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Abstract

Background: Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth
are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with
adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy
for nerve regeneration.

Methods: 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve
damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-
functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells
were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In
vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction
velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following
lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and
the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and
neurofilament was performed with the sciatic nerve.
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Results: The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF,
and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB
improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However,
the results were not significantly different than those obtained using autografts. These findings were associated
with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of
BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in
the spinal cord of the PCL +MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal
branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair.

Conclusions: 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin
biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic
microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.

Keywords: Canine mesenchymal stem cells, Nerve regeneration, Sciatic nerve injury, Cell-based therapy, Tissue
engineering, Nerve guidance conduits, 3D printing, Fibrin, Scaffold

Background
Peripheral nervous system (PNS) injuries are debilitating
and result in long-term sensorimotor defects, leading to
a negative quality of life in dogs and humans beings [1,
2]. In dogs, injuries of the brachial plexus or sciatic
nerve are common [2–4]. In humans, epidemiological
studies showed a PNS injury incidence rate of 13.9 indi-
viduals per 100,000 habitants per year and 2–5% of pa-
tients admitted to level I trauma centers might have
PNS injuries [5]. In this context, peripheral nerve injur-
ies occurring naturally in dogs display similar features
with human disease hold promise for providing predict-
ive proof of concept in the evaluation of new therapeu-
tics and bioengineering devices [6].
Complete regeneration of nerves does not occur in

critical lesions with long gaps [7, 8]. The distal stump in
lesions with long-gap defects does not respond to
trophic signals released by the proximal stump, resulting
in poor nerve regrowth [9]. This regenerative response is
associated with a complex interaction between the
Wallerian degeneration process, the immunological re-
sponse, Schwann cells, and pro-regenerative molecules
such as neurotrophic factors and cytokines [9]. Auto-
grafting is the current standard treatment for nerve in-
juries, resulting in long-gap defects [10]. However, this
procedure has several disadvantages, such as additional
damage to donor nerves, and insufficient revasculariza-
tion [10]. These limitations have led to the development
of nerve guidance conduits (NGCs) for nerve repair that
guide regenerating axons, support vascularization, in-
crease the concentration of trophic factors, and avoid
the formation of scarred tissue [11, 12].
Types of NGCs, namely, synthetic (e.g., polyglycolic

acid [PGA] and polycaprolactone [PCL]) and biological
(e.g., veins, arteries, or collagen), have been studied as al-
ternatives to autografts in short-gap models. However,
the functional results of such conduits were not superior

to those of autografts in long-gap defects [10, 13–17].
Typically, conventional fabrication techniques can only
result in the development of NGCs with simple architec-
tures (e.g., straight hollow conduits) with limited choices
of materials and dimensions [18]. Inferior results ob-
tained using hollow NGCs were associated with insuffi-
cient migration of Schwann cells and lack of pro-
regenerative molecules [19].
Additive manufacturing, also known as three-

dimensional (3D) printing, is a process of joining ma-
terials to make parts from 3D model data, usually layer
upon layer, as opposed to subtractive and formative
manufacturing methodologies [18, 20, 21]. Therefore,
this robotics-based biomanufacturing approach can be
used for the development of biocompatible tissue re-
pair constructs with high flexibility and geometric
freedom offering a differential advantage for medical
devices production [18, 20, 21], 3D printing offers the
possibility to control the architecture using biocom-
patible polymers [18, 22, 23]. NGCs manufactured via
3D printing vary in complexity and size [21–23]. The
advantages of 3D printing constructs include mechan-
ical stability, pore interconnectivity, and customizabil-
ity [18, 23]. Polycaprolactone (PCL) is a thermoplastic,
non-toxic, biodegradable, and hydrophobic polymer
widely used as a scaffold biomaterial in vivo and can
be adapted to 3D printing [11, 24–27]. Nerve guidance
conduits (NGCs) constructed with PCL proved to be
an adequate substrate for the survival and differenti-
ation of Schwann cells and mesenchymal stromal cells
(MSCs) [27, 28].
The combination of NGCs, extracellular matrix, cells,

and growth factors and their interactions could be po-
tential tools for restoring damaged nerve tissue [11, 12].
The efficiency of Schwann cells has been demonstrated;
however, certain limitations are associated, including
isolation and expansion under ex vivo conditions [29].
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Due to their proliferative ability and easy accessibility,
adipose-tissue-derived MSCs (AdMSCs) exhibit a trans-
lational potential [30–33]. Previous studies have demon-
strated the potential of MSCs to secrete powerful
neurotrophic factors as well as anti-inflammatory and
immunomodulatory molecules, thereby favoring nerve
regeneration [30, 34–36].
The paracrine activity of AdMSCs is dependent on

their viability and homing into the local inflammatory
microenvironment; however, direct injection leads to
poor engraftment and leakage of the cells [31, 37]. In
this study, we used a scaffold composed of heterologous
fibrin biopolymer (HFB) derived from snake venom (i.e.,
Crotalus durissus terrificus) that is non-cytotoxic, bio-
degradable with adhesive and sealant properties to retain
the AdMSCs into the internal wall of the NGC [38–41].
In vivo, the HFB provided adequate adhesion of rootlets
after lesioning in rodents [42–46]. We hypothesized that
the multi-functionalization of PCL-NGCs manufactured
by 3D printing with canine AdMSCs embedded in fibrin
biopolymer can enhance nerve regeneration following
the repair of critical nerve injury in rats.

Methods
Experimental design
Female Wistar rats (Rattus novergicus) with weights in
the range of 200–300 g were used for the experimental
procedures. The rats were maintained under controlled
humidity, temperature, and constant light/dark cycles.
All procedures were performed in accordance with the
ethical principles set forth by the National Council of
Animal Experimentation (CONCEA) and with the ap-
proval of the Ethics Committee in Animal Experimenta-
tion of São Paulo State University (CEUA/FMB, UNESP,
protocol no. 1243–2017). The animals were divided into
four groups. In the sham group (n = 5), the sciatic nerve
was surgically exposed without any changes. The prox-
imal and distal segments were resected, forming a gap of
12 mm, and sutured with perineural stitches in the ani-
mals of the autograft group (n = 5). In the PCL group, a
gap of 12 mm was formed with nerve resection, and an
NGC empty was fixed (n = 5). In the PCL +MSCs group,
a gap of 12 mm was formed, and the NGC was fixed and
multi-functionalized with AdMSCs embedded in HFB
(n = 5). The sciatic functional index (SFI) and tibial func-
tional index (TFI) were evaluated in vivo for 12 weeks
after injury. Gait analysis was evaluated using the Cat-
walk system, and nerve conduction velocity (NCV) was
measured at 8 and 12 weeks. Morphometric analysis was
performed 8 and 12 weeks post-injury. To evaluate the
production of neurotrophic factors at 4 weeks, brain-
derived neurotrophic factor (BDNF), glial cell line-
derived neurotrophic factor, hepatocyte growth factor
(HGF), and the cytokine and interleukin-10 (IL-10) in

the spinal cord, real-time PCR (RT-qPCR) was per-
formed nerve in both sham and PCL +MSCs groups
(n = 3). In addition, immunohistochemical analysis of the
sciatic nerve for BDNF, GDNF, p75 neurotrophin recep-
tor (p75NTR), S-100, and neurofilament were performed
in both sham and PCL +MSCs groups (n = 3).

Isolation, differentiation, and characterization of canine
AdMSCs
Subcutaneous canine adipose tissue was obtained from
healthy young female dogs undergoing elective surgery
in accordance with a previously published protocol [47].
Adipose tissue was digested in 0.04% type 1A collage-
nase (1 mg/mL, Thermo Fisher Scientific, São Paulo,
Brazil) for 1 h at 37 °C with gentle shaking. Digested tis-
sue was blocked, centrifuged, and filtered (BD Falcon
cell strainer, 70 μm, San Jose, CA, USA). Canine
AdMSCs were isolated based on their inherent property
of plastic adherence in culture media containing 90%
Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal
bovine serum (FBS), and 1% penicillin/streptomycin
(100 U/mL) (all from Gibco, Grand Island, NY, USA).
Cellular expansion was continued until the third passage,
and the cells were cryopreserved to induce differenti-
ation, for immunophenotypic analysis, and transplant-
ation later on.
Canine AdMSCs were tested for their ability to differ-

entiate into adipocyte, osteoblast, and chondrocyte line-
ages. Differentiation was induced in cells that underwent
third passage using StemPro adipogenesis, chondrogene-
sis, and osteogenesis differentiation kits (Gibco, Grand
Island, NY, USA) following the manufacturer’s recom-
mendations. The cells were fixed in paraformaldehyde
(4%, pH 7.34) 2 weeks after stimulation, and the evalu-
ation of osteogenic and adipogenic differentiation were
performed using histological stains, namely, Alizarin Red
(2%, pH 4.2) and Oil Red (0.5% in isopropanol) (Sigma-
Aldrich, Saint Louis, MA, USA), respectively. Three
weeks after chondrogenic differentiation, the cells cul-
tured as a micromass were fixed in 10% formalin, em-
bedded in paraffin, and stained with hematoxylin-eosin.
Samples were analyzed and photographed under an
inverted light microscope using LAS 4.0 software (DM
IRB; Leica Microsystems, Wetzlar, Germany).
Canine AdMSCs were characterized by the presence of

the surface marker CD90 or absence of surface markers
CD45, CD34, and CD71 [48, 49]. The concentration of
cells in the third passage was counted and adjusted to
1 × 105 cells. Subsequently, the cells were incubated with
primary antibody conjugates CD90-PerCP (BD Pharmi-
gen™, San Diego, CA, USA), CD71-FITC (BD Pharmi-
gen™), CD45-PE (BD Pharmigen™), and CD34-FITC (BD
Pharmigen™). Antibodies were incubated for 30 min at
room temperature. Cells were then washed with
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phosphate-buffered saline (PBS), and FACSCalibur® 4-color
cytometer (Becton Dickinson Company, San Jose, CA,
USA) was used to acquire and analyze the samples, stand-
ardizing a total of 2 × 104 events collected per tube. Cells
incubated without primary antibodies were used as controls
to distinguish non-specific fluorescence. The gate on canine
AdMSC population was based on the parameters of size
(forward scatter) versus cell granularity (side scatter), fol-
lowing the phenotypic characterization. The analyses were
performed using CellQuestPro® and FlowJo® software.

Stimulation of canine AdMSCs with interferon-gamma
Canine AdMSCs were activated via direct stimulation to
evaluate the properties of neurotrophic and anti-
inflammatory molecules using a recombinant inflamma-
tory mediator relevant to nerve injury, following a previ-
ously described protocol with minor modifications [50].
Cells were stimulated with canine interferon-gamma
(IFN-γ) in the third passage. Triplicates were obtained
with 2 × 105 cells/cm2 per well in a 24-well plate (Co-
star®, TC-treated, Corning, NY, USA). Subsequently,
cells were stimulated with 0.75 mL basal medium con-
taining IFN-γ (50 ng/mL, IFN- γ canine recombinant;
Kingfisher Biotech, Saint Paul, USA) for 96 h. At this
point, the cells were collected using TRIzol reagent
(Invitrogen, São Paulo, Brazil) and stored at − 80 °C for
RNA extraction and analysis of gene expression. For the
control, cells were cultured in basal culture medium
containing DMEM and 10% FBS (all from Gibco).
Gene expression of neurotrophic factors (BDNF,

GDNF, and HGF) and anti-inflammatory molecules (IL-
10) was quantified. Cells were lysed and homogenized
with TRIzol reagent, and RNA extraction was performed
using the Mini RNAeasy kit (Qiagen, São Paulo, Brazil).
RNA was eluted with RNA-free water and quantified
and analyzed by spectrophotometry using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Wil-
mington, USA) for the absorbance ratios 260/280 nm
and 260/230 nm. Total RNA extracted from the cells
was of high quality and purity, indicating that the extrac-
tion method was efficient. cDNA was synthesized using
a High-Capacity cDNA Reverse Transcription Kit (Ap-
plied Biosystems™, Life Technologies Corporation, Carls-
bad, USA), followed by amplification using a Veriti 96
Well Thermal Cycler (Life Technologies, Carlsbad,
USA). The cDNA samples were cryopreserved and used
as templates for PCR reactions.
The reactions were performed in triplicate, using the

cDNA produced in previous steps as a template, with a
PowerUp SYBR Green Master Mix (Applied Biosys-
tems™, Life Technologies, Carlsbad, CA, USA), RNA-free
water, and canine primers (Thermo Fisher Scientific, São
Paulo, Brazil) (Additional file 1: Table S1). The samples
were tested with two reference genes, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and hypoxanthine
phosphoribosyltransferase (HPRT). The qPCR reaction
was performed using the QuantStudio™ 12 K Flex Real-
Time PCR System thermocycler (Life Technologies, Carls-
bad, USA) with the following parameters: 50 °C for 2 min,
95 °C for 2min, and 45 cycles of 95 °C for 1 s and 60 °C for
30min. Relative quantification of expression of the genes
of interest was performed using the ΔΔCt method [51].

Fabrication and assembly of NGCs
The NGCs were assembled from 3D-printed PCL mem-
branes. The membrane fabrication was based on a mater-
ial extrusion process called fused filament fabrication
(FFF) using FAB@CTI (Renato Archer Information Tech-
nology Center - CTI, São Paulo, Brazil), an experimental
3D printing platform [52]. Previously, the filament extru-
sion head was adapted to different diameters and melting
temperatures, which allowed the molding of a thermoplas-
tic polymer via an orifice (open-ended die) [53]. Previous
studies have evaluated the interactions between MSCs and
3D-printed PCL matrices [54]. The printing parameters
were defined using FAB@CTI software (Renato Archer In-
formation Technology Center - CTI, São Paulo, Brazil).
The following parameters were set: jog speed 2400Hz, de-
position rate 0.07, path speed 8.8mm/s, path width 0.3
mm, path height 0.3 mm, and temperature of 80 °C. The
3D-printed membranes were sputter-coated with gold
(MED 010; Balterz Union) and visualized using a scanning
electron microscope (ESEM Quanta 200; Fei Company,
Oregon, USA). The geometric parameters were evaluated
using image analysis software (ImageJ, National Institute
of Health, Bethesda, USA). During the assembly of NGCs,
the membranes were wrapped around a 1.5-mm support
and sealed with controlled heating. The NGCs were steril-
ized by washing with a 70% ethanol solution for 10 s,
followed by washing with distilled water. After drying at
room temperature, the NGCs were subjected to UV ir-
radiation (200–280 nm) for 2 h.

