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A B S T R A C T   

Objective: This study aimed to implement and evaluate machine learning based-models to predict COVID-19’ 
diagnosis and disease severity. 
Methods: COVID-19 test samples (positive or negative results) from patients who attended a single hospital were 
evaluated. Patients diagnosed with COVID-19 were categorised according to the severity of the disease. Data 
were submitted to exploratory analysis (principal component analysis, PCA) to detect outlier samples, recognise 
patterns, and identify important variables. Based on patients’ laboratory tests results, machine learning models 
were implemented to predict disease positivity and severity. Artificial neural networks (ANN), decision trees 
(DT), partial least squares discriminant analysis (PLS-DA), and K nearest neighbour algorithm (KNN) models 
were used. The four models were validated based on the accuracy (area under the ROC curve). 
Results: The first subset of data had 5,643 patient samples (5,086 negatives and 557 positives for COVID-19). The 
second subset included 557 COVID-19 positive patients. The ANN, DT, PLS-DA, and KNN models allowed the 
classification of negative and positive samples with >84% accuracy. It was also possible to classify patients with 
severe and non-severe disease with an accuracy >86%. The following were associated with the prediction of 
COVID-19 diagnosis and severity: hyperferritinaemia, hypocalcaemia, pulmonary hypoxia, hypoxemia, meta
bolic and respiratory acidosis, low urinary pH, and high levels of lactate dehydrogenase. 
Conclusion: Our analysis shows that all the models could assist in the diagnosis and prediction of COVID-19 
severity.   

1. Introduction 

Coronavirus disease (COVID-19) remains an emergency of global 
interest; up to 21 May 2021, a total of 164.52 million confirmed cases 
and 3.42 million deaths had accumulated from the disease [1]. Social 
disparity and the scarcity of hospital resources for the treatment of pa
tients in hospital units have been identified among the main factors 
associated with an increased number of deaths from this disease [2–7]. 
Thus, it is essential to identify potential prognostic biomarkers towards 
earlier and more targeted care, especially considering that some patients 

with COVID-19 develop severe disease, which is associated with a higher 
risk of hospitalisation. Biomarkers provide a dynamic and powerful 
approach to understanding the spectrum of disease with applications in 
observational and analytic epidemiology, randomised clinical trials, 
screening and diagnosis, and prognosis [8]. Recently, studies investi
gating biomarkers to diagnose COVID-19 in early stages have been 
encouraged worldwide, aiming to provide a faster referral to treatment 
and reducing health-related problems associated with the disease [17, 
18]. 

Machine learning (ML) is an effective and innovative tool able to 
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assist healthcare professionals, policymakers, and other stakeholders 
during decision-making processes. These computer system models learn 
and adapt information by using algorithms and statistical networks to 
analyse and draw inferences from patterns in data. In the field of clinical 
diagnosis of COVID-19, these predictive analyses grounded on bio
markers can help optimise the screening of patients with severe disease, 
minimising mortality and hospitalisation, and reducing care delays. 
Previous machine learning studies highlight that some demographic 
variables, patients’ comorbidities, and laboratory findings can be pre
dictive factors for COVID-19 mortality [9–12]. However, most of these 
studies included a small sample size, which may impact the model’s 
robustness and reliability of findings (e.g., low sensitivity) [14–16] and 
prevent its use in practice. Moreover, to date, specific biomarkers 
associated with the disease severity and patients’ hospitalisation in 
intensive care units are still unknown, which may hamper the devel
opment of further targeted treatments [13]. 

Thus, this study aims to implement and evaluate machine learning- 
based algorithm models for the diagnosis and prediction of the 
severity of COVID-19 using data from biochemical, haematological, and 
urine tests from a large sample size. 

2. Material and methods 

2.1. Data set 

Data from the public Kaggle platform [19] on individuals that had an 
reverse transcription polymerase chain reaction (RT-PCR) exam to 
detect severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) 
infection in the Israelita Albert Einstein hospital (São Paulo, Brazil) were 
collected. Regardless of the RT-PCR result (positive or negative for 
COVID-19), patients were included for analysis when presenting data on 
biochemical, haematological, and urinary parameters (Table 1). Two 
subgroups of samples were created according to RT-PCR results: (i) 5, 
643 patients’ samples accounting for both negative (n = 5,086) and 
positive (n = 557) results; (ii) 557 positive samples of asymptomatic 
outpatients and patients with severe COVID-19, hospitalised in intensive 
care units. As the SARS-Cov-2 infection resembles other respiratory 

diseases, to minimise the chance of obtaining false-positive samples, 
patients who tested positive for at least one other virus or respiratory 
bacteria (see Table 1) were excluded from analyses. 

