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Abstract

Objective: Electronic health records (EHRs) represent powerful tools to study rare diseases. We 

developed and validated EHR algorithms to identify SLE births across centers.

Methods: We developed algorithms in a training set using an EHR with over 3 million subjects 

and validated algorithms at two other centers. Subjects at all 3 centers were selected using ≥ 1 SLE 

ICD-9 or SLE ICD-10-CM codes and ≥ 1 ICD-9 or ICD-10-CM delivery code. A subject was a 

case if diagnosed with SLE by a rheumatologist and had a birth documented. We tested algorithms 

using SLE ICD-9 or ICD-10-CM codes, antimalarial use, a positive antinuclear antibody ≥ 1:160, 

and ever checked dsDNA or complements using both rule-based and machine learning methods. 

Positive predictive values (PPVs) and sensitivities were calculated. We assessed the impact of case 

definition, coding provider, and subject race on algorithm performance.

Results: Algorithms performed similarly across all three centers. Increasing the number of 

SLE codes, adding clinical data, and having a rheumatologist use the SLE code all increased 

the likelihood of identifying true SLE patients. All the algorithms had higher PPVs in African 

American vs. Caucasian SLE births. Using machine learning methods, total number of SLE codes 

and a SLE code from a rheumatologist were the most important variables in the model for SLE 

case status.

Conclusion: We developed and validated algorithms that use multiple types of data to identify 

SLE births in the EHR. Algorithms performed better in African American mothers than Caucasian 

mothers.
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease that primarily affects women 

of childbearing age. Studying pregnancy outcomes in SLE is difficult given its relative 

rarity. SLE pregnancy studies are typically limited to a single-center cohort (1, 2) that may 

not reflect real-world pregnancy outcomes. Population-based studies have investigated SLE 

pregnancies but mainly in European populations (3–5).

Electronic health records (EHRs) contain rich, longitudinal data and serve as a powerful 

research tool (6). To harness the power of EHR data, validated methods are needed to 

identify subjects accurately. Using billing codes alone does not accurately identify SLE 

patients in the EHR (7, 8). Adding clinical data to billing codes (8) and using non-coded 

data (9) improves the accuracy of identifying SLE patients in the EHR. These methods did 

not focus on identifying SLE births. There is a paucity of EHR studies in SLE pregnancy 

outcomes with only one study using delivery data from multiple EHRs (10). This study 

used a one-time SLE ICD-9 billing code at delivery or discharge to identify SLE births 

and did not conduct chart review to confirm SLE case status. Building upon our prior 

SLE algorithms that incorporate clinical data with billing codes, we incorporated ICD-9 

or ICD-10-CM codes to identify SLE deliveries in the EHR. With the transition of ICD-9 

to ICD-10-CM codes in the US, we focused on developing algorithms that used either 

SLE ICD-9 or SLE ICD-10-CM codes. We also validated algorithms at multiple centers 

and investigated the impact of patient and provider factors on algorithm performance and 

portability. We then applied these algorithms to assemble a large, multi-center EHR cohort 

of SLE deliveries at three tertiary care centers in the Southeastern US.

Methods

Patient Selection

This study was approved by the institutional review board for each center. Due to center 

differences in how EHR data are stored and accessed, the methods for identifying SLE 

deliveries were slightly different as described below. An overview of our approach is 

illustrated in Figure 1. Vanderbilt University Medical Center (VUMC) served as a training 

set. Duke University Medical Center (DUMC) and Medical University of South Carolina 

(MUSC) served as external validation sets. Chart review rules were consistent across all 

three centers. A subject was defined as a case if diagnosed with SLE by a rheumatologist 

and had a delivery documented at the institution and after SLE diagnosis. Remaining 

subjects were classified as not a case, probable case, or missing. Subjects with cutaneous 

or drug-induced lupus or other autoimmune diseases were counted as not cases. Subjects 

who were given a SLE diagnosis by a non-rheumatology provider were counted as not cases. 

