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Abstract
Objectives In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an
important role in diagnosis and monitoring of patients with COVID-19. We propose a deep learning model for detection of
COVID-19 from CXRs, as well as a tool for retrieving similar patients according to the model’s results on their CXRs. For
training and evaluating our model, we collected CXRs from inpatients hospitalized in four different hospitals.
Methods In this retrospective study, 1384 frontal CXRs, of COVID-19 confirmed patients imaged between March and August
2020, and 1024 matching CXRs of non-COVID patients imaged before the pandemic, were collected and used to build a deep
learning classifier for detecting patients positive for COVID-19. The classifier consists of an ensemble of pre-trained deep neural
networks (DNNS), specifically, ReNet34, ReNet50¸ ReNet152, and vgg16, and is enhanced by data augmentation and lung
segmentation. We further implemented a nearest-neighbors algorithm that uses DNN-based image embeddings to retrieve the
images most similar to a given image.
Results Our model achieved accuracy of 90.3%, (95% CI: 86.3–93.7%) specificity of 90% (95% CI: 84.3–94%), and sensitivity
of 90.5% (95% CI: 85–94%) on a test dataset comprising 15% (350/2326) of the original images. The AUC of the ROC curve is
0.96 (95% CI: 0.93–0.97).
Conclusion We provide deep learning models, trained and evaluated on CXRs that can assist medical efforts and reduce medical
staff workload in handling COVID-19.
Key Points
• A machine learning model was able to detect chest X-ray (CXR) images of patients tested positive for COVID-19 with accuracy
and detection rate above 90%.

• A tool was created for finding existing CXR images with imaging characteristics most similar to a given CXR, according to the
model’s image embeddings.

Keywords COVID-19 . X-rays . Machine learning . Radiography . Thoracic

Abbreviations
AUC Area under the curve
CIs Confidence intervals
COVID-19 Coronavirus disease 2019
CXR Chest X-ray
FPR False positive rate
GT Ground truth
KNN K-Nearest Neighbors
P-R curve Precision-recall curve
ROC Receiver operating characteristic
RT-PCR Reverse transcription polymerase

chain reaction
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TPR True positive rate
t-SNE t-Distributed stochastic neighbor embedding

Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused
by the SARS-CoV-2 virus, poses tremendous challenges to
healthcare systems around the world, and requires physicians
to make fast clinical decisions under pressure. After many
months that led to exhaustion of the medical teams, hospitals
are confronting renewed surges with overwhelming numbers
of new patients seeking medical aid. Some patients approach
the emergency departments with respiratory symptoms, and
others that are being evaluated for different reasons are
asymptomatic yet positive for COVID-19.

The prevalent test used for COVID-19 identification is re-
verse transcription polymerase chain reaction (RT-PCR) [1–3],
despite its high false negative rates. The undetected fraction of
active patients inevitably leads to uncontrolled viral dissemina-
tion, masking hidden essential epidemiological data [4–6].
Additionally, RT-PCR testing kits are expensive; processing
them requires dedicated personnel and can take hours to days.
Rapid and accurate methods of diagnosis that do not rely on
medical staff are therefore becoming crucial for the control of
the pandemic. CXRs of COVID-19 patients can demonstrate
typical findings including peripheral opacities and ground glass
patterns in the absence of pleural effusion [5, 7, 8], and there-
fore may be used as a triage test, for establishing and grading
pulmonary manifestations, as well as for follow-up.

Deep learning models have shown impressive abilities in
image-related tasks, including in many radiological contexts
[9–11]. They have great potential in assisting COVID-19
management efforts but require large amounts of training data.
When training neural networks for image classification, im-
ages from different classes should only differ in the task spe-
cific characteristics; it is important, therefore, that all images
are taken from the same machines. Otherwise, the network
could learn the differences, e.g., between machines associated
with different classes rather than identifying physiological and
anatomical COVID-19 characteristics.