2.2. Machine learning models 

The first step for implementing any ML model is to perform explor
atory analysis. The exploratory analysis intends to: (i) identify the 
presence of possible outliers, (ii) recognise patterns of data distribution 
in the multidimensional space, and (iii) identify relationships between 
variables [20]. In this study, both data used to build the COVID-19 
diagnostic model and the data used to build the severity prediction 
model were previously subjected to two methods of exploratory anal
ysis: principal component analysis (PCA) and k-means cluster analysis 
(KMCA). Additionally, the outliers were detected and eliminated from 
the dataset using the graphical method of leverage versus student re
siduals [21]. 

A total of four algorithms were used: (i) artificial neural networks 
(ANN), (ii) decision trees (DT), (iii) discriminant analysis by partial least 
squares (PLS-DA), and (iv) the method of k-nearest neighbours (KNN). 
For implementing these models with algorithms for the diagnosis and 
prediction of COVID-19 severity, 70% of the samples were used for the 
training set and 30% for the test set. For both the diagnostic model and 
the severity model, the Kennard-Stone method was employed to select 
samples from the training set and samples from the test set [22]. The 
samples used for implementing the algorithms for COVID-19 diagnosis 
were divided into class 1 (negative samples for COVID-19) and class 2 
(positive samples for COVID-19). For the severity prediction models, 
samples were classified into class 1 (non-severe disease; i.e., outpatients) 
and class 2 (severe disease; i.e., hospitalised patients). 

The number of latent variables (LVs) selected for the ML models was 
performed using the leave-one-out cross-validation method. The number 
of LVs presented the lowest square root of mean cross-validation error 
(RMSECV). The predictive capacity of the model was evaluated using 
the square root of mean error of prediction (RMSEP), where the classi
fication models were optimised considering the lower RMSEP. 

The analytical validation of the models based on the machine 
learning algorithms was performed using the following metrics: sensi
tivity, specificity, and accuracy. These figures of merit were calculated 
using the parameters true positive (TP), true negative (TN), false posi
tive (FP), and false-negative (FN) [20,23–25]. In ML, a sample is called a 
true positive when it belongs to class one (1) and is correctly classified 
by the ML algorithm as belonging to class one (1). A sample is consid
ered a false positive when it belongs to class zero (0) and is incorrectly 
classified by the ML algorithm as being class one (1). A true negative 
sample belongs to class zero (0) and is correctly classified as class zero 
(0). Finally, a sample is false negative when it belongs to class one (1) 
and is wrongly classified by the ML algorithm as class zero (0). Sensi
tivity and specificity are defined as the ability of the ML-based model to 
correctly classify negative and positive samples, respectively. Accuracy 
is the ability of an ML-based model to correctly classify both negative 
and positive samples. The values of sensitivity, specificity, and accuracy 
vary from zero (0) to one (1), and the closer to 1, the more sensitive, 
specific, and accurate the model, respectively. These parameters were 
calculated according to equations (1)–(3), respectively: 

Sensitivity ​ =
TP

TP + FN
(1)  

Specificity ​ =
TN

TN + FP
(2)  

Accuracy ​ =
(TP + TN)

(TP + TN + FP + FN)
(3)  

where FN: false negative; FP: false positive; TN: true negative; and TP: 
true positive. 

Table 1 
Biochemical, urinalysis, haematological, virological, and bacteriological tests 
performed on the patients included in the study.  

Biochemical tests 

Glucose serum, urea, C-reactive protein, creatinine, potassium, sodium, alanine 
transaminase, aspartate transaminase, gamma-glutamyltransferase, total bilirubin, 
direct bilirubin, indirect bilirubin, alkaline phosphatase, ionised pH, blood, 
magnesium analysis, HCO3 (venous blood gas analysis), lactate dehydrogenase, 
creatine phosphokinase, ferritin, arterial lactic acid, lipase dosage, HCO3 (arterial 
blood gas analysis), phosphorus, pCO2 (venous blood gas analysis), Hb saturation 
(venous blood gas analysis), base excess (venous blood gas analysis), pO2 (venous 
blood gas analysis), total CO2 (venous blood gas analysis), Hb saturation (arterial 
blood gases), pCO2 (arterial blood gas analysis), base excess (arterial blood gas 
analysis), pH (arterial blood gas analysis), total CO2 (arterial blood gas analysis), 
pO2 (arterial blood gas analysis), arterial FiO2, and ctO2 (arterial blood gas 
analysis). 