Probable cases were subjects who had a “probable SLE” diagnosis by a rheumatologist or 
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who were labeled as undifferentiated connective tissue disease or mixed connective disease 

by a rheumatologist. Probable subjects were counted as not cases in the primary analysis. 

Missing subjects who had no clinical documentation to determine case status were excluded. 

Delivery status was assessed on chart review at all three centers.

Vanderbilt University Medical Center (VUMC)

We used a de-identified version of VUMC’s EHR called the Synthetic Derivative (6), which 

contains over 3.2 million subjects. We searched for potential SLE deliveries restricting to 

female subjects between the ages of 12 to 65 using ≥ 1 count of the SLE ICD-9 (710.0) 

or SLE ICD-10-CM codes (M32.1*, M32.8, M32.9) and ≥ 1 ICD-9 or ICD-10-CM code 

for delivery-related diagnoses. The ICD-9 delivery codes have been validated with positive 

predictive values > 90% (11) and used to assess pregnancy outcomes in other chronic 

diseases (12, 13) (Supplemental Table 1). Of these potential SLE cases, we randomly 

selected 100 for chart review to identify case status and to serve as a training set for 

algorithm development (Figure 1A).

Duke University Medical Center (DUMC)

At DUMC, potential patients with ≥ 1 SLE ICD-9 or ICD-10-CM code and ≥ 1 ICD-9 

or ICD-10-CM delivery code restricting to female subjects between the ages of 12 to 65 

were selected from the DEDUCE (Duke Enterprise Data Unified Content Explorer) dataset 

(Figure 1B). Of those potential patients, exclusions (i.e. no delivery at Duke or unknown 

pregnancy outcome) were applied to facilitate chart review. A full list of exclusions is in 

Supplemental Table 2.

Medical University of South Carolina (MUSC)

At MUSC, female patients between the ages of 12 and 65 with ≥ 1 SLE ICD-9 or ICD-10-

CM code were selected from the Enterprise Data Warehouse from 2007 to 2017. As delivery 

data is stored in a different data warehouse (Research Data Warehouse), a second step 

was performed where subjects were selected who had ≥1 ICD-9 or ICD-10-CM delivery 

code and delivery data available (Figure 1C). Of these potential subjects, chart review was 

conducted.

Algorithm Development and Validation

A priori, we selected clinically important criteria that would be available in the EHR. 

We selected SLE ICD-9 and ICD-10-CM code counts, ever documented antimalarials, a 

positive antinuclear antibody (ANA) ≥ 1:160, and ever checked dsDNA or complements (C3 

or C4). Occurrences of billing codes represent distinct days. Antimalarials included were 

hydroxychloroquine, plaquenil, chloroquine, quinacrine, and aralen. We tested algorithms 

using ≥ 1, ≥ 2, ≥3, and ≥ 4 code counts of the SLE ICD-9 code, SLE ICD-10-CM codes, or 

SLE ICD-9 or SLE ICD-10-CM codes. With the transition of ICD-9 to ICD-10-CM codes 

in the US on October 1, 2015, our EHR data spans this date. To ensure both historical 

and more recent SLE patients with deliveries are both captured, we focused on developing 

algorithms that used either SLE ICD-9 or SLE ICD-10-CM codes. We then combined these 

codes with the above clinical data using “and” or “or” for possible algorithms. The positive 
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predictive value (PPV) was calculated as the number of subjects who fit the algorithm and 

were confirmed cases on chart review divided by the total number of subjects who fit the 

algorithm. Sensitivity was calculated as the number of subjects who fit the algorithm and 

were confirmed cases on chart review divided by the total number of confirmed cases. To fit 

the algorithm, the subject had to have available data for that particular algorithm’s criteria. If 

labs were not checked at the center, they were considered missing. The F-score, which is the 

harmonic mean of the PPV and sensitivity [(2 × PPV × sensitivity)/(PPV + sensitivity)], was 

calculated for all algorithms.

