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Abstract

Antiretroviral therapy controls HIV replication but does not eliminate the virus from the infected 

host. The persistence of a small pool of cells harboring integrated and replication-competent 

HIV genomes impedes viral eradication efforts. The HIV reservoir was originally described as 

a relatively homogeneous pool of resting memory CD4+ T cells. Over the past 20 years, the 

identification of multiple cellular subsets of CD4+ T cells endowed with distinct biological 

properties shed new lights on the heterogeneity of HIV reservoirs. It is now clear that HIV 

persists in large variety of CD4+ T cells, which contribute to HIV persistence through different 

mechanisms. In this review, we summarize recent findings indicating that specific biological 

features of well-characterized subsets of CD4+ T cells individually contribute to the persistence of 

HIV. These include an increased sensitivity to HIV infection, specific tissue locations, enhanced 

survival and heightened capacity to proliferate. We also discuss the relative abilities of these 

cellular reservoirs to contribute to viral rebound upon ART interruption. Together, these findings 

reveal that the HIV reservoir is not homogeneous and should be viewed as a mosaic of multiple 

cell types that all contribute to HIV persistence through different mechanisms.
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1. Introduction

More than 20 years ago, the discovery that HIV had the ability to persist in resting CD4+ 

T cells provided a likely explanation for the inability of ART alone at eradicating the virus 

[1–3]. It became rapidly clear that a viral reservoir from which HIV replication can reignite 

when the therapeutic pressure is withdrawn would represent a formidable challenge to HIV 

eradication efforts. The HIV reservoir was originally described as a small pool of resting 

CD4+ T cells harboring transcriptionally silent proviruses (“the latent HIV reservoir”) [4–6]. 

Since then, years of research revealed the complexity of cellular subsets and it is now 

clear that HIV persists in multiple types of cells that are endowed with distinct biological 

features and in which proviruses are expressed at different levels [7], further complicating 

the development of a safe and scalable cure for all people living with HIV (PLWH). 

Cellular reservoirs are numerous and different in nature. Myeloid reservoirs such as tissue 

macrophages remain understudied, primarily because they are difficult to access and because 

obtaining a sufficient number of pure myeloid cells for in vitro culture to demonstrate their 

potential as clinically relevant reservoirs remain technically challenging [8, 9]. Similarly, 

while circulating CD4+ T cells can be easily isolated from the blood, CD4+ T cells residing 

in tissues are difficult to study [10–13]. Recently, the use of nonhuman primate models 

of SIV infection [14–16] and the development of less invasive procedures to collect cells 

from tissues in PLWH [17] revealed the major contribution of cells residing in various 

tissues/lymphoid organs to viral persistence. The identification of these new viral reservoirs 

was largely made possible through the characterization of novel subsets of CD4+ T cells 
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revealed by the field of human T cell immunology. These discoveries resulted in multiple 

classifications of CD4+ T cells, which are based on their functions, localization and memory 

differentiation status.

2. Flavors of CD4+ T cells

2.1 Functions of CD4+ T cells

Upon activation through TCR, naïve CD4+ T cells differentiate into lineage specific T 

helper (Th) subsets. Each subset produce distinct sets of cytokines that activates downstream 

signal transducer and activator of transcription (STAT) signaling proteins and dictates 

lineage commitment by expressing unique master transcription factors [18]. Th cells 

are typically classified by the cytokines they produce upon TCR engagement and were 

originally divided into two subsets named Th1 and Th2 [19]. Th1 cells, which are prominent 

during infections by viruses and intracellular bacteria, produce IFN-γ and IL-2, induce 

the differentiation and proliferation of cytotoxic T lymphocytes (CTL) and contribute to 

the activation of macrophages. In contrast, Th2 cells coordinate the immune response to 

large extracellular pathogens such as parasites and helminths and are characterized by IL-4 

production, which contributes to the differentiation of B cells and the development of 

humoral immune responses. In 2005, Harrington [20] and Park [21] identified a third and 

distinct subset of Th effector cells named Th17 due to their capacity to produce IL-17. 