Haematological tests 
Hematocrit, Hemoglobin, Platelets, Mean platelet volume, Red blood Cells, 

Lymphocytes, Mean corpuscular hemoglobin concentration, Leukocytes, Basophils, 
Mean corpuscular hemoglobin, Eosinophils, Mean corpuscular volume, Monocytes, 
Red blood cell distribution width 

Urine tests 
Urine pH, segmented neutrophil, promyelocytes, metamyelocytes and myeloblasts, 

and the international normalised ratio (INR). 
Virological tests 
Respiratory syncytial virus, influenza A, influenza B, parainfluenza 1, coronavirus 

NL63, rhinovirus/enterovirus, coronavirus HKU1, parainfluenza 3, adenovirus, 
parainfluenza 4, coronavirus 229E, coronavirus OC43, influenza A H1N1, influenza 
H1N1 test, and influenza A rapid test. 

Bacteriological tests 
Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Streptococcus A.  
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The accuracy of the models was calculated by integrating the area 
under the receiver operating characteristic (ROC) curve. 

3. Results 

The variation of all biomarkers (biochemical, haematological, and 
urinary) for the COVID-19 patients are summarised in Table 2. 

The results of the exploratory analyses of the diagnostic and severity 
disease data using the PCA model are depicted in Fig. 1. Additional re
sults with the KMCA model are available in Figures ESM 1 and ESM 2 in 
the Online Resource. These models were able to differentiate between 
positive and negative patients for COVID-19 (diagnostic data) and be
tween patients with non-severe disease and vs severe disease (disease 
severity data). 

Outlier samples were analysed for both diagnostic and disease 
severity data using the graph of leverage versus student residuals with 
95% of confidence interval (Fig. 2). No sample was detected as an 
outlier. 

The results of the four ML-based models for the data subsets are 
presented in Table 3. All models for COVID-19 diagnosis and prediction 
of disease severity were compared with each other using the following 
metrics: training time, model training error, cross-validation error, 
sensibility, specificity, and accuracy (area under the ROC curve). The 
ANN model performed better as it presented less training time and 
forecasting errors, and greater overall accuracy. The ROC curves of the 
models are depicted in Fig. 3. 

According to the ML-based models, some biomarkers were judged as 
critical or important for predicting COVID-19 and disease severity (see 
Table 4). Ferritin was ranked as the most important variable in all 
models. Further information is available on Online Resource. 

4. Discussion 

In the present study, we used four ML-based models (ANN, DT, PLS- 
DA, and KNN) with over 5,000 RT-PCR samples and data on patients’ 
biochemical, haematological, and urinary parameters that effectively 
predicted COVID-19 diagnosis and disease severity in Brazil. Consid
ering the high likelihood of existing SARS-Cov-2 mutations (B.1.1.7, P.1, 
and P.2) in the sample, the complexity of these models is even higher 
[38–40]. 

Several ML-based models, including unsupervised approaches (e.g., 
PCA and hierarchical cluster analysis) and supervised models (e.g., 
artificial neural network, PLS-DA, DT, KMC, and KNN), are available in 
the scientific literature [26,27]. The performance of these models relies 
on several factors, including sample size and the type of data. ML-based 
models built with larger samples are usually more accurate and efficient 
for series forecasting; for instance, the deep neural networks that require 
a great amount of training data [28–30]. The larger the network archi
tecture, the more data is needed to obtain more robust models [31–33]. 