Cohort assembly

The algorithm with the highest F-score (≥ 4 counts of the SLE ICD-9 or ICD-10-CM codes) 

was applied across all centers to identify potential deliveries. All the subjects that fit the 

algorithm were chart reviewed to determine SLE case status, defined as SLE diagnosis by 

a rheumatologist. Only pregnancies that delivered at the center with available outcomes that 

occurred after SLE diagnosis were included. Data were available for VUMC from 1993 – 

2017, DUMC 2007 – 2018, and MUSC 2007–2017.

Sensitivity Analyses

We focused on the performance of algorithms that used SLE ICD-9 or ICD-10-CM codes 

with performance of algorithms using only SLE ICD-9 or only SLE ICD-10-CM codes 

available in the supplement. The primary analysis defined cases as diagnosed with SLE by 

a rheumatologist on chart review and allowed ICD-9 or ICD-10-CM codes to be billed by 

any provider. One sensitivity analysis changed the case definition to also include “probable” 

SLE cases. A second sensitivity analysis included only SLE ICD-9 or ICD-10-CM codes 

billed by a rheumatology provider. Additionally, we determined differences in algorithm 

performance by maternal race.

Machine Learning Methods

In addition to rule-based algorithms, we used machine learning methods, random forest 

(RF) and extreme gradient boosting (XGB) for algorithm development. RF builds multiple 

classification trees (a “forest”) using a random sample of input variables for each tree 

(14, 15). The final classification is an average of the forest. XGB is an ensemble method 

that is the summation of multiple models where each successive model attempts to correct 

errors in the previous model to improve overall performance. Data across 3 centers were 

randomly divided in training (80%) and testing (20%) sets. For race-stratified analyses, to 

increase sample size, training and testing sets were 70% and 30%, respectively. Models 

were constructed using the training set with 5-fold cross validation, and were tuned using 

the caret package (16, 17). Final model performance was assessed using the test set. The 

ranger package was used for RF models (18), and the xgboost package for XGB models 

using method = “xgbTree” in the caret framework (19). We reported algorithms with the 

highest PPVs in the test set and identified the most important variables in the models. Model 

input variables including the following: total number of SLE ICD codes, SLE code from a 

rheumatologist, ever antimalarial use, ANA positive, ever checked dsDNA, ever checked C3, 

ever checked C4, age, race, SLE duration defined as first SLE code to delivery date, EHR 
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duration defined as first code for any condition to delivery date, and center. All analyses 

were conducted in R version 3.5.1.

Results

Description of the training set

An overview of our approach is illustrated in Figure 1. A training set was created at VUMC 

by applying at least one SLE and one delivery ICD-9 or ICD-10 CM codes to the Synthetic 

Derivative resulting in 433 potential SLE deliveries. Of the 433, 100 were randomly selected 

for chart review. Of these, 40 subjects were SLE cases with 39 subjects having a delivery 

documented after SLE diagnosis. There were 37 subjects who were not SLE cases, 16 with a 

“probable” SLE diagnosis, and 7 with missing clinic notes. Of the 37 subjects not classified 

as SLE, 21 had alternative autoimmune diagnoses with the most common being a subject 

with a positive autoantibody (Supplemental Table 3).

Description of the validation sets

A validation set was created at DUMC by applying at least one SLE and one delivery ICD-9 

or ICD-10 CM codes to DEDUCE resulting in 560 potential SLE deliveries. Of these, 192 

had deliveries that occurred after a SLE diagnosis. On chart review of these 192, 95 were 

a SLE case and 36 “probable” SLE. Of the remaining subjects, 61 did not have SLE of 

which 31 had alternative autoimmune diagnoses with the most common being cutaneous 

lupus (Supplemental Table 4).