Heterologous fibrin biopolymer (HFB) scaffold
The HFB was kindly supplied in sufficient quantity for this
study by the Center for the Study of Venoms and Venom-
ous Animals at São Paulo State University, Brazil. The
components and formula of the applied HFB are con-
tained in its patents (registry number: BR1020140114327
and BR1020140114360). The product is distributed in
three vials, stored at − 20 °C, and must be mixed and ap-
plied immediately at the site of interest [39–44].

Experimental injury and repair with NGCs
Sciatic nerve experimental injury was induced in rats under
the influence of anesthesia containing isoflurane (Isoforine®;
Cristalia, São Paulo, Brazil) using a microsurgical micro-
scope (DF Vasconcelos, Rio de Janeiro, Brazil). The
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experimental lesion consisted of a gap of 12mm, which
was considered to be above the experimental critical level
in rats [55] (Fig. 1a). In the sham group, the nerves were ex-
posed without any modifications. In the autograft group,
the proximal and distal segments were resected, inducing a
gap of 12mm and suturing with perineural stitches (9/0
Ethilon, Ethicon, Cincinnati, USA). In the PCL group, nerve
stumps were introduced and fixed 1mm into the NGC (9/
0 Ethilon, Ethicon, Cincinnati, USA) (Fig. 1b). In the PCL +
MSC group, nerve stumps were introduced and fixed 1mm
into the NGC (9/0 Ethilon, Ethicon, Cincinnati, USA).
Thereafter, NGCs were multi-functionalized with 1 ×

106 canine AdMSCs embedded in HFB that has been pre-
viously tested as a cell scaffold [40, 41, 56]. Fibrin poly-
merizes rapidly following the mixing of three components,
namely, cryoprecipitated from water buffalo (Bubalus
bubalis) blood, calcium chloride, and thrombin-like pro-
tein purified from South American rattlesnake (Crotalus
durissus terrificus) [39, 41]. First, 106 AdMSCs were mixed
with 25 μL of cryoprecipitated. The nerve guidance con-
duit was loaded slowly and homogeneously with a cryo-
precipitated + AdMSC solution using a microsyringe
(50 μL, 22 s-gauge, point style 2; Hamilton, Nevada, USA)
(Fig. 1c). Subsequently, a solution of 12.5 μL of calcium
chloride and 12.5 μL thrombin-like was administered,
resulting in a final suspension with a volume of 50 μL.
This process allowed the formation of a homogeneous
cell/fibrinogen suspension into the NGC at the first step,
which was coagulated after contact with thrombin +
CaCl2 within the NGC. Following surgical procedures, the
musculature was co-opted in layers. Rats were adminis-
tered tramadol intraoperatively (20mg/kg/SC) and in the
postoperative periods (2.5mg/day in water for 5 days).

Sciatic and tibial nerve functional indices
Functional indices were evaluated preoperatively and
weekly during the 12-week observation period in the

sham, autograft, PCL, and PCL +MSC groups. The plan-
tar surface of the hind limbs was moistened with black
ink. The rats walked with a standard walk trace on a sheet
of white paper where the footprints were recorded. Subse-
quently, the distance between the third toe and the hind
limb pads (print length, PL), the first and the fifth toes
(toe spread, TS), and the second and fourth toes (inter-
mediary toe spread, ITS) were measured. These parame-
ters were evaluated with the right (lesioned) and left (non
lesioned) hind limbs, and the values were calculated using
the following formulas described by Bain et al. [57]: sciatic
functional index: − 38.3 ([EPL-NPL]/NPL) + 109.5 ([ETS-
NTS]/NTS) + 13.3 ([EIT-NIT]/NIT) − 8.8 (30, 31); IFP =
174.9 (EPL NPL/NPL) + 80.3 (ETS NTS/NTS) − 13.4;
tibial functional index: − 37.2 ([EPL-NPL]/NPL) + 104.4
([ETS-NTS]/NTS) + 45.6 ([EIT-NIT]/NIT) − 8.8. Sciatic
and tibial functional indices equal to − 100 indicated total
impairment of the sciatic and posterior tibial nerves,
whereas values oscillating around 0 reflected a normal
function of the three nerves. The mean ± standard devi-
ation was calculated with three gait cycles for each experi-
mental group each week.

Gait analysis
Functional locomotor recovery was evaluated using the
CatWalk System (Noldus, Wageningen, Netherlands).
Catwalk analysis was performed preoperatively and after
8 and 12 weeks in sham, autograft, PCL, and PCL +MSC
groups. The CatWalk walkway consisted of a glass roof
(100 × 15 × 0.6 cm). Rats were placed on the CatWalk
walkway and allowed to walk freely. The LED light emit-
ted from an encased fluorescent lamp was reflected
along the glass plate, thereby intensifying the areas on
which the front limbs and hind limbs were in contact
with the glass plate. The contact areas were captured by
a high-speed video camera positioned underneath the
glass plate connected to a computer running Catwalk

Fig. 1 Experimental sciatic injury and repair in the autograft, PCL, and PCL + MSC groups. a The experimental lesion consisted of a gap of 12 mm,
which was considered to be above the experimental critical level in rats. b Nerve stumps were introduced and fixed into the NGC in the PCL
group. Scale bar: 1 cm. c NGCs were multi-functionalized with 1 × 106 canine AdMSCs embedded in HFB. Scale bar: 0.5 cm
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software v10.5 (Noldus). The camera was calibrated,
and the signals were digitized, frame-by-frame, using
the PCImage-SG video card (Matrix vision GmH,
Oppenheimer, Germany) and sent to the matrix for
classification. Three runs were performed and classi-
fied from each animal and the parameters were ob-
tained for each animal at each time point. The
following parameters were recorded: maximum con-
tact area (ipsilateral (left)/contralateral (right) ratio),
maximum contact intensity (ipsilateral (left)/contralat-
eral (right) ratio), swing speed (ipsilateral (left)/
contralateral (right) ratio), and swing (seconds) (swing
exercised by the limbs when they are not in contact
with the glass plate) and stand time (seconds).

Nerve conduction velocity
Nerve conduction velocity (NCV) was calculated pre-
operatively and after 8 and 12 weeks in the sham, auto-
graft, PCL, and PCL +MSC groups, according to a
previously published protocol [58, 59]. Under anesthesia,
the sciatic nerve was stimulated with single electrical
pulses (200-μs duration) and supramaximal stimulation
that ensured maximal amplitude. Using needle elec-
trodes, the sciatic nerve was percutaneously stimulated
proximal to the lesion site at the level of the sciatic
notch and distal to the lesion at the level of the ankle.
Compound muscle action potentials (cMAP) of the
plantar muscles were recorded using monopolar needles
inserted into the muscle bellies and displayed with an
oscilloscope (Sapphire II 4ME; Teca medelec, USA).
Motor NCV was calculated by dividing the distance be-
tween stimulation sites by the average latency evoked
from two sites (sciatic notch and ankle). The mean ±
standard deviation was calculated for each experimental
group and at each evaluated time point.