Regarding COVID-19, previous models have been implemented 
aiming at predicting disease behaviour and severity. However, most of 
these studies used a small sample size, which may directly impact the 
performance of the model [34–36]. Banerjee (2020) developed an ML 
algorithm to forecast COVID-19 diagnosis using a public database with 
598 patients, of which only 39 were positive for SARS-CoV-2. The au
thors obtained a model with good specificity (91%) but low sensitivity 
(43%), which can prevent the use of the model in practice for early 
diagnosis of the disease [14]. Similarly, Joshi (2020) implemented a 
logistic regression model previously trained with 390 samples, of which 
only 33 were positive for COVID-19, proving sensitivity and specificity 
values of 93% and 43%, respectively [37]. Additionally, most studies 
implemented ML-based models using only routine blood tests [41,42]. 
In our study, besides the complete blood count test, data from patients’ 
biochemical, urinary, bacteriological, and virological tests aiming at 
identifying further biomarkers associated with COVID-19 were also 
included. 

Table 2 
Levels of biochemical, haematological, and urine biomarkers variation in posi
tive patients with severe disease on a normalised scale of patients.  

Biomarker COVID-19 positive 
patients’ samplesa 

COVID-19 severe 
patients’ samplesb 

Hematocrit Low Low 
Haemoglobin Low Low 
Platelets Low Low 
Mean platelet volume Low Low 
Red blood Cells Low Low 
Lymphocytes Low Low 
Mean corpuscular haemoglobin 

concentration (MCHC) 
Low Low 

Leukocytes High High 
Basophils Normal Normal 
Mean corpuscular haemoglobin 

(MCH) 
Normal Low 

Eosinophils Low Low 
Mean corpuscular volume (MCV) Low Low 
Monocytes High Normal 
Red blood cell distribution width 

(RDW) 
Low Normal 

Serum glucose High High 
Neutrophils Low Low 
Urea Low Low 
C-reactive protein High High 
Creatinine High High 
Potassium Low Low 
Sodium Low Low 
Alanine transaminase High High 
Aspartate transaminase High High 
Gamma-glutamyltransferase High High 
Total bilirubin High High 
Direct bilirubin High High 
Indirect bilirubin High High 
Alkaline phosphatase High High 
Ionised calcium Low Low 
pCO2 (venous blood gas analysis) High High 
Magnesium Low Low 
Hb saturation (venous blood gas 

analysis) 
Low Low 

Base excess (venous blood gas 
analysis) 

Low Low 

pO2 (venous blood gas analysis) Low Low 
Total CO2 (venous blood gas 

analysis) 
High High 

pH (venous blood gas analysis) Low Low 
HCO3 (venous blood gas analysis) High High 
Rods High High 
Segmented Low Low 
Promyelocytes Normal – 
Metamyelocytes Normal – 
Myelocytes Normal – 
Urine pH Low Low 
Urine density Normal Low 
Urine red blood cells Normal Normal 
International normalised ratio 

(INR) 
High High 

Lactate dehydrogenase High High 
Creatine phosphokinase (CPK) Normal Low 
Ferritin High High 
Arterial lactic acid High High 
Hb saturation (arterial blood 

gases) 
Low Low 

pCO2 (arterial blood gas analysis) High High 
Base excess (arterial blood gas 

analysis) 
Low Low 

pH (arterial blood gas analysis) Low Low 
Total CO2 (arterial blood gas 

analysis) 
High High 

HCO3 (arterial blood gas analysis) High High 
pO2 (arterial blood gas analysis) Low Low 
Arterial FiO2 Low Low 
Phosphorous Low –  

a Diagnostic data.  

b Disease severity data.  
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The models reached 84%–98% accuracy. The biomarkers that most 
contributed to this result and predicting the diagnosis and severity of 
COVID-19 included: hyperferritinaemia, hypocalcemia (low levels of 
ionised calcium), hypoxemia (low arterial oxygen pressure, pO2), pul
monary hypoxia (low inspired fraction of arterial oxygen, FiO2), respi
ratory acidosis (high levels of total CO2 and pCO2), metabolic acidosis 
(high levels of lactic acid and low venous pH), low urinary pH, and high 
levels of lactate dehydrogenase (LDH). 

Similar precision values were recently reported by Zhou (2021) 
(94%) and Wu (2021) (90%) after the implementation of ML-based 

models for COVID-19 diagnosis and disease severity, respectively [15, 
35]. However, different variables were highlighted by the authors as 
important for data classification. According to Zhou (2021), these were 
the rates of circulating lymphocytes, while Wu (2021) reported the rates 
of neutrophils and lymphocytes, the neutrophil/lymphocyte ratio, and 
platelet/lymphocyte ratio [15,35]. This variation may be associated 
with the different sample sizes (n = 357 vs n = 51) and type of models 
(decision tree model vs support vector machine model). 