A second validation set was created at MUSC by applying at least one SLE ICD-9 or 

ICD-10-CM codes and selecting for female subjects in the EHR. Of these 3,715 potential 

SLE subjects, subjects with at least one delivery ICD-9 or ICD-10-CM code and a delivery 

documented at MUSC after SLE diagnosis resulted in 75 potential SLE deliveries. Of these, 

38 were a SLE case and 11 “probable” SLE. Of the remaining subjects, 26 did not have SLE 

of which 15 had alternative autoimmune diagnoses with the most common being cutaneous 

lupus (Supplemental Table 5).

Algorithms using ICD-9 or ICD-10-CM codes

Algorithm performances using counts of either SLE ICD-9 or ICD-10-CM codes in the 

training (VUMC) and validation (DUMC, MUSC) sets are shown as a summary in Table 1 

with full data in Supplemental Tables 6–8. Algorithm performances using only SLE ICD-9 

codes or only SLE ICD-10-CM codes are available in Supplemental Tables 6–8. As data 

duration for ICD-9 codes differed in training vs. validation centers, we limited the training 

set data duration to 2007 – 2017 to match the 2 validation centers. Within the training 

set, the ICD-9 code algorithm performances for the restricted 2007–2017 duration were 

similar to the algorithm performances for the full data duration 1993 – 2017 (Supplemental 

Table 9). Requiring more code counts of SLE ICD-9 or ICD-10-CM codes increased PPVs 

but decreased sensitivities. Across three centers, increasing the number of SLE ICD-9 or 

ICD-10-CM code counts increased PPVs from 50–56% for ≥ 1 code to 64–81% for ≥ 4 

codes.
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Algorithms incorporating clinical data

We investigated adding ever antimalarial documented, ever checked labs (dsDNA, C3, or 

C4), and a positive ANA (≥ 1:160) to ICD-9 and ICD-10-CM codes. Algorithms that 

incorporated clinical data had higher PPVs compared to algorithms using only codes (Table 

1, Supplemental Tables 6–8). This addition, however, lowered sensitivities, as some SLE 

patients didn’t have data documented in the center’s EHR. Across all three centers, adding 

antimalarials to the codes improved PPVs most robustly. Adding ever checked labs to the 

codes increased PPVs slightly. Adding a positive ANA didn’t significantly increase PPVs 

but decreased sensitivities.

Case definition

For the above analyses, probable SLE subjects were counted as “not cases.” We examined 

algorithm performance with counting probable SLE subjects as cases (Table 1, Supplemental 

Tables 10–12). With this alternative case definition, PPVs increased substantially while 

sensitivities decreased for all algorithms.

Billing Code Provider

For the above analyses, we allowed for any provider to use the SLE codes. We investigated 

if a rheumatology provider using the SLE codes impacted algorithm performance (Table 1, 

Supplemental Tables 13–15). With requiring a rheumatology provider to use either a SLE 

ICD-9 or ICD-10-CM code, PPVs significantly increased at all centers with a decrease in 

sensitivities. Adding clinical data didn’t significantly improve PPVs, as PPVs were already 

relatively high.

Subject Race

We evaluated the impact of subject race on algorithm performance. Prevalence for African 

American subjects was 31% in the training set and 51% and 55% in the validation sets. 

While sensitivities were similar, PPVs were significantly higher in African Americans 

compared to Caucasians (Table 1). Pooling data from the three centers, the algorithm 

with ≥ 4 counts of the SLE ICD-9 or ICD-10-CM codes had a PPV of 78% in African 

Americans compared to 54% in Caucasians (Supplemental Table 16). Adding clinical data, 

such as ever labs checked, to the codes increased PPVs in Caucasians but not in African 

Americans (Supplemental Table 16). Requiring rheumatology to use the codes increased 

PPVs significantly in both Caucasians and African Americans (Supplemental Table 17).