Portable X-ray machines are predominant in COVID-19
handling [12], and most available CXRs of patients with
COVID-19 in Israel come from portable X-rays. While
COVID-19 is easier to detect in CT [13], CT is more expen-
sive and exposes the patient to higher radiation, and its decon-
tamination process is lengthy and causes severe delays be-
tween patients. The major challenge with the use of CXR in
COVID-19 diagnosis is its low sensitivity and specificity in
current radiological practice. A recent study found that the
sensitivity of CXRs was poor for COVID-19 diagnosis [14].

This study aims to develop and evaluate machine learning
tools for COVID-19 identification and management. A large

dataset of images from portable X-rays collected in 4 different
hospitals was used to train and evaluate a network that can
detect COVID-19 in the images with high reliability and to
develop a tool for retrieving CXR images that are similar to a
query CXR image, based on a metric defined by the classifier.
The network results in detection accuracy of 90.3%, specific-
ity of 90%, and sensitivity of 90.5%.

Materials and methods

Data and patients

This retrospective study took place during and after the first
wave of the COVID-19 pandemic in Israel, and included pa-
tients aged 18 years and older in four medical centers in Israel.
The data for this study includes a total of 2427 frontal (AP/
PA) CXR images from 1384 patients (63 ± 18 years,
f:m = 832:552), 360 of which with a positive COVID-19
diagnosis and 1024 negative. All images came from portable
X-ray machines. For COVID-19-positive patients, the stan-
dard protocol was that every symptomatic patient with posi-
tive RT PCR test for COVID 19 was admitted to the hospital,
even if symptoms were mild. Routine chest X-rays were per-
formed at the day of admission and then later for follow-up.
COVID-19 positive images include a wide range of minimal
to severe pulmonary damage, which, for the purpose of this
work, were all read as positive COVID-19. The non-COVID-
19 images were obtained from CXRs taken by the same X-ray
machines from January 2017 to April 2019, before the start of
the pandemic, meaning there are no false negatives in our
cohort. These include normal as well as abnormal radiographs
with other clinical conditions.

The test set was taken from the full CXR dataset and con-
tains 350 CXR (15%) of which 179 (51%) are positive for
COVID-19 and 171 (49%) are negative. For patients with
multiple images, their images were used either for the test
set or for the train set, not both. This was done to prevent
the model from identifying patient-specific image features
(e.g., medical implants) and associating them with the label.
Both train and test sets include patients from all four hospitals.

All images were used in the highest available resolution
without lossy compression; 4% (101/2426) of the images were
excluded due to lateral positioning, or due to rectangular arti-
facts in the image, of these 98 were COVID-19 positive. No
additional selection criteria were used to exclude images
based on clinical radiological findings.

Image processing

The model pipeline (Fig. 1) begins with a series of preprocess-
ing steps, including augmentation, normalization, and seg-
mentation of the images.
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Augmentations are transformations that change features
such as image orientation and brightness. These properties
are irrelevant for correct classification, but may vary during
image acquisition, and can affect the training performance of
the network because of its rigid registration with respect to
orientation and pixel values. They serve to enlarge the dataset
by creating a diverse set of images, increasing model robust-
ness and generalizability [15, 16]. Importantly, augmentations
should correspond to normal variation in CXR acquisition; to
ensure this, we consulted with radiologists when defining the
augmentation parameters (see Supplemental Material for
details).

The normalization process aims to standardize image prop-
erties and scale. It consists of cropping black edges, standard-
izing the brightness and scaling the size of each image to
1024 × 1024 pixels using bilinear interpolation.

To enhance performance, we created an additional image
channel using lung segmentation via a U-net pre-trained on an
external dataset as detailed in [17]. This network produces a
pixel-mask of the CXR indicating the probability that each
pixel belongs in the lungs, allowing the network to access this
information while training. Input images contain 3 channels:
the original CXR, the segmentation map, and one filled with
zeroes. This was done to accommodate the pre-trained models
we used that use 3-channel RGB images.

Network architecture and output

We compared five network models: ResNet34, ResNet50,
ResNet152 [18], VGG16 [19], and CheXpert [9]. The general
approach of these architectures is to reduce images from a

high-dimensional to a low-dimensional space such that a sim-
ple boundary can be used to separate image classes. The
models were trained using transfer learning, i.e., loading
weights pre-trained on the ImageNet database [18, 19] or on
the CheXpert dataset [9] and subsequently retraining them on
our data. We additionally classified the images using an en-
semble model that outputs the average of the networks’
results.

In addition to classification, we propose a method for re-
trieving a number of CXR images that are the most similar to a
given image. The activation of layers of the neural network
serves as embeddings of the images into a vector space, and
should capture information about clinical indications observed
in the images. We used the embeddings produced by the net-
work’s last layer to search for similarity between the resulting
vectors and retrieve the nearest neighbors of each image.

Evaluation

For model evaluation we used accuracy, sensitivity, specific-
ity, and area under the curve (AUC) for receiver operating
characteristic (ROC) and precision recall (P-R) curves.
Confidence intervals (CIs) were calculated for 10 different
random divisions of the data into training and testing sets.
For each division, the CI was obtained by taking 100 bootstrap
samples out of the test set and calculating the requested met-
rics on each sample. The CIs are then given by the 2.5th and
97.5th percentiles for each metric. In the paper, we report the
CIs for the original data split. See Supp. s7 for more detailed
results from all 10 data divisions.

Fig. 1 Full pipeline workflow overview. First each image undergoes
processing consisting of augmentation, which is a set of visual
transformations (transformations shown: (a) original image, (b)
brighten, (c) horizontal flip, (d) 7 degrees rotation, (e) CLAHE
transformation, (f) scale), normalization, in order to set a standard scale
of image size and color, and segmentation, which emphasizes the area of

the lungs and is combined to the image. The entire image set is then fed
into a neural network which produces a classification outcome for each
image as positive for coronavirus disease 2019 (COVID-19) or negative
for COVID-19. In addition, embedded features are extracted from the last
layer of the network and are used to find images with similar
characteristics to a given image as learned by the network
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We evaluate the model with and without image pre-
processing and examine its performance on a set of 22
CXRs determined by a radiologist as hard to diagnose. We
provide additional analysis of the model’s performance by
visualizing its results with t-distributed stochastic neighbor
embedding (t-SNE) [20], a method that maps multi-
dimensional data into a two-dimensional space to enable vi-
sualization. See Supp. s8 for more details on t-SNE.

Results

Data acquisition

The patient data included in this study are shown in Table 1.
The imaging dataset consists of a total of 2426 CXRs, of
which 53% (1289/2426) are positive for COVID-19 and
47% (1138/2426) are negative; 4% (101 of 2426, 98 positive)
of the images were excluded due to lateral positioning or hav-
ing rectangular artifacts covering parts of the image. To our
knowledge, this is one of the largest datasets of original
COVID-19-labeled X-ray images.

Quantitative analysis of the model

The performance of the network was tested on 15% (350 of
2426) of the images that were not used for training. The met-
rics we used are accuracy (proportion of successful classifica-
tions), sensitivity (also—recall, the proportion of positively
labeled images that were classified correctly), and specificity
(proportion of correctly classified negative images). Results
for five different networks can be seen in Table 2. The
ResNet50 architecture had the best performance and was used
for analyses requiring network embeddings (t-SNE and
KNN). The ensemble model, which averages over the output
of multiple networks, achieved accuracy of 90.3% (95% CI:
86.3–93.7%), specificity 90.0% (95% CI: 84.3–94%), and
sensitivity 90.5% (95% CI: 85–94%) on the test images. The
AUC of the ROC curve is 0.96 (95% CI: 0.93–0.97). The
ROC curve is provided in Fig. 2a, showing the relationship
between the false positive rate (FPR) and the true positive rate
(TPR) for different classification threshold values. Figure 2b
presents the P-R curve, which shows a similar tradeoff be-
tween precision (proportion of positively classified images
that were correctly classified) and recall, with AUC of 0.96

(95% CI: 0.94–0.97). Both figures show a broad range of
thresholds for which both high performance metrics are
attainable.