Recently, most patients with severe COVID-19 who require hospi
talisation in intensive care units develop an atypical form of acute 

Fig. 1. Exploratory analysis. Principal component analysis (PCA) model for the discrimination of negative and positive samples (A) and samples from patients with 
severe and non-severe disease (B). 

Fig. 2. Graph of leverage versus student residuals for detecting outlier samples. For diagnostic data: outlier analysis of negative samples (A) and positive samples (B). 
For severity data: outlier analysis for samples from patients without severity (C) and with severity (D). 
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distress syndrome, which is usually accompanied by a preserved volume 
of pulmonary gas [43]. This suggests hypoxia, which results from the 
difficulty in performing gas exchanges at the level of the pulmonary 
alveoli. It has been observed that this pulmonary dysfunction can also 
compromise iron metabolism [43]. Imbalances in both haemoglobin and 
ferritin levels were reported in patients with severe disease or deaths 
caused by COVID-19. In a systematic review with a meta-analysis con
ducted by Taneri (2020), which included 189 studies (n = 57,563 pa
tients), high-risk patients with severe disease had significantly high 
levels of ferritin (weighted mean difference (WMD), 473.25 ng/mL 
(95% CI 382.52; 563.98)) and low haemoglobin levels (WMD, 4.08 g/L 
(95% CI 5.12; − 3.05)) when compared to patients with moderate or 
low-risk disease [44]. In our study, both patient groups with the disease 
(diagnostic model) and patients with severe disease (disease severity 
model) presented low levels of haemoglobin and high levels of ferritin. 
All developed ML-based models (ANN, PLS-DA, KNN, and DT) 

highlighted that the differences in the levels of these two biomarkers 
were critical, both for the prediction of COVID-19 diagnosis and disease 
severity. Recent studies have indicated anaemia and hyperferritinaemia 
to be strong biomarkers for the prognosis of mortality due to 
SARS-CoV-2, in addition to other serious respiratory diseases [45–50]. 

Ferritin is a protein found mainly in the liver, bone marrow, and 
spleen and is the body’s main source of iron storage. It is considered a 
key biomarker of immune dysregulation, mainly in a situation of 
hyperferritinaemia, through the direct route of proinflammatory and 
immunosuppressive effects contributing to a cytokine storm [51–53]. 
Some studies show that fatal outcomes caused by COVID-19 are 
accompanied by cytokine storm syndrome involving high levels of in
flammatory markers, such as ferritin [54,55]. In the present study, 
ferritin was associated with predicting the severity of COVID-19, and it 
was the most important biomarker in predicting the diagnosis of the 
disease by all the ML-based models developed, corroborating the 

Table 3 
Performance comparison of the machine learning models for COVID-19.  

Metric Diagnostic model Disease severity model 

RNA DT PLS-DA K-NN RNA DT PLS-DA K-NN 

Training time 21 min. 43 s 27 min. 11 s 31 min. 19 s 22 min. 15 s 7 min. 1 s 10 min. 19 s 18 min. 3 s 09 min. 53 s 
Calibration error 1.0% 0.5% 1.2% 0.5% 1.0% 8.4% 6.0% 0.4% 
Cross validation error 0.8% 1.0% 0.9% 0.6% 0.5% 1.8% 4.0% 0.7% 
Sensibility 0.93 0.89 0.88 0.84 0.99 0.90 0.87 0.82 
Specificity 0.94 0.89 0.90 0.83 0.97 0.94 0.88 0.88 
Accuracya 0.94 0.90 0.90 0.84 0.98 0.92 0.88 0.86  

a Area under the ROC curve.  

Fig. 3. ROC curves of the accuracy of the machine learning models. Artificial neural network (ANN): diagnosis (A) and severity (B). Decision tree (DT): diagnosis (C) 
and severity (D). Discriminant analysis by partial least squares (PLS-DA): diagnosis (E) and severity (F). K-nearest neighbours (KNN): diagnosis (G) and severity (H). 
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literature data. 
Acid and base disorders are important indicators in the pathogenesis 