Machine Learning Methods

We performed random forest (RF) and extreme gradient boosting (XGB) models for 

algorithm development. For RF, the algorithm with the highest PPV included 500 trees 

and sampled two random variables per tree with a PPV of 79%, sensitivity of 80%, an 

F-score of 80%, negative predictive value (NPV) of 81%, and an AUC of 87% in the training 

set (Supplemental Table 18). The most important variables in the model were total number 

of SLE ICD codes and rheumatology using the SLE codes. Model performance varied 

by race with an F-score of 0.87 in African Americans vs. 0.67 in Caucasians. For XGB, 

the highest-performing model had a PPV of 79%, sensitivity of 82%, an F-score of 80%, 
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NPV of 82%, and an AUC of 84% in the training set (Supplemental Table 20). The most 

important variables in the model were total number of SLE ICD codes and rheumatology 

using the SLE codes. Model performance varied by race with an F-score of 0.89 in African 

Americans vs. 0.71 in Caucasians.

Highest performing algorithms

We assessed algorithm performance with PPV, sensitivity, and F-score, a measure that 

accounts for both PPV and sensitivity. Algorithms’ performances varied across the three 

centers leading to different high performing algorithms at each center. Algorithms with 

the highest PPVs included higher SLE code counts, incorporated clinical data, expanded 

the case definition to include probable and definite SLE cases, and required rheumatology 

to use the SLE codes (Figure 2). Algorithms that incorporated ≥ 4 SLE codes coded by 

rheumatology along with ever antimalarial documented had PPVs from 90 to 100% across 

the three centers. Algorithms with the highest sensitivities were algorithms that used fewer 

SLE code counts and incorporated either SLE ICD-9 or ICD-10-CM codes (Figure 2). The 

algorithm with the highest F-score across the three centers used ≥ 4 counts of the SLE 

ICD-9 or ICD-10-CM codes and was 87% at VUMC, 79% at DUMC, and 73% at MUSC 

(Table 1).

Cohort assembly

Deploying the algorithm with the highest F-score (≥ 4 counts of the SLE ICD-9 or ICD-10-

CM codes) resulted in 438 possible SLE deliveries across the three centers (Table 2). In this 

cohort, mean age at first delivery was 29.5 ± 1.2 years with Caucasian deliveries at 51% 

and 42% African American, 3% Asian, 4% other. Only 5% of deliveries were of Hispanic 

ethnicity.

Discussion

We have harnessed the power of the EHR to develop, validate, and deploy algorithms that 

assemble a rare event across multiple EHRs. To the best of our knowledge, this is one 

of the first successful applications of assembling SLE and SLE deliveries from several 

centers using EHR data in the United States. This is important work because it establishes 

valuable methods for researchers to not only identify SLE and SLE deliveries but also 

other outcomes across EHRs. In summary, increasing number of SLE codes, adding ever 

antimalarial documented to codes, expanding case definition to probable and definite SLE 

cases, and requiring rheumatology to use SLE codes all improved algorithms’ PPVs. Subject 

race had a significant impact on algorithm performance with significantly higher PPVs in 

African Americans compared to Caucasians.

While there are validated algorithms to identify SLE in the EHR (8, 9), there are no 

studies on accurately identifying SLE deliveries in the EHR. Literature in sickle cell 

anemia (12) has evaluated and validated delivery codes in studying pregnancy outcomes 

(11,13, 20, 21). Our study used these validated delivery codes and built upon our work 

in SLE EHR algorithms (8, 9). Our EHR data spanned the ICD-9 to ICD-10-CM code 

transition time. Some historical patients in our dataset only have ICD-9 codes while 
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more recently diagnosed patients only have ICD-10-CM codes. Some patients with more 

longitudinal data have both ICD-9 and ICD-10-CM codes. Therefore, we focused on 

algorithms that incorporated ICD-9 or ICD-10-CM SLE codes to capture both historical and 

newly diagnosed SLE pregnancies. This approach is more generalizable to EHRs that likely 

contain both ICD-9 and ICD-10-CM codes and not just solely ICD-9 or ICD-10-CM codes. 

