Skip to main content
. 2021 May 29;31(12):9654–9663. doi: 10.1007/s00330-021-08050-1

Table 2.

Comparison of accuracy, sensitivity, and specificity of various deep networks trained and tested on the same test set

Training model Accuracy (%) Sensitivity (%) Specificity (%)
ResNet34 86.8 (305 of 351) 83.81 (151 of 180) 90.0 (154 of 171)
ResNet50 90.0 (316 of 351) 90.5 (163 of 180) 89.4 (153 of 171)
ResNet50 - No preprocessing 85.1 (298 of 350) 82.1 (147 of 179) 88.3 (151 of 171)
ResNet152 87.1 (306 of 351) 83.3 (150 of 180) 91.2 (156 of 171)
CheXpert 80.6 (283 of 351) 81.1 (146 of 180) 80.6 (137 of 171)
VGG16 85.2(299 of 351) 81.6 (147of 180) 88.8 (152 of 171)
Ensemble* 90.3 (317 of 351) 90.5 (163 of 180) 90.0 (154 of 171)

*Bold: model with best accuracy and sensitivity is the ensemble shown in bold