Specimen preparation and morphometric analysis
Nerves were harvested after 8 and 12 weeks from the
sham, autograft, PCL, and PCL +MSC groups. Under
general anesthesia with isoflurane (Isoforine®; Cristalia,
Brazil), rats were euthanized with barbiturate overdose
(Thiopentax, Cristalia, São Paulo, Brazil). The vascular
system was rinsed by transcardial perfusion with
phosphate-buffered saline (PBS; 0.1M, pH 7.4). Fixation
was performed in 2% glutaraldehyde and 1% paraformal-
dehyde in PBS (0.2 M, pH 7.34), and nerves containing
NGC were immersed in the same solution for 24 h at
4 °C. The sciatic nerve segment into the NGC was dis-
sected and divided into two parts: proximal and distal.
Nerves were washed with PBS (0.1M, pH 7.4) and post-
fixed for 3 h in 1% osmium tetroxide solution mixed
with PBS (pH 7.4). The specimens were dehydrated and
embedded in glycol methacrylate resin (Leica Microsys-
tems, Heidelberg, Germany). The blocks were trimmed,

and semi-thin sections (1–2 μm) were obtained with an
ultramicrotome (Leica RM 2265; Leica Microsystems
CMS), which were stained with toluidine blue (0.25%).
Morphometric analysis was performed by sampling at
least 30% of the cross section of each nerve using a
bright-field microscope (Leica DM 4000 B-M; Leica
Microsystems CMS) [60]. The analysis was performed
with two sampled fields from each nerve (magnification
of × 100) using Adobe Photoshop CC 2019. Morphomet-
ric parameters evaluated included myelinated axon
diameter, myelinated fiber diameter, myelin thickness
(fiber diameter − axon diameter/2), and “g” ratio (axon
diameter/fiber diameter). The mean ± standard deviation
was calculated for each experimental group and at each
evaluated time point.

Immunohistochemical study of sciatic nerve and RT-qPCR
analyses of spinal cord samples
Immunohistochemical analysis (S-100, neurofilament,
BDNF, GDNF, and p75NTR) of sciatic nerve samples and
qPCR of the spinal cord samples (BDNF, GDNF, HGF,
and IL-10) were performed for the sham and PCL +
MSC (n = 3) groups after 4 weeks. Rats were euthanized
with barbiturate overdose (Thiopentax; Cristália). The
vascular system was rinsed by transcardial perfusion
with phosphate-buffered saline (PBS; 0.1M, pH 7.4).
Using the nippers, the dorsal side of the spinal column
was gently opened proceeding in a cranial to caudal dir-
ection by making one or two snips on either side and
clipping the resulting flap of bone free. Then, the spinal
cord was slowly eased out using microscissors. Fresh
lumbar segments (L3–S1) at the T13–L1 vertebral level
were harvested. Using a microsurgical microscope, ven-
tral fissure of spinal cord was identified and sectioned to
obtain the tissue ipsilateral to the lesion. The specimen
was frozen in liquid nitrogen and stored at − 80 °C.
After spinal cord harvesting, carcass were fixed in 4%

paraformaldehyde in PBS (0.1M, pH 7.34), and the re-
generated nerve was dissected and immersed in the
same solution for 12 h at 4 °C. Specimens were
immersed in ascending order 10%, 20%, and 30% of the
sucrose solutions (0.1 M PBS, pH 7.4) for 12 h, mixed
with Tissue-Tek OCT (Sakura Finetek, Torrance, USA),
and frozen at − 80 °C.
Longitudinal cryostat sections (12 μm) of the sciatic

nerves were acclimatized, washed, and incubated in 3%
bovine serum albumin solution or 3% donkey serum in
PBS (0.1M, pH 7.4) for 1 h, followed by incubation in a
moist chamber with primary antibodies against S100,
neurofilament H (NF), BDNF, GDNF, and p75NTR for 4
h (Additional file 2: Table S2). After rinsing with PBS,
the sections were incubated with Alexa Fluor 488, Alexa
Fluor 546, or CY2-conjugated secondary antiserum for
45min at room temperature. The sections were then
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mounted in a mixture of glycerol/PBS (3:1) for quantita-
tive measurements or glycerol/DAPI for qualitative ana-
lysis. Representative images were obtained using a
fluorescence microscope (BX51; Olympus Corporation,
Tokyo, Japan) equipped with a camera (DP 72; Olympus
Corporation). Four images of each sample were
imported for the determination of the integrated pixel
density that represented the intensity of labeling using
ImageJ software (version 1.33u, National Institutes of
Health, USA), according to a previously published proto-
col [61, 62]. The mean intensity ± standard deviation
was calculated for each group.
For RT-qPCR, the spinal cord was finely pricked and

homogenized in TRIzol reagent (TRIzol™, Invitrogen,
São Paulo, Brazil) and chloroform. The samples were
vigorously shaken for 30 s using a Precellys Lysing Kit®
(Uniscience, São Paulo, Brazil) with a Precellys 24 tissue
homogenizer (Bertin Technologies SAS, Montigny-le-
Bretonneuz, France). Total RNA was extracted, quanti-
fied, and reverse-transcribed to cDNA, which was ampli-
fied as described previously in the RT-qPCR assay
procedure performed with cells. Assays analyzing the
levels of BDNF, GDNF, HGF, and IL-10, were performed
(all from Thermo Fisher Scientific, São Paulo, Brazil)
(Additional file 3: Table S3). Samples were tested with
two reference genes, β2-microglobulin and HPRT. The
qPCR reaction was performed using the QuantStudio™
12 K Flex Real-Time PCR System thermocycler (Life
Technologies System, Carlsbad, USA) with the following
parameters: 50 °C for 2 min, 95 °C for 2 min, and 45 cy-
cles of 95 °C for 1 s and 60 °C for 30 min. Relative quan-
tification of expression of the genes of interest was
performed using the ΔΔCt method [51].

Statistical analysis
Variables, namely, sciatic and tibial functional indices,
Catwalk analysis, and NCV were assessed for normality
with statistical tests (Shapiro–Wilk or Kolmogorov–
Smirnov), descriptive statistics, and graphic analyses
(QQ plot). An analysis of variance test (two-way
ANOVA, multiple comparisons) was performed followed
by Tukey’s test to verify the differences in the means of
the variables between each group and the time of the ex-
periment. Other variables (integrated pixel density and
relative quantification) were assessed for normality using
statistical tests (Shapiro–Wilk), descriptive statistics, and
graphic analysis. For parametric data, the t-test was per-
formed with unpaired samples. For non-parametric data,
the Mann-Whitney test was performed for unpaired
samples. The level of significance between the groups
was set at p < 0.05. The differences were denoted by a
single asterisk (p < 0.05), two asterisks (p < 0.01), or three
asterisks (p < 0.001) (GraphPad Prism version 8 for Mac,
San Diego, USA).

Results
Canine AdMSCs showed mesenchymal fate and
differentiation potential
Following isolation, AdMSCs demonstrated a homoge-
neous appearance and fusiform morphology during the
first week after passage zero and reached 80% confluence
and formed a monolayer in 2 weeks. Multipotentiality
was detected in vitro via tri-lineage differentiation into
adipocytes, osteoblasts, and chondrocytes. Alizarin red
staining demonstrated the formation of an extracellular
calcium matrix after 21 days. Oil Red staining confirmed
the presence of intracytoplasmic lipid deposits after 14
days. Staining with toluidine blue demonstrated the de-
position of the extracellular matrix after 21 days (Add-
itional file 4: Figure S1). Immunophenotypic analysis of
AdMSCs by flow cytometry confirmed the positive ex-
pression of CD 90 (Thy-1) and the absence of expression
of hematopoietic and endothelial antigens CD45 and
CD34 (transmembrane glycoproteins) and CD71 (trans-
ferrin receptor) (Additional file 4: Figure S1).