We additionally evaluated the model on test sets with a
COVID-19 prevalence of 5% and 10% that adhere more
closely to a realistic disease prevalence in the patient popula-
tion. Themodel maintained similar scores, as seen in Supp. s9.

We trained the ResNet50 model on the dataset with and
without all preprocessing stages. As seen in Table 2, prepro-
cessing incurs an improvement of 4% in accuracy and 5% in
sensitivity. In analyzing subgroups of our patient cohort, we
found that prediction accuracies are higher for females than
males (Supp. Fig. 1), but there is no strong effect of age on
model performance (Supp. Fig. 2).

Qualitative analysis of the model

The binary decision of whether a patient has COVID-19 is
based on an activation score between 0 and 1 outputted by
the network that corresponds to the probability the network
assigns to the positive label. We generated a histogram of
these scores (Fig. 2d), and observe that the majority of the
correctly classified points are accumulated at the edges, while
the wrongly classified images are more spread out along the x-
axis.

We additionally visualize the distinction made by the mod-
el using t-SNE, which uses a nonlinear method to reduce high
dimensional vectors into two dimensions, making it possible
to visualize the data points and reveal similarities and dissim-
ilarities between them.We used the last layer of the network to
obtain an embedding of the images into a vector space. These
embeddings were then inputted to the t-SNE. Figure 3 shows
these image embeddings as points in a 2-dimensional space,
colored by their GT labels. The figure depicts two distinct
clusters, revealing a similarity between most images belong-
ing to the same label.

We also examine the model’s performance over time, by
plotting the prediction scores according to the days from ad-
mission. As the disease progresses, lung findings tend to be-
come more prominent. This is in line with the results, seen in
Fig. 4, where the model’s performance improves over time,
with most classification errors occurring on a patient’s first
image, taken upon hospital admission.

In order to consider a more difficult task, we used our
model to classify 22 CXRs, 9 positive for COVID-19, and

Table 1 Demographic statistics
on patients and chest images in
this study

Label No. of
patients

No. of
images

Sex (men/women/unknown) Age (years mean
± std)

COVID-19 positive 360 1191 199 (55%)/132 (36%)/29 (9%) 60 ± 18

COVID-19 negative 1024 1135 353 (34%)/323 (32%)/348 (34%) 65 ± 19
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Table 2 Comparison of accuracy,
sensitivity, and specificity of
various deep networks trained and
tested on the same test set

Training model Accuracy (%) Sensitivity (%) Specificity (%)

ResNet34 86.8 (305 of 351) 83.81 (151 of 180) 90.0 (154 of 171)

ResNet50 90.0 (316 of 351) 90.5 (163 of 180) 89.4 (153 of 171)

ResNet50 - No preprocessing 85.1 (298 of 350) 82.1 (147 of 179) 88.3 (151 of 171)

ResNet152 87.1 (306 of 351) 83.3 (150 of 180) 91.2 (156 of 171)

CheXpert 80.6 (283 of 351) 81.1 (146 of 180) 80.6 (137 of 171)

VGG16 85.2(299 of 351) 81.6 (147of 180) 88.8 (152 of 171)

Ensemble* 90.3 (317 of 351) 90.5 (163 of 180) 90.0 (154 of 171)

*Bold: model with best accuracy and sensitivity is the ensemble shown in bold

Fig. 2 Performance of the model. a Confusion matrix of the
classification. True positive rate (TPR) at the bottom right corner, true
negative rate (TNR) at the top left corner, false positive rate (FPR) at the
top right corner, and false negative rate (FNR) at the bottom left corner. b
Receiver operating characteristic (ROC) curve. The curve shows the
relation between true positive rate (TPR) and false positive rate (FPR)
as the threshold of the separation between positive and negative
classification is varied. The performance of the model is measured by
the area under the curve (AUC). Ideally, the curve should cover as
much area as possible up to the upper left corner (AUC score of 1),
which minimizes the FPR while maximizing the TPR. The AUC is
0.95. c Precision-recall curve. Shows the relation between precision and
recall. Precision and recall are affected from different classes of the data,
thus can vary in scores when data is imbalanced (e.g., more observations

of positive or negative compared to the other). We would like to have the
AUC as large as possible up to the upper right corner, which maximizes
both precision and recall. d Classification score histogram. Ground truth
(GT) labels are in colors. Every image is scored on a scale between 0 and
1 with threshold of 0.5, seen as a dashed line, such that all images with a
higher score will be classified as positive for COVID-19 and images
below as negative. Negatively labeled images that received a score
above 0.5 are, therefore, incorrectly classified images, and vice versa
with respect to positively labeled images. However, the closer the
image score is to one of the edges (0 or 1), the stronger the confidence
in the image’s classification. The accumulation of two distinct colors on
the edges point to good separation of many observations with strong
confidence in the classification
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13 negative, determined by radiologists as challenging to di-
agnose. Challenging images included images from patients
with a positive COVID-19 PCR that either have minimal pa-
renchymal abnormalities and look normal to the radiologist’s
eye, or have pulmonary infiltrates similar to preexisting dis-
eases other than COVID 19. The model achieved accuracy
77%, and sensitivity 77% on this task. In Fig. 5, three correctly
classified images from this test are shown with the network’s
classification score and the GT.

As an additional tool, we applied K-Nearest Neighbors
(KNN) on the image embeddings in order to retrieve images
similar to each other as shown in Fig. 6. For each image, we
retrieved 4 images with the closest image embeddings; aver-
aging over these images’ predictions achieves 87% accuracy
(305/350), 91.2% specificity (156/171), and 83.2% sensitivity
(149/179), meaning that the nearest images typically have the
same labels.

Discussion

In this study, we developed a deep learning pipeline to classify
chest X-ray (CXR) images of patients as positive or negative
for coronavirus disease 2019 (COVID-19), achieving a detec-
tion rate of above 90%. Our classifier offers instant COVID-
19 detection, to allow for fast response and improved turn-
around times in medical centers. In addition, we created a tool
that retrieves the CXR images most similar to a given image.
This tool can provide physicians with a reference to previous

patients that had similar CXR findings. The internal informa-
tion the hospital has about these previous patients can then be
used to inform decisions for further treatment.

Early approaches to COVID-19 classification using neural
networks relied on publicly available image sources, including
COVID-19 image data collection [21] with 481 COVID-19-
positive images and COVID-Net open-source initiative with
473 COVID-19-positive X-ray images [22–26]. Some efforts
include classification into multiple lung and chest conditions
including COVID-19 [27], and others attempt outcome pre-
diction [28, 29].

Such efforts have a number of drawbacks, highlighted in
the detailed review presented in [30]. The datasets they rely
upon were compiled from various sources, often using one
source only for COVID-19 images and another only for
COVID-19-negative images and other non-COVID condi-
tions [30]. Positive and negative images in these datasets
may therefore be produced by different X-ray machines, in
particular portable and fixed machines, which give rise to
images with different expressions of acquisition-related fea-
tures. As a result, the network’s predictions may rely on fea-
tures related to the source rather than the relevant medical
information [31]. Moreover, the limited number of positive
COVID-19 CXR images in these datasets may cause the
models to overfit [32] and impair their ability to generalize
to external datasets. A dataset with more positive COVID-19
images as used in this study, containing 1191 positive CXRs,
tends to produce more stable results.

In this work, we sought to address the limitations of previ-
ous studies in several ways. Most importantly, we collected
CXRs from the same portable X-ray machines for both pa-
tients positive and negative to COVID-19. We used raw im-
ages without compression that may result in loss of features
and introduction of source-dependent artifacts. Moreover, our
dataset contains diverse data from four medical centers and is
balanced between COVID-19 and non-COVID-19 images.

A recent effort has shown more reliable results based on a
larger, more uniformly sourced dataset and comes closer to the
goal of developing tools that can be used in clinical settings
[11]. They achieved a sensitivity of 88% with a specificity of
79%. Our approach improves upon these notably solid results
in terms of performance (sensitivity of 90.5% and specificity
of 90.0%). As we show, this performance increase may be the
result of the image pre-processing pipeline, particularly image
augmentations and the addition of a segmentation channel.
These steps lead to a performance increase of 8.4 percentage
points in sensitivity and 1.1 percentage points in specificity
(Table 2—ResNet50 vs. ResNet50 no preprocessing).

Another novelty of our work is that we introduced a
content-based image retrieval tool that identifies similar
CXRs based on a metric defined by using the image embed-
dings given by the second to last layer of ResNet50. As
ResNet50was trained for COVID-19 classification, we expect

Fig. 3 t-Distributed stochastic neighbor embedding (t-SNE). A high-
dimensional feature vector was extracted for each image from the last
layer before the network output, and reduced into 2 dimensions. Each
point on the graph represents the features of an image after dimension
reduction and arrangement in space. Next the images were colored
according to their ground truth (GT), thus revealing two main clusters.
The clusters are mostly in one color each, which essentially shows a
strong association of the features, extracted from the decision layer and
are used to arrange in space, with the GT of the images, represented by the
colors
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similar images under this metric to represent similar cases in
terms of their clinical condition. This tool enables medical
staff to search the database to identify relevant study cases
for a new case under consideration. We note that the scoring
process for this similarity measure still requires further inves-
tigation in a clinical setting. We would ideally like to compare
the disease progression for patients that were found by our
tool to have similar lung findings.

In the future, we intend to deploy our model for testing
in a clinical setting within the hospitals. We also plan to
work on COVID-19 severity classification. A limitation of

our study is that preexisting medical illnesses and comor-
bidities were not integrated into the analysis of both
COVID-19 and control datasets, due to a lack of access
to clinical data of the patients. Our COVID-19-negative
cohort comprises patients with a multitude of diseases,
but with the absence of precise labels, we cannot analyze
our ability to separate between COVID-19 and any specific
lung morbidity. Moreover, our classifier is tailored towards
portable X-rays within the four hospitals that provided the
data. It requires further fine tuning to be used in other
hospitals or diagnostic settings.

Fig. 4 Classification score as a function of time change. The first image
of each patient was acquired at the same day of first admission; we note
that time value as day 0. Other images of patients which were scanned
more than once were noted with time value according to the number of
days since the first imagewas acquired, thus representing the time elapsed
from first admission and is ordered on the x-axis. The y-axis shows the

classification score of each image between 0 (= negative for COVID-19)
and 1 (= positive for COVID-19), such that a score closer to the edge
indicates more confidence in the network’s classification. a The
classification score with respect to change in time. The more days
elapse since first admission, the more confident the classification. b
Mean values of classification scores for all images of the same day value

Fig. 5 Three images labeled by a radiologist as hard to diagnose. Despite
this, the model was able to classify them correctly. Each image is scored
with a classification score on a scale between 0 and × 1 with threshold of

0.5 such that all images with score above the threshold will be labeled as
positive for COVID-19 and images below as negative. The ground truth
(GT) label of each image is also shown
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In summary, we developed a deep neural network
which is able to reliably and rapidly detect patients with
COVID-19. Even though medical imaging has not yet
been approved as a standalone diagnosis tool [12], we
believe it can be used as an aid to medical judgment with
the advantage of immediate outcome, leading to improved
turnaround times. We further created a tool for X-ray im-
age retrieval based on lung similarities, drawing connec-
tions between patients with similar disease manifestations.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-021-08050-1.
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