and severity of several diseases, especially respiratory diseases of in
fectious origin, such as pneumonia [56–58]. Acidosis can occur as a 
result of a significant increase in arterial carbon dioxide pressure (res
piratory acidosis) or a variety of inorganic or organic compounds 
(metabolic acidosis), such as bicarbonate, lactic acid arterial, ketones, or 
as a result of renal failure or hyperchloremic acidosis; all of these factors 
act simultaneously in the increase of hydrogen protons and, conse
quently, the reduction of blood and respiratory pH levels [59–62]. Re
searchers suggest that the metabolic acidosis caused by lactic acid in 
COVID-19 is probably due to anaerobic glycolysis, which is favoured 
in consequence of hypoxemia. In this condition, pyruvate, a product of 
the glycolytic pathway, is not translocated to mitochondria to follow the 
oxidative process [63,64]; instead, it is converted into lactate in the 
cytosol by the LDH enzyme. As the hypoxemia impairs the tissue 
oxygenation and the oxidative phosphorylation, the cells obtain ATP by 
anaerobic glycolysis. This flow relies on the conversion of pyruvate to 
lactate which results in high levels of this metabolite that comes out of 
the cells. The excessive consumption of lactate during the process of 
gluconeogenesis culminates in lactic acidosis [65]. It has been reported 
that on the 18th day of COVID-19 disease, the levels of lactic acid begin 
to increase significantly, triggering metabolic acidosis, although the 
carbon dioxide pressure is acceptable [66]. 

In our study, patients positively diagnosed with COVID-19 (diag
nostic model) and with severe disease (disease severity model) had high 
levels of carbon dioxide pressure (arterial and venous gas analysis), total 
carbon dioxide (arterial and venous gas analysis), arterial lactic acid and 
bicarbonate (arterial gas analysis), and exceptionally low venous pH 
(pH = 0.3), which also suggests respiratory and metabolic acidosis. 
These results are similar to other countries, indicating that these meta
bolic imbalances are prevalent in COVID-19 patients [64,67,68]. In 
general, all the available data show that most patients with severe dis
ease have accompanying comorbidities, such as diabetes. Recent studies 

indicate that metabolic acidosis is influenced by the use of metformin for 
the treatment of diabetes mellitus [69,70]. 

The present analysis detected levels of five function biomarkers, 
including bilirubin, direct bilirubin, indirect bilirubin, alanine trans
aminase, and aspartate transaminase, increased in patients with positive 
(diagnostic model) and severe (severity model) disease compared to 
patients with non-severe disease. A systematic review and meta-analysis 
performed by Parohan (2020) revealed similar findings, where all 1,455 
patients with severe disease had extremely high levels of total bilirubin 
(WMD 2.30 mmol/l; 95% CI, 1.24; 3.36; p < 0.001), alanine amino
transferase (WMD 7.35 U/L; 95% CI, 4.77; 9.93; p < 0.001) and aspar
tate aminotransferase (WMD 8.84 U/L; 95% CI 5.97; 11.71; p < 0.001), 
compared to 1,973 patients with non-severe disease [71]. Liver damage 
has also been reported in other viral pneumonia (e.g., MERS and SARS) 
and is directly associated with disease severity and mortality [72–75]. 
However, the biochemical/pathophysiological mechanisms that explain 
the liver dysfunction caused by COVID-19 are still unknown. It is unclear 
if the liver dysfunction is due to SARS-Cov-2 or is a consequence of 
multiple organ failure caused by the virus [71]. 

Additionally, high levels of the C-reactive protein (CRP) in the 
samples were found. An increase in this important biomarker in COVID- 
19 patients’ was previously reported by Chen (2020) (up to 86%) [50]. 
Recently, a systematic review with meta-analysis concluded that 
extremely high levels of CRP were statistically associated with 
COVID-19 severity [77,78]. CRP is an inflammatory protein in the acute 
phase of inflammatory and infectious processes that is synthesised 
mainly in liver cells but also smooth muscle cells, macrophages, lym
phocytes, and adipocytes. High levels of CRP (increasing up to 100 
times) are commonly found during infections (plasma CRP levels in
crease around 1–500 μg/mL within 24–72 h) [76]. However, the role of 
CRP isoforms and their involvement in the progression of infectious 
diseases is still unknown [77,78]. 

Finally, in addition to the biochemical parameters already 
mentioned, low calcium levels were also detected in our analysis as a 

Table 4 
Important biomarkers in machine learning models for the diagnosis and classification of COVID-19 severity.  