Canine AdMSCs enhanced their trophic and anti-
inflammatory potential after in vitro stimulation
Gene expression of neurotrophic factors BDNF, GDNF,
and HGF in AdMSCs was higher following stimulation
with IFN-γ (BDNF 3.94 ± 0.55, GDNF 6.7 ± 0.59, and
HGF 2.5 ± 0.36) than in unstimulated AdMSCs (BDNF
1.02 ± 0.12, GDNF 1.03 ± 0.23, and HGF 0.97 ± 0.60)
(BDNF p = 0.02; GDNF p < 0.001, and HGF p = 0.01).
The expression of cytokine IL-10 was significantly higher
in AdMSCs following stimulation with IFN-γ (2.66 ±
0.36) than in unstimulated AdMSCs (0.93 ± 0.21) (p =
0.07) (Fig. 2a–d).

Ultrastructural analysis of 3D-printed NGCs
The NGCs were manufactured by 3D printing with PCL
membranes using the FFF technique. PCL filaments
(diameter of 396 ± 74 μm) were continuously deposited
in a square geometry along the vertical direction for the
first layer and the lateral direction for the second layer,
resulting in the formation of a bilayer membrane with a
thickness of 386 ± 41 μm, and an area of 225mm2

(Fig. 3a–d). The air gaps between the filaments (areas
without polymer) formed pores with a height of 312 ±
58 μm and a length of 300 ± 51 μm, as depicted in Fig. 3e–
i. The membranes were rolled and sealed with controlled
heating (Fig. 3g). Smooth architecture was observed on
the outer surface (Fig. 3h).

NGCs multi-functionalized showed positive functional
motor recovery
After 9 weeks, SFI analysis showed no significant differ-
ences between the autograft (SFI − 60.19) and PCL +MSC
groups (SFI, − 67.06) (p > 0.05). However, significant
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differences were observed between the autograft (SFI, −
60.19) and PCL groups (SFI, − 74.98) (p = 0.02). After 11
weeks, significant differences were observed comparing
the autograft (SFI, − 52.58) group with the PCL +MSC
(TFI, − 67.30) (p = 0.02) and PCL (SFI, − 77.39) groups
(p < 0.001). Significant differences were observed upon
comparison of the results of the autograft (SFI, − 50.40)

group with those of PCL +MSC (SFI, 65.12) (p = 0.03) and
PCL (SFI, − 80.81) groups (p < 0.001) after 12 weeks. How-
ever, after 12 weeks, the analysis demonstrated superior
results with the PCL +MSC group (SFI, 65.12) than those
in the PCL (SFI − 80.81) group (p < 0.02). Thus, the auto-
graft and PCL +MSC groups showed better functional
motor recovery than the PCL group (Fig. 4a).

Fig. 2 Relative gene expression after 96 h following AdMSC stimulation with interferon-gamma (IFN-γ). a Relative expression of BDNF, b GDNF, c
HGF, and d IL-10. The samples were tested with two reference genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hypoxanthine
phosphoribosyl transferase (HPRT). Data are represented as mean ± SEM. p < 0.05*; p < 0.01**; p < 0.001***

Fig. 3 Geometric characterization of NGG-PCL 3D-printed membranes. a Height and length path of the first and second layers during 3D
printing. b PCL membranes: lateral view showing two layers (T) and diameter (d) of the filaments with 396 ± 74 μm. c PCL membrane dorsal view
showing the pores with 312 ± 58 μm of length and 300 ± 51 μm of height. d 3D-printed PCL membrane macroscopic view. e Internal face of PCL
membrane (scale bar: 2.0 mm). f Scanning microscopy electronic images of 3D-printed PCL membranes with different pores, filament lengths,
and deposition of two layers (scale bar: 500 μm). g NGC cross sectional view after assembly (scale bar: 2.0 mm). h NGC external surface view (scale
bar 2.0 mm). i Measures of geometric parameters from PCL membranes (n = 5). Values are represented as mean ± SEM
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Regarding TFI evaluation, no significant differences
were observed from TFI analysis performed after 11
weeks between the autograft (TFI, − 60.25) and the
PCL +MSC groups (TFI, − 75.98) (p > 0.05) (Fig. 4b). In
addition, the autograft group demonstrated better results
(TFI, − 64.25) than those in the PCL group (TFI, −
82.81) (p = 0.004). Similarly, after 12 weeks, no signifi-
cant differences were observed between the autograft
(TFI, − 60.34) and PCL +MSC groups (SFI, − 72.69) (p >
0.05) (Fig. 4b). However, the autograft group (TFI, −
60.34) was superior to that of the PCL (TFI, − 82.04)
group (p < 0.001). The PCL +MSC group demonstrated
superior functional motor recovery compared to the
PCL group.
After 8 and 12 weeks during gait analysis by Catwalk,

the sham group demonstrated an improved maximum
contact area in comparison with the contact area dem-
onstrated by the autograft, PCL, and PCL +MSC groups
(p < 0.001). The autograft group showed better values
after 8 weeks than those in the PCL (p = 0.03) and PCL +
MSC (p = 0.02) groups (Fig. 5a).
After 8 and 12 weeks, no significant differences were ob-

served in the maximum contact intensity between the
autograft and PCL +MSC groups (p > 0.05). However, the
autograft group demonstrated superior results to that of
the PCL group (p = 0.03). After 12 weeks, maximum con-
tact intensity was significantly higher in the PCL +MSC
group than in the PCL group (p = 0.04) (Fig. 5b).
After 8 and 12 weeks, no significant differences were

observed in the swing speed between the autograft and
PCL +MSC groups (p > 0.05). After 8 weeks, the auto-
graft group demonstrated superior results to that of the
PCL group (p = 0.02) (Fig. 5c).
After 8 and 12 weeks, no significant differences were

observed in the swing values of the sham group when
compared with the autograft and PCL +MSC groups
(p > 0.01). However, after 8 weeks, the swing values of

the sham group were superior to that of the PCL group
(p = 0.01) (Fig. 5d).
After 8 and 12 weeks, no significant differences were

observed during the analysis of spontaneous locomotion
after 8 weeks with respect to the stand time (s) among
the sham, autograft, and PCL +MSC groups (p > 0.05).
However, the sham group demonstrated a better stand
than the PCL group (p = 0.019). After 12 weeks, the
sham group demonstrated an improved stand compared
with the autograft (p = 0.014), PCL (p = 0.006), and
PCL +MSC (p = 0.004) groups (Fig. 5e).

NGCs multi-functionalized showed electrophysiological
recovery
After 8 weeks, no significant differences were observed
in the conduction velocity of regenerated nerves among
the sham (42.35 m/s), autograft (47.99 m/s), PCL (28.02
m/s), and PCL +MSC (26.98 m/s) groups (p > 0.05).
After 12 weeks, no significant differences in the NCV
were observed among the sham (75.08 m/s), autograft
(55.96 m/s), and PCL +MSC (47.37m/s) groups (p >
0.05). The NCV was significantly reduced in the PCL
group when compared to control (25.50 m/s) (p = 0.001).
However, no significant differences were observed
among the autograft and PCL +MSCs than the control
group (p > 0.05). These findings demonstrate an increase
in NCV in the autograft and PCL +MSC groups, as
shown in Fig. 5f.