Including either ICD-9 or ICD-10-CM codes also limits cohort effects on the algorithms’ 

performances. We developed multiple algorithms that incorporate different types of data to 

meet researchers’ diverse goals. We also performed validation and found good portability of 

the algorithms. Lastly, we identified key factors such as clinical data, case definition, subject 

race, and coding provider that all significantly impact algorithm performance.

As expected, requiring higher counts of SLE ICD-9 or ICD-10-CM codes resulted in 

algorithms with higher PPVs but lower sensitivities. The more visits a potential SLE 

patient has, the more times a SLE code is used with the clinician feeling confident with 

the diagnosis. In general, adding clinical data to the codes improved algorithms’ PPVs 

but decreased sensitivities. For example, some SLE patients did not have clinical data 

such as a positive ANA within the center’s EHR, as they were followed by an outside 

rheumatologist. Using SLE ICD-9 or ICD-10-CM codes from only rheumatologists resulted 

in algorithms with high PPVs without requiring clinical data. These algorithms would be 

useful if clinical data is not available but limits the sample to SLE women managed by 

center rheumatologists.

As expected, broadening the SLE case definition to include “probable” patients increased 

PPVs while decreasing sensitivities. Compared to definite SLE patients, probable SLE 

patients were more likely to have fewer SLE codes. Algorithms requiring higher counts of 

the SLE codes would then exclude more of these probable SLE patients, resulting in lower 

sensitivities. We used a specialist diagnosis for SLE versus using ACR SLE criteria (22), as 

ACR SLE criteria are not documented systematically in notes. We previously demonstrated 

that requiring documentation of ACR SLE criteria excludes approximately 26% of true SLE 

patients (8). Researchers can, however, select a case definition based on their study’s goals 

and available data.

Across all three centers, algorithms had higher PPVs but similar sensitivities in African 

American vs. Caucasian patients. While increasing code counts and adding clinical data 

improved algorithms’ PPVs for Caucasians somewhat, requiring rheumatology coding 

dramatically improved PPVs. Our results suggest a high rate of SLE over-labeling in 

Caucasians, particularly by physicians other than rheumatologists. Thus, different algorithms 

may be needed for different races. Specifically, algorithms to identify Caucasians accurately 

may require rheumatologists to use SLE billing codes. The impact of race on EHR 

phenotyping has not been explored in SLE or other chronic conditions. We hypothesize that 

the higher prevalence of SLE in African Americans compared to Caucasians (23–26) may 

contribute to this observation. PPVs are a function of disease prevalence while sensitivities 

are a function of the algorithm.

In addition to rule-based algorithms, we performed machine learning models. These models 

had a similar F-score to the high-performing rule-based algorithm of ≥ 4 counts of 
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SLE ICD-9 or ICD-10-CM codes. The machine learning methods confirmed results from 

the rule-based algorithms including variable model performance based on subject race. 

Machine learning methods, particularly XGB, are robust (27) and have advantages including 

automatic model tuning and the ability to model complex interactions.

We developed and validated algorithms to identify SLE deliveries in the EHR. Similar 

methodology can identify and assemble other rare diseases or outcomes in the EHR. 

Researchers can choose methods based on available data and research goals (Figure 2). 

If the goal is to identify subjects with high certainty, one would select an algorithm with 

the highest PPV. In contrast, if one wants to select as many subjects as possible to increase 

sample size, one would select an algorithm with a high sensitivity and F-score. We chose to 

use an algorithm with a high F-score to amass the largest number of true SLE deliveries.

While we validated multiple EHR-based algorithms, our study has limitations. We started 

our search for possible SLE deliveries using at least one SLE ICD-9 or ICD-10-CM codes. 