Biomarkers Diagnostic model Disease severity model 

ANN DT PLSDA KNN ANN DT PLSDA KNN 

Ferritin þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ þ

Gamma-glutamyltransferase þ - - - - - - - 
HCO3 (arterial) þ - - þ - - þ þ

Base excess (arterial) þ - - - - - þ þ

Base excess (venous) - - - - - - þ - 
Sodium þ - - - - - - - 
Total O2 (arterial) - - - - þ - - - 
pO2 (arterial) - - - þ - - - - 
Total CO2 - þ þ þ - - - þ

pCO2 (arterial) þ - - - - - þ þ

pCO2 (venous) þ - þ - - - þ - 
Indirect bilirubin þ - - - - - - - 
Alkaline phosphatase þ - - - þ - - - 
Urine pH - - þ þ þ - þ - 
pH (venous) - - - - - - þ - 
pH (arterial) - - - - - - - þ

FiO2 (arterial) - - - - þ - -  
ctO2 (arterial) - - - - - - - þ

Total bilirubin - - - - þ - - - 
Red blood cell distribution width - - - - þ - - - 
Platelets - - - - þ - - - 
C-reactive protein - - - - þ - þ - 
Calcium ionised - - þ þ - - - - 
Urine-density - - þ þ - - - - 
Lactate dehydrogenase - - - - - - þ - 
Arterial lactic acid - - - þ - - - þ

Haemoglobin saturation (arterial) - - - - - - - þ

Phosphorous - - þ þ - - - - 
Lipase dosage - - - - - - þ - 
Rods - - - þ - - þ - 

Less important variable (− ); Important variable (+); Critical variable (++). 
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predictor for COVID-19 diagnosis and disease severity. Calcium is 
essential for a wide variety of processes in the body, ranging from 
normal muscle contraction to enzymatic activities [79]. It is known that 
alteration in Ca2+ homeostasis can contribute to cell death by necrosis 
and apoptosis. Evidence shows that calcium metabolism disorders are 
associated with cardiovascular disease and early cell death [80,81]. Low 
calcium levels have already been associated with increased in-hospital 
mortality in patients with severe coronary artery disease [82], septic 
patients [79], bacterial pneumonia [83], and patients with dengue [84]. 
More recent studies have also associated hypocalcemia as an important 
predictor of hospitalisation and mortality risk by COVID-19 [67,85–87]. 

Although the present study has shown consistent results, it has some 
limitations. Cross-sectional studies, with no follow-up analysis of pa
tients’ data, are prone to selection bias, information bias, and con
founding bias. In addition, biomarkers’ levels may change during the 
disease. 

5. Conclusion 

All the ML-based models (ANN, DT, PLS-DA, and KNN) were able to 
effectively predict COVID-19 diagnosis and disease severity with an 
accuracy above 84%, which is similar to the results obtained by RT-PCR 
and the minimum recommended threshold for diagnostic tests. The ANN 
was the model with the best performance (94% and 98%) and, thus, 
could be used as a supporting decision tool for healthcare professionals 
in practice. Hyperferritinaemia, hypocalcemia, hypoxemia, pulmonary 
hypoxia, respiratory acidosis, metabolic acidosis, low urinary pH, and 
high levels of lactate dehydrogenase were associated with COVID-19 
diagnosis and disease severity. These biomarkers are potential thera
peutic targets that should be more effectively investigated in further 
clinical trials. 
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S. Tonin, F.M. Sarti, R. Pontarolo, Influence of foods and nutrients on COVID-19 
recovery: a multivariate analysis of data from 170 countries using a generalized 
linear model, Clin. Nutr. (2021), https://doi.org/10.1016/j.clnu.2021.03.018. 

[4] A. Supady, J.R. Curtis, D. Abrams, R. Lorusso, T. Bein, J. Boldt, C.E. Brown, 
D. Duerschmied, V. Metaxa, D. Brodie, Allocating scarce intensive care resources 
during the COVID-19 pandemic: practical challenges to theoretical frameworks, 
Lancet Respir. Med. 9 (2021) 430–434, https://doi.org/10.1016/S2213-2600(20) 
30580-4. 

[5] A.L. Ribeiro, N.W. Alves-Sousa, P.R. Martins-Filho, V.O. Carvalho, Social disparity 
in magnifying glass: the inequality among the vulnerable people during COVID-19 
pandemic, Int. J. Clin. Pract. 75 (2021) 2–3, https://doi.org/10.1111/ijcp.13839. 
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