Morphometric analysis of regenerated nerves
Myelin thickness measures with superior percentages
after 8 weeks are as follows: sham (myelin sheath thick-
ness 1.2 to 1.7 μm, mean 1.54 ± 0.01), autograft (myelin
sheath thickness 0.4 to 0.7 μm, mean 0.71 ± 0.01), PCL
(myelin sheath thickness 0.2 to 0.5 μm, mean 0.43 ±
0.01), and PCL +MSC (myelin sheath thickness 0.3 to
0.6 μm, mean 0.50 ± 0.01) (Fig. 6a–d). After 12 weeks,
the myelin thickness measures were as follows: sham

Fig. 4 Sciatic nerve functional index (SFI) and tibial functionality index (TFI) during 12 weeks in the Sham, autograft, PCL, and PCL +MSC groups.
a SFI. b TFI. The values we obtained weekly and are represented as mean ± SEM. p < 0.05*; p < 0.01**; p < 0.001***
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(myelin sheath thickness 1.1 to 1.5 μm, mean 1.35 ±
0.01), autograft (myelin sheath thickness 0.6 to 1.0 μm,
mean 1.22 ± 0.01), PCL (myelin sheath thickness 0.4 to
0.7 μm, mean 0.59 ± 0.01), and PCL +MSC (myelin
sheath thickness 0.4 to 0.7 μm, mean 0.63 ± 0.01) as
shown in Fig. 6e–h. Myelination was observed in GPCL
+ MSCs close to GA in 12 weeks (Fig. 6i–l).
Measures of the “g” ratio with superior percentages

after 8 weeks are as follows: sham (0.6 to 0.65 μm, mean
0.58 ± 0.01), autograft (0.65 to 0.7 μm, mean 0.60 ± 0.01),
PCL (0.75 to 0.80 μm, mean 0.70 ± 0.01), and PCL +
MSCs (0.65 to 0.75 μm, mean 0.63 ± 0.01) (Fig. 7a–d).
After 12 weeks, they were as follows: sham (0.65 to
0.70 μm, mean 0.60 ± 0.01), autograft (0.60 to 0.65 μm,
mean 0.57 ± 0.01), PCL (0.75 to 0.8 μm, mean 0.68 ±

0.01), and PCL +MSCs (0.6 to 0.7 μm, mean 0.62 ± 0.01).
The correlation between the “g” ratio and myelinated
axon diameter showed a shift towards a higher number
of axons exhibiting close to normal myelination in the
autograft and PCL +MSC groups after 12 weeks, as
shown in Fig. 7e–h.

NGCs multi-functionalized enhanced p75NTR expression
and preservation of Schwann cell reactivity
Immunoreactivities of p75NTR, Schwann cells (S-100 ex-
pression), and neurofilament were evaluated in response
to sciatic nerve regeneration 30 days after lesion forma-
tion in both sham and PCL +MSC groups. Immunoreac-
tivity of the p75NTR receptor was higher in the PCL +
MSC group (5.1 × 107 ± 0.37 × 107) than in the sham

Fig. 5 Gait analysis using the CatWalk platform and nerve conduction velocity (NCV) at 8 and 12 weeks in the experimental groups. a Maximum
contact area. b Maximum contact intensity. c Swing speed. d Swing. e Stand time. f NCV (m/s). The values obtained are represented as mean ±
SEM. p < 0.05*; p < 0.01**; p < 0.001***
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group (3.5 × 107 ± 0.83 × 107) (p = 0.03) (Fig. 8a–c). No
significant differences in the immunoreactivity of S-100
were observed between the sham (5.3 × 107 ± 0.14 × 107)
and PCL +MSC groups (3.9 × 107 ± 0.55 × 107) (p < 0.05)
(Fig. 8d–f). The reactivity of Schwann cells was pre-
served (Fig. 8b). The immunoreactivity of NF was super-
ior in the sham group (10.7 × 107 ± 0.07 × 107) than in
the PCL +MSC group (8.3 × 107 ± 0.1 × 108) (p = 0.001)
(Fig. 8g-i).

NGCs multi-functionalized stimulated expression of
neurotrophic factors
Immunoreactivity against BDNF and GDNF was character-
ized in regenerating nerves obtained inside the NGC in the
sham group and PCL+MSC group 30 days after the lesion.
The positive expression of BDNF and GDNF is shown in
Figs. 9a and 10a. An increase in the intensity of the immuno-
staining for BDNF and GDNF was observed from the prox-
imal region of the nerve in the PCL+MSC group compared
with the sham group. The intensity was stronger in the prox-
imal region, indicating that the PCL biomaterial

functionalized with MSCs positively co-stimulated the pro-
duction of neurotrophins BDNF and GDNF.

Canine AdMSCs engrafted after nerve repair
Serial histological sections were obtained 30 days follow-
ing nerve repair with NGC multi-functionalized for de-
tection of the labeled cells. Canine AdMSCs labeled with
qdot655 were observed inside the NGC, in the proximal
stump, confirming the survival of these cells for at least
4 weeks in vivo (Fig. 9a and 10a). However, cells were
not observed in the distal stumps or in regions not lo-
cated in the proximity of NGC, indicating that the cells
were possibly retained around the application site. In
addition, the labeled cells showed co-localization with
the regions that demonstrated positive immunostaining
for BDNF and GDNF (Fig. 9a and 10a).

NGCs multi-functionalized enhanced upregulation of the
expression of BDNF, GDNF, and HGF in the spinal cord
Gene expression of the neurotrophins BDNF, GDNF,
and HGF was evaluated 30 days after nerve repair in

Fig. 6 Frequency distribution of the myelin thickness in the experimental groups. a–d Values were obtained after 8 weeks following the lesion in
the experimental groups. e–h Values were obtained after 12 weeks following the lesion in the experimental groups. At 12 weeks, myelin thickness
was superior in the PCL +MSC group compared with the PCL group. Red boxes highlight frequency intervals with better percentages among the
autograft, PCL, and PCL + MSC groups. i–l Tendency to increase myelinated axons with larger diameters in GA and GPCL + MSCs compared to
GPCL in 12 weeks was observed. Scale bar = 50 μm
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both sham and PCL +MSC groups. The expression of
BDNF was significantly higher in the PCL +MSC group
(1.53 ± 0.11) than in the sham group (1.00 ± 0.05) (p =
0.006). The expression of GDNF was significantly higher
in the PCL +MSC group (1.35 ± 0.09) than in the sham
group (1.01 ± 0.09) (p = 0.04). The expression of HGF
was significantly higher in the PCL +MSC group (1.74 ±
0.25) than in the sham group (1.02 ± 0.12) (p = 0.04), as
shown in Fig. 11a–c. No significant differences in IL-10

expression were observed in the PCL +MSC group
(1.01 ± 0.10) when compared with the sham group
(0.69 ± 0.17) (p > 0.05) (Fig. 11d).