Under physiological conditions, Th17 cells reside mainly in the lamina propria of the small 

intestine and contribute to the integrity of the mucosal barrier [22]. During infection they 

are induced at other mucosal sites and contribute to the immune control of a variety of 

pathogens including Staphylococcus aureus, Citrobacter rodentium, and Salmonella [23], 

primarily through the recruitment of neutrophils. More recently, Th9 cells have been 

described a new lineage involved in the development of immune responses to helminthic 

infections through the production of IL-9 [24]. They also contribute to the development 

of allergic inflammatory diseases and play a role in anti-tumor immune responses [25]. 

The most recent members of the effector CD4+ T cells family are Th22 cells, which 

were first identified in skin tissues of patients with inflammatory skin diseases, in which 

they produce IL-22 [26]. Th22 cells resemble Th17 cells, but unlike Th17 cells, which 

produce IL-17 either alone or concomitantly with IL-22, the Th22 subset completely lacks 

expression of IL-17 [27]. Regulatory T cells (Tregs) represent another subset of CD4+ T 

cells that are induced during virtually all infections and contribute to tumor progression 

by suppressing anticancer immunity [28]. They control the magnitude of adaptive immune 

responses by producing the immunoregulatory cytokines IL-10 and TGF-β and contribute to 

the maintenance of self-tolerance to prevent auto-immune disease [29]. Finally, T follicular 

helper cells (Tfh), are located in the B cell follicles of secondary lymphoid organs and 

contribute to the maturation of B cells through the production of IL-21 and IL-4 [30]. 

Therefore, they are likely involved in humoral adaptive immune responses in all infectious 

diseases [31].

2.2. Anatomic locations of CD4+ T cells

The case of Tfh is the best illustration that the classification based on the function of CD4+ 

T cells somewhat overlaps with another classification that uses their specific anatomical 

Fromentin and Chomont Page 3

Semin Immunol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



locations. Although Tfh cells circulating in the periphery can be detected [32], they 

primarily exert their B cells helper function in the B cell follicles located in lymph nodes, 

the spleen and Peyer patches. Other examples are given by Th17 cells which primarily reside 

in the lamina propria of the gut during homeostasis, and Th22 cells which are essentially 

recruited to the skin. From the recent discovery that a subset of CD4+ T cells have the 

ability to persist in tissues without recirculating emerged the concept of tissue resident 

memory T cells (Trm) [33]. Recent studies suggest that a significant fraction of CD4+ Trm 

cells derive from effector Th17 cells [34], indicating that once again, these classifications 

may largely overlap.

2.3 Memory status of CD4+ T cells

The classifications described above are mainly based on the functions and locations of CD4+ 

T cells when they exert their effector functions. After the antigen is cleared, a fraction 

of these cells persist as memory cells which are maintained for decades in response to 

homeostatic signals such as IL-7. The memory compartment is heterogeneous, and two main 

subsets of memory cells named central (TCM) and effector (TEM) memory cells can be 

distinguished by multiple criteria: (i) the absence (TCM) or presence (TEM) of immediate 

effector functions [35]; (ii) the expression of the homing receptor CCR7 that allows cells 

to migrate to secondary lymphoid organs (TCM) versus nonlymphoid tissues (TEM) [36]; 

(iii) the capacity to produce IL-2 (TCM) or IFN-γ (TEM) upon antigen stimulation [37]; 

(iv) the prevalence of a pro-survival (TCM) or pro-apoptotic program (TEM) [38]. Upon 

antigenic stimulation, TCM differentiate into TEM cells, whereas TEM cannot revert back to 

a TCM phenotype [39]. Although the memory subsets are largely defined by their capacity 

to migrate to secondary lymphoid organs and to have immediate effector functions, it is 

important to keep in mind that when activated (i.e. upon secondary stimulation), they will 

exert specific effector functions and could be re-classified as Th1, Th2, Th9, Th17, Th22, 

Tfh or Treg cells according to the cytokines they produce.

Therefore the definition of CD4+ T cells based on their function, location and memory 

status are largely overlapping, which complicates the identification of a particular subset as a 

preferential cellular target or a preferred cellular reservoir for HIV. Theoretically, a cell that 

could serve as a long-lived viral reservoir should present at least two characteristics: 1) being 

susceptible to HIV infection up to the integration step and 2) having the ability to persist 

during ART. Both parameