response of random 

convolutional filters discussed above, one can describe a possible operation mode of these 

networks as follows. The encoder filters extract a set of useful representations from the 

image. Although the filters might be random-looking, the representations embody relevant 

features such as edges in early layers and high-level features in deeper layers. Given that 

filters are initialized independently at random, these feature maps will constitute a diverse 

and rich set of representations. The decoder section learns to compute the segmentation label 

based on these representations.

In order to further understand the effect of transfer learning on the learned representations, 

we conducted other experiments. The goal of these experiments was to assess the similarity 

of FCNs trained from scratch compared with similarity of FCNs trained via transfer 

learning. In these experiments, too, we used RSIM for comparing the representations. Note 

that RISM can be used to quantify the similarity between pairs of learned representations. 

These representations can come from the same network, as for example in the experiments 

reported above in Section 3.6 where we used RSIM to compare the representations of the 

same layer across training epochs. However, RSIM can also be used to quantify the 

similarity of the learned representations across networks, which is what we perform in this 

section. Prior studies have also used similar metrics to compare the representations of 

networks trained with different strategies [39]. Table 8 shows the results of such an 

experiment with CP-younger fetus dataset. For this experiment, we trained 1) 10 networks 

with different random initializations, and 2) 10 networks trained with transfer learning, each 

initialized from a different model pre-trained on CP-newborn. We then computed the 

similarity between pairs of networks trained from scratch (RSIM(R.I., R.I.)), pairs of 

networks trained with transfer learning (RSIM (T.L., T.L.)), as well as similarity between 

pairs of networks trained using the two different strategies (RSIM(R.I., T.L.)). Table 8 shows 

these similarities for the six layers shown in Figure 1.

The results presented in Table 8 show that models trained via transfer learning are as 

different from each other as models learned from scratch. This is evidenced by the fact that 

RSIM (T.L., T.L.) values are very close to RSIM(R.I., R.I.) values for all six layers. We 

conducted statistical t-tests to compare RSIM(R.I., R.I.) with RSIM (T.L., T.L.). The results 

of these tests showed that only encoder-3 and decoder-1 layers (i.e., the most intermediate of 
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the six layers) were different at p = 0.05. On the other hand, statistical t-tests showed that 

RSIM(R.I., T.L.) was significantly larger than RSIM(R.I., R.I.) at p = 0.05 on all six layers. 

Similarly, RSIM (R.I., T.L.) was also statistically significantly larger than RSIM(T.L., T.L.) 
on all six layers at p = 0.05. Therefore, pairs of networks that have been trained from scratch 

are more similar to each other than they are to networks that have been trained with transfer 

learning (because RSIM(R.I., R.I.) < RSIM (R.I., T.L.)). Similarly, pairs of networks that 

have been trained with transfer learning are more similar to each other than they are to 

networks that have been trained from scratch (because RSIM(T.L., T.L.) < RSIM (R.I., 
T.L.)). Therefore, these results indicate that the diversity of networks trained using transfer 

learning is as high as that of networks trained from scratch (because RSIM(R.I., R.I.) and 

RSIM (T.L., T.L.) were not statistically different). However, it also shows that networks 

trained from scratch form a different “cluster” than networks trained via transfer learning. 

This is because RSIM(R.I., R.I.) and RSIM(T.L., T.L.) are smaller than RSIM(R.I., T.L.).

Finally, we performed a set of experiments to quantify the feature reuse with transfer 

learning in different layers of the network. For this purpose, we trained 10 networks from 

scratch with random initialization and 10 networks with transfer learning. We then computed 

the similarity between the network layers at the start of training and at convergence, using 

RSIM. From these, we computed the difference between the average of these similarities for 

the networks trained from scratch and networks trained with transfer learning. We use this 

difference as a measure of feature reuse in each layer. This approach to estimating feature 

reuse is the same as the approach proposed in [46].

Table 9 shows the computed feature reuse for four such experiments. Our results are 

different from the results reported in [46] in several aspects. Note that the application in [46] 

was 2D medical image classification with transfer learning from ImageNet. Authors of that 

study found that feature reuse was highest in the first network layers. They also found that 

the maximum feature reuse was around 0.20. Moreover, their results showed that feature 

reuse decreased monotonically from the bottom layers of the network to the top layers. Our 

results disagree with those of [46]. Specifically, as shown in Table 9, in our experiments 

feature reuse can increase from the first encoder layers to the deeper decoder layers. 

Moreover, as shown in this table, much higher feature reuse of up to 0.690 can occur in 

FCN-based medical image segmentation. These observations regarding the degree of feature 

reuse in different parts of the network can guide us in devising transfer learning strategies. 

As an example, consider the scenario where a network trained on liver MRI is fine-tuned for 

Liver-CT segmentation. As shown in Table 9, in this case feature reuse in the decoder 

section of the network is very high. This may indicate that fine-tuning of decoder layers of 

the network may be unnecessary. To test this hypothesis, we performed an experiment where 

we pre-trained a network on liver MRI and then fine-tuned only the encoder layers and the 

last layer of the decoder on Liver CT. This network achieved a mean test DSC of above 0.95 

on Liver-CT dataset. We were also able to train equally-accurate models by keeping the 

decoder and output layers fixed and only training the encoder section of the network. These 

training strategies achieved DSC and HD95 values that were statistically not different than 

when the entire network was fine-tuned. On the other hand, training only the encoder section 

reduced the training time to convergence by 40%. In another experiment, we considered 

transferring a network trained on the CP-newborn for segmentation of the CP-younger fetus 
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dataset. As shown in Table 9, this scenario also represents high feature reuse in the decoder 

layers. During fine-tuning, we kept all decoder layers at their values pre-trained on CP-

newborn and only fine-tuned the encoder layers and the output layer of the network. We 

achieved a DSC of 0.887 with this transfer learning strategy, while reducing the training 

time to convergence by 30% compared to the case when the entire network was fine-tuned. 

We repeated this experiment with UNet++, Tiramisu, and Autofocus networks as well, and 

achieved DSC of 0.891, 0.878, and 0.880, respectively, on the target (CP-younger fetus) 

dataset with these networks. On the other hand, when fine-tuning the model pre-trained on 

the Hippocampus dataset, we could not achieve the same high segmentation accuracy 

without fine-tuning all decoder layers. This is an observation that could have been predicted 

from the feature reuse values presented in Table 9 because in this case feature reuse in the 

decoder layers is much lower.

To the best of our knowledge, this is the first study to investigate the dynamics of learned 

representations and model weights in FCN-based medical image segmentation. However, 

there have been many prior works that have used transfer learning for medical image 

segmentation. Recent reviews of these works can be found in [11, 51]. We mentioned some 

of these works in the Introduction section. Here, we briefly describe the results of some of 

these prior studies. For segmentation of traumatic brain injuries in multi-center data, one 

study proposed a transfer learning method [26]. The authors showed that transfer learning 

substantially improved the segmentation accuracy (in terms of DSC, precision, and recall) 

compared to the baseline where the network trained in the source domain was applied 

directly on the target domain without fine-tuning. For white matter hyper-intensity 

segmentation, one study investigated transferring a CNN trained on legacy MRI scanners to 

images acquired on newer scanners, with different image quality and contrast [17]. They 

found that, without fine-tuning, the model trained on legacy scanners completely failed on 

the images from the new scanners. On the other hand, when only two labeled training 

images were available in the target domain, fine-tuning the CNN pre-trained on legacy data 

was more successful than training from scratch. Another study reported an improvement of 

15% in DSC in segmentation of white matter hyperintensities due to transfer learning with a 

UNet architecture [44]. These results are close to the improvements we observed in our 

experiments (e.g., Table 2). A smaller improvement (from a DSC of 0.70–0.71 without 

transfer learning to a DSC of 0.72 with transfer learning) was reported in [35] but the 

authors found that this small improvement was still statistically significant. Transfer learning 

with a basic UNet between ultrasound datasets with different image quality improved the 

DSC by approximately 0.20 [19]. Cardiac segmentation accuracy has also benefited from 

transfer learning across acquisition protocols, with a DSC increase of up to 0.16 [10]. 

Transfer learning with UNet architectures pre-trained on large amounts of CT images 

improved the segmentation of lung nodules (by approximately 3.5%), liver segmentation (by 

approximately 5%) and brain tumor segmentation (by approximately 0.5%) in [64]. The 

authors reported that the improvements in all of their experiments were statistically 

significant. However, the authors did not clarify the number of training images in the target 

domain. In a different study on left ventricle segmentation, a CNN was pre-trained on 

balanced-Steady State Free Precession (bSSFP)-MR images and then fine-tuned for the 

same segmentation task on Late Gadolinium Enhanced (LGE) MR images [56]. With only 
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four training images in the target domain, the authors observed an improvement of 

approximately 10% in DSC. Direct comparison of our results with prior works is not easy 

because of the differences in datasets and details of the experiments. However, an overall 

comparison of our results, presented in Sections 3.1 to 3.5, with those reported in prior 

studies suggest that prior studies have reported more positive results. In the majority of prior 

works on this topics, transfer learning has shown to lead to statistically significant 

improvements in segmentation accuracy. This may be due to a tendency, on the side of the 

authors as well as the reviewers, to favor studies with positive results. Therefore, we think 

our experimental results in Sections 3.1 to 3.5 and analysis of the dynamics of learned 

representations and model weights in Sections 3.6 and 3.7 add valuable new insights into the 

potential of transfer learning for medical image segmentation.

Future studies may expand our work in several directions. In this work, we focused on 

supervised training scenario. Future works may carry out similar analyses for other training 

methods such as semi-supervised training and zero/few-shot training [11, 57]. Furthermore, 

in this work we focused on the most common implementation of FCNs for medical image 

segmentation, which is based solely on predicting a dense voxel-wise segmentation map. 

However, there are variations to this approach. For example, some studies have suggested 

combining statistical shape models of the organ of interest into the deep learning framework 

for improved segmentation accuracy and robustness [40, 29, 31]. Analysis of the role of 

transfer learning for such models could be highly informative as well. Finally, although 

FCNs are the most common deep neural network architectures for medical image 

segmentation, there exist important alternative networks architectures such as those based on 

recurrent neural networks and attention [2, 30], which can be studied in future works. 

Finally, in this work we only used a scalar measure of similarity to compare networks 

trained from scratch with networks trained via transfer learning. One may gain additional 

insights by also comparing these networks in terms of the projection directions mentioned in 

Section 2.3.

4. Conclusion

Our experimental results show that for segmenting organs such as liver or brain cortical 

plate, transfer learning has a small effect on the segmentation accuracy. One may argue that 

the segmentation accuracy achieved by FCNs is close to optimal and the remaining gap in 

performance (DSC gap of 0.03 for liver and 0.10 for cortical plate) may be, in part, due to 

error in the training/test labels. Our experiments with pancreas and brain lesion 

segmentation seem to give some credence to this hypothesis. In those experiments, the 

segmentation accuracy (e.g., in terms of DSC) was much lower and we observed larger gains 

with transfer learning. We observed large gains in segmentation accuracy when images in 

the target domain were of a different/lower quality and small in number (Table 2). This is 

important since medical image datasets of varying quality are common in clinical and 

research applications. We also observed that transfer learning and learning with a frozen 

encoder reduced the convergence time. This could be useful when training time is critical or 

in hyperparameter/architecture search, where one would like to compare a large number of 

models or hyperparameter settings. We showed that random filters extracted a rich set of 

useful features, and that quite accurate models could be built by training only the decoder 
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section of the model. We further demonstrated that, depending on the source and target 

domains, feature reuse in transfer learning can be more significant in deeper layers and in 

the decoder section of the network. We showed examples of how these observations could be 

used in devising transfer learning strategies.
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• We critically study and analyze transfer learning in medical image 

segmentation

• We show that model weights change little from random initialization during 

training

• We show viability of models with random encoders, challenging the 

established beliefs

• We study evolution of learned representations, offering alternative training 

methods
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Figure 1: 
Schematic representation of the our FCN architecture. The lower part of the figure shows 

details of the residual block.
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Figure 2: 
Example FLAIR images in the TSC data from Center 1 (left), Center 3 (middle) and Center 

5 (right). Compared to other centers, the FLAIR images from Center 5 had lower tissue 

contrast and lower effective spatial resolution.
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Figure 3: 
Test DSC as a function of training iteration count for segmentation of the Liver-CT dataset 

with models trained from scratch and transfer learning.
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Figure 4: 
From left to right, example images and segmentations (in blue) from CP- younger fetus, CP- 

older fetus, and CP- newborn datasets.
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Figure 5: 
Test DSC as a function of iteration count for segmentation of CP-younger fetus and CP-

older fetus datasets with models trained from scratch and transfer learning.
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Figure 6: 
Evolution of learned representations with training for segmentation of CP-younger fetus 

dataset. Plots show values of RSIM between the representations at each time point with the 

convergence epoch. Convergence epoch can be identified as the point where RSIM=1.
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Figure 7: 
Evolution of learned representations for segmentation of the Liver-CT dataset. The plots 

show RSIM values computed between the representations at each time point with the 

convergence epoch. Convergence epoch can be identified as the point where RSIM=1.
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Figure 8: 
Selected filters from different sections of the network at the start of training and 

convergence, and their differences. In this experiment, the network was trained on the TSC 

dataset and for transfer learning the model was pre-trained on the BRATS dataset. From top 

to bottom, filters belong to encoder-1, encoder-3, decoder-1, and decoder-3 layers (see 

Figure 1).
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Figure 9: 
Selected filters from encoder and decoder sections of V-Net trained on Liver-CT dataset at 

the start of training, convergence, and their difference.
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Figure 10: 
Example feature maps computed with random-looking convolutional filters of a model 

trained on CP-newborn dataset on an example image patch.
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Figure 11: 
Comparison of a training strategy whereby the encoder section of the network is frozen at its 

initial random values, only training the decoder section, with the standard strategy of 

training the entire network.
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