Discussion
A tissue engineering approach that integrates NGCs,
cells, and growth factors mimicking native tissues shows
promise for restoring the damage in nervous tissue [11,
12, 63–66]. Exogenous application of growth-promoting

Fig. 7 Frequency distribution of “g” ratio and dot plot of “g” ratio/axon diameter in the experimental groups. a–d Values were obtained 8 weeks
after the lesion in the experimental groups. e–h Values were obtained 12 weeks after the lesion in the experimental groups. Note the shift
towards an increase in diameter of the myelinated axon in the autograft and PCL + MSC groups when compared to the PCL group after 8
and 12 weeks
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Fig. 8 Fluorescence intensity analysis of p75NTR, S100, and neurofilament on sciatic nerve at 30 days in both sham and PCL + MSC groups. a–c
Expression of the receptor p75NTR in the proximal region of the nerve and integrated pixel density analysis. d–f Expression of the Schwann cell
marker S-100 in the proximal region of the nerve and integrated pixel density analysis. g–i Expression of neurofilament in the proximal region of
the nerve and integrated pixel density analysis. The values of the integrated pixel density are represented as mean ± SEM. p < 0.05*; p < 0.01**;
p < 0.001***. Scale bar: 50 μm

Fig. 9 Representative micrographs of BDNF immunolabeling on sciatic nerve at 30 days, in the Sham and PCL +MSC groups. a Representative
images of triple labeling with anti-BDNF (green), DAPI (blue), and Qtracker® qdot655 (red) in the proximal region of the nerve. Co-localization of
cells marked with qdot655 and nuclei with DAPI was observed, indicating the presence of living cells within the internal structure of the NGC. b
BDNF immunolabeling on sham group. Cells labeled with qdot655 are absent. Scale bar: 25 μm
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is beneficial for nerve regeneration [64–66]. Neverthe-
less, this approach raises concerns regarding short dur-
ation, dosage, and high cost [64–66]. To overcome these
limitations, studies indicated that AdMSCs secrete a
complex mix of factors that are capable of promoting
myelination, regenerating nerve fibers, exerting neuro-
protective effects, stimulating angiogenesis, and modu-
lating the inflammatory environment [34–36]. Although
the criteria are not fully defined for canine AdMSC
characterization, the cells used in this study exhibited a
comparable in vitro profile in line with previously pub-
lished studies [31, 48, 49, 63]. The neuroprotective effects
of MSCs are primarily associated with the production of
BDNF, GDNF, nerve growth factor (NGF), insulin-like
growth factor (IGF), and HGF [30, 34, 35, 67–71]. It is also
influenced by immunoregulatory mechanisms associated
with interleukin 10 (IL-10), prostaglandin E2 (PGE2),
indoleamine 2,3-dioxygenase (IDO), HGF, and transform-
ing growth factor-beta (TGF-β) [36, 72–74]. Here, we
evaluated the neurogenerative capacity of NGCs fabricated
by 3D printing and multi-functionalized with canine

AdMSCs using HFB as cell scaffold to restore the damage
caused by critical sciatic nerve injury in rats.
The inflammatory environment during Wallerian de-

generation is indispensable for axonal regeneration and
is characterized by a significant production of tumor ne-
crosis factor alpha (TNF-α) and IFN-γ by Schwann cells
and fibroblasts during the first 14 days following injury.
This leads to the recruitment of inflammatory cells [75–
78]. These infiltrated immune cells lead to a rapid clear-
ance of myelin and facilitate nerve regeneration [79]. In
this study, canine AdMSCs demonstrated constitutive
expression of BDNF, GDNF, HGF, and IL-10. Further-
more, direct stimulation with IFN-γ resulted in the up-
regulation of the expression of BDNF, GDNF, HGF, and
IL-10. Neurotrophic factors BDNF, GDNF, and HGF are
powerful molecules that act synergistically and influence
nerve-muscle synapsis, neuronal survival, proliferation of
Schwann cells, and axonal regeneration [80–82]. IL-10 is
a cytokine involved in the restoration of tissues via the
regulation of inflammatory responses, extracellular
matrix production, fibroblast functions, and angiogenesis

Fig. 10 Representative micrographs of GDNF immunolabeling on sciatic nerve at 30 days, in the sham and PCL +MSC groups. a Representative
images of triple labeling with anti-GDNF (green), DAPI (blue), and Qtracker® qdot655 (red) in the proximal region of the nerve. It is important to
note the reactivity of GDNF close to canine AdMSCs (b). GDNF immunolabeling on sham group. Scale bar: 25 μm

Fig. 11 Gene expression in the ipsilateral spinal cord at 30 in both sham and PCL +MSC groups. a Relative expression of BDNF. b GDNF. c HGF.
d IL-10. Samples were tested with two reference genes, β2-microglobulin and hypoxanthine phosphoribosyl transferase (HPRT). Data are
represented as mean ± SEM. p < 0.05*; p < 0.01**; p < 0.001***
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[83, 84]. Studies have shown that IFN-γ is a key player
in activating the immunomodulatory function of murine
and human MSCs through the production of several
factors, including HGF and IL-10, which is consistent
with the results of our study [85, 86]. More import-
antly, through inflammation enriched with proinflam-
matory cytokines such as IFN-γ, MSCs could be
activated or primed, and the upregulation of major
histocompatibility complex class I (MHC-I) can lead
to improved survival [37].
Versatile NGCs should demonstrate biocompatibility

along with the modulation of the cellular environment
that permits cell adhesion, axonal branching, and revas-
cularization [11]. PCL polymer has been used for the
fabrication of hollow NGCs via conventional manufac-
turing methods, showing positive regeneration in rats
[27, 28, 87]. Rapid prototyping methods such as FFF 3D
printing for NGC fabrication enable the control of por-
osity, architecture, reproducibility, customizability, and
scalability [20]. Herein, 3D-printed NGCs showed char-
acteristics such as mechanical strength, macroporosity,
and adequate geometry, in addition to biocompatibility.
The fabrication of NGC with a customized architecture
has been demonstrated using 3D-printing technology
with a PCL polymer in few studies [21–23]. Our design
of 3D printed-NGC was based on controlled parameters
reported to maintain nutrients diffusion such as porosity
(sizes of 125–550 μm) and wall thickness (size of
600 μm) not affecting mechanical properties [22, 80, 88].
Internal diameter tailored to the nerve size (< 2mm) to
avoid compression and support diffusion [13, 17]. In
addition, the construct was designed based on lesion size
(length of 1.5 cm) suitable to bridging the gap tension
free [7].
Long-gap sciatic lesions in rats (such as a 10-mm gap)

are considered critical, with only 10% axons effectively
regenerating into the NGC [11, 55]. In our study, NGCs
multi-functionalized showed positive results for func-
tional motor recovery, being superior in the TFI. After 8
weeks, the autograft group showed better results, follow-
ing the PCL +MSC group. In addition, Catwalk analysis
demonstrated an increase in the duration of the support
phase (stand time), contact intensity, swing time, and
velocity after 8 weeks in the PCL +MSC group com-
pared with the PCL group. Previous studies have dem-
onstrated functional motor recovery after a combination
of allogenic MSCs and PCL-NGCs were implanted in
short gaps with lengths of 3–10mm [26, 89, 90]. In con-
trast, allogeneic Schwann cells, MSCs, and polylactic
acid (PLA) NGCs demonstrated functional recovery after
8 weeks with gaps of 15 mm. However, the SFI was lower
than that observed in our study [91]. Using the 3D print-
ing approach, NGCs were customized using composite
material to be implanted in a short gap of 4 mm in mice.

However, only the sensitive function of the nerve was
evaluated compared to our study [23]. In our study, our
critical lesion level reflects a better clinical setting without
endogenous regeneration influence. Moreover, retraction
of stumps could increase the gap and negatively influence
functional recovery [11, 55]. In sciatic nerve models,
muscle contractures can be observed that influence nega-
tively on SFI results, which is not observed with IFT
method [55, 92]. In addition, variability in recovery be-
tween SFI and TFI can result from complexity of mixed fi-
bers of sciatic nerve that would have inappropriate motor-
motor as well motor-sensory connections [92].
Electrophysiological and histological evaluations are

complementary techniques used for the examination of
nerve regeneration. In our study, the PCL +MSC and
autograft groups showed better results in NCV after 12
weeks, indicating the presence of myelinated axons. In
addition, the morphometric analysis demonstrated im-
provements in myelin thickness in the PCL +MSC
group compared with the PCL group after 8 and 12
weeks. The correlation between the “g” ratio and myelin-
ated axon diameter showed a shift towards a higher
number of axons with presence of myelination after 12
weeks. Previous studies have shown improvements in
the histological parameters of short-gap defects after a
combination of MSCs and PCL implanted in gaps of 5–
10mm [26, 89, 90]. In long-gap defects, recovery of
NCV and the presence of the highest number of myelin-
ated axons were observed with allogeneic MSCs plus
PLA-NGC after 6 weeks [93]. However, the NCV ob-
tained in that study was lower (about 40 m/s) than that
observed in our study [93]. Other studies have demon-
strated NCV and morphometric recovery after 8 and 12
weeks following the use of MSCs and Schwann cells ap-
plied in a PLA-NGC or an acellular nerve allograft. Des-
pite positive functional recovery, the NCVs (12.45 and
17m/s, respectively) were slower than those of the
PCL +MSC group observed in our study (47.37 m/s) [91,
94]. A limitation of NCV is that poor correlation with
the SFI is observed, because both parameters measure
different aspects of nerve regeneration, explaining vari-
ation between NCV and SFI results at 12 weeks after
nerve repair [95].
In our study, in vivo parameters (SFI, TFI, Catwalk

analysis, NCV, and morphological results) were com-
pared with an additional group, consisting of NGC
multi-functionalized with rat AdMSCs embedded in
HFB (PCL+ rMSCs). On functional and electrophysio-
logical evaluation, PCL+ rMSCs and canine PCL +MSCs
presented similar results without meaningful differences
between them (p > 0.05) (Additional file 5: Figure S2;
Additional file 6: Figure S3). Morphological analysis
showed similar frequency in diameter fiber and axon
diameter (Additional file 7: Figure S4; Additional file 8:
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Figure S5); however, myelin thickness was superior in
canine AdMSCs when compared to rat AdMSCs at 8
and 12 weeks (Additional file 9: Figure S6; Add-
itional file 10: Figure S7; Additional file 11: Figure S8).
These findings are in line with several studies that veri-
fied regenerative potential of rat AdMSCs [26, 89–91,
94]. On the other hand, few studies have shown periph-
eral nerve regenerative potential of canine AdMSCs [63].
Nerve regeneration is strongly influenced by a pro-

regenerative microenvironment [80]. Neurotrophins act
selectively in high-affinity tropomyosin receptor kinases
(trk) and low-affinity receptors p75NTR and are
expressed in Schwann cells and growth cones in regen-
erating nerves [9, 80, 96]. Immunolabeling results indi-
cated a positive expression of BDNF and GDNF in
association with p75NTR in the PCL +MSC group after
30 days. Our results are comparable to those observed in
previous studies in which nerve regeneration was fre-
quently associated with the production of BDNF and
GDNF during the first few weeks after MSC transplant-
ation [34, 35, 68, 70, 74, 97]. BDNF and GDNF activate
several in vivo and in vitro pathways associated with
nerve regeneration, formation of nerve-muscle synapses,
neuronal survival and proliferation, and survival of
Schwann cells [80, 96]. Activation of the BDNF/p75NTR

pathway instead of BDNF/trkB plays an important role
in the activation and differentiation of Schwann cells as
well as in myelination [80, 96, 98]. Previous studies con-
ducted with polymeric NGC (6- and 10-mm gaps) and
allogeneic MSCs demonstrated the proliferation of
Schwann cells and increased expression of neurotrophic
receptors after 2 and 8 weeks, respectively [88, 99].
Schwann cells are crucial for axonal branching and

myelin production [9, 80]. The reactivity of Schwann
cells and the organization of the cytoskeleton were eval-
uated using S-100 and neurofilament markers. Reactivity
of S-100 was increased 30 days after nerve repair with
NGC plus MSCs. NF immunostaining showed values
that were close to those of the sham group. Previous
studies observed S-100 expression in rats treated with
allogeneic and xenogeneic AdMSCs after nerve injury
[26, 63, 99]. Co-expression of S100 and neurotrophin re-
ceptors (p75NTR and trks) was detected in axonotmesis
or neurotmesis experiments after MSC transplantation
in rats [88, 99].
Paracrine and regenerative effects depend on AdMSC

engraftment [31, 37, 73]. In our study, AdMSCs embed-
ded in HFB survived for 30 days after transplantation
into the NGC and were co-localized with BDNF and
GDNF. Similarly, human AdMSCs transplanted after
root avulsion in rats increased neuronal survival medi-
ated by BDNF, GDNF, and HGF. Human MSCs were
able to engraft and survive in the lesion area for at least
14 days [74]. The results of another study demonstrated

the co-expression of BDNF and allogeneic MSCs posi-
tive for green fluorescent protein after 60 days, indicat-
ing the continuous activation of these cells [25]. The
main mechanism of HFB is the adhesion ability allowing
support and viability of the cells for several weeks [39–
44]. In our study, the application of HFB acted synergis-
tically with the MSCs for enhancing pro-regenerative ef-
fects and thereby contributing to nerve regeneration. As
shown by immunofluorescence, canine AdMSC in co-
localization with the BDNF, GDNF, and p75NTR indi-
cates that the persistence of viable cells into the micro-
environment of lesion was crucial for the neurotrophic
factor maintenance released by the cells. Previous studies
showed that the use of HFB for reimplantation of ventral
nerve roots lesioned or end-to-end nerve cooptation,
proved cell support capacity, adhesion for axonal regener-
ation and neuroprotection [40–46].
Degeneration, loss of inhibitory and excitatory synap-

ses, formation of glial scarring, and excitotoxicity are ob-
served in neuronal bodies following peripheral nerve
injury [100, 101]. Regulation of several genes related to
cell survival and axonal growth indicates changes in the
pro-regenerative status of motor neurons [100]. Here,
the upregulation of the expression of BDNF, GDNF, and
HGF was detected after 30 days in the PCL +MSC
group, indicating a pro-regenerative response in the ven-
tral horn of the spinal cord. In a ventral root injury
model, MSC transplantation increased BDNF expression
2 weeks after injury [97]. The results of previous studies
did not demonstrate the expression of neurotrophic fac-
tors in spinal cord lesions following MSC transplant-
ation in rats or humans [101–103]. We assumed that the
paracrine production of pro-regenerative factors by
MSCs might result in the formation of a gradient of
molecules secreted throughout peripheral nerves and in-
fluence the spinal cord to contribute to nerve
regeneration.

Conclusion
The tissue engineering approach for nerve regeneration
based on 3D-printed NGCs multi-functionalized with
canine AdMSCs embedded in HFB showed positive
functional and electrophysiological locomotor recovery
after 8 and 12 weeks following critical experimental in-
jury. In addition, it shifted to a pro-regenerative profile
mediated by neurotrophic factors during the first 4
weeks in the microenvironment of nerves and the spinal
cord, thereby improving functional recovery. Although
combinatorial approaches for the treatment of PNI in-
juries are highly desirable, further studies are necessary
to overcome the autograft technique analyzing several
geometric parameters with 3D printing, as well as direct
priming of MSCs and neurotrophic factors to enhance
nerve regeneration.
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