This search strategy in finding SLE in the EHR has a NPV of 98% (8), so we anticipate 

very few potential SLE deliveries were missed. Search strategies for identifying training 

and validation sets varied slightly due to differences in how data is stored and accessed 

at the three centers. In machine learning methods, model performance did not vary by 

center. Therefore, center heterogeneity had minimal impact on algorithm performance. 

Our algorithms were developed and validated at three tertiary care referral centers in the 

Southeastern US, which may limit generalizability to other centers.

While the EHR does not substitute for prospective cohort studies, EHRs contain 

longitudinal, real-word data that can dramatically increase the efficiency and sample size 

of a study. Using one of our validated, high-performing algorithms, we assembled over 400 

potential SLE deliveries across three centers. With this large SLE delivery cohort, we will 

have the power in future studies to examine the impact of disease and provider factors on 

important outcomes such as preterm delivery and preeclampsia in SLE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance and Innovations:

• To the best of our knowledge, we are the first to assemble an EHR-based SLE 

cohort and SLE birth cohort across multiple centers in the United States.

• We develop, validate, and successfully deploy EHR-based algorithms to 

identify a subset of patients with a rare disease across multiple centers.

• We demonstrate key factors of clinical data, case definition, coding provider, 

and subject race that impact EHR algorithm performance and portability.

• We employed both traditional, rule-based algorithm methods as well as 

machine learning techniques including extreme gradient boosting.

• The performance of the SLE delivery algorithms varied by race with higher 

positive predictive values (PPVs) in African American mothers compared to 

Caucasian mothers.
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Figure 1. Training and validation sets.
Training set (A) was formed at VUMC starting with the Synthetic Derivative, a de-

identified electronic health record (EHR), and applying ≥ 1 SLE and delivery ICD-9 

or ICD-10-CM codes to female subjects resulting in 433 potential systemic lupus 

erythematosus (SLE) subjects with deliveries. A random 100 subjects were then selected 

for chart review to determine SLE case status and to ensure delivery occurred after SLE 

diagnosis, of which 39 subjects met these criteria. N refers to number of SLE subjects and 

not pregnancies. Validation set (B) was created at DUMC by applying ≥ 1 SLE and ≥ 1 

delivery ICD-9 or ICD-10 CM codes to females subjects in a de-identified electronic health 

record called DEDUCE (Duke Enterprise Data Unified Content Explorer) resulting in 560 

potential SLE subjects. Exclusions were then applied to facilitate chart review and ensure 

SLE subjects with available delivery data that occurred after SLE diagnosis were obtained 

(see Supplemental Table 2 for full list of exclusions). These 192 subjects were then chart 

reviewed yielding 96 SLE cases with a history of a delivery. Validation set (C) was created 

at MUSC by applying ≥ 1 SLE ICD-9 or ICD-10-CM codes while restricting to female 

subjects in the Enterprise Data Warehouse (EDW) resulting in 3,715 subjects. As delivery 

data is stored in a different data warehouse (Research Data Warehouse), a second step was 

performed where subjects were then selected who had ≥ 1 ICD-9 or ICD-10-CM delivery 

code and delivery data available. This step resulted in 75 potential SLE subjects who had 

pregnancy data available at MUSC and had deliveries that occurred after a SLE diagnosis. 

Of these 75 subjects, 38 subjects had a confirmed diagnosis by a rheumatologist on chart 

review.
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Figure 2. Guide to selecting algorithms to identify SLE deliveries in the Electronic Health 
Record.
Algorithms can be selected based on the researcher’s goals and available clinical or ancillary 

data. If there is a desire for high certainty for true SLE deliveries, then one would select an 

algorithm with a high PPV. If chart review is not available or possible to confirm case status, 

one would also want to select an algorithm with a high PPV. Alternatively, if there is a desire 

to assemble as many possible SLE deliveries as possible, one would select an algorithm with 

a high sensitivity. If clinical or ancillary data is available such as structured electronic health 

record data including laboratory values or medications, this will further influence algorithm 

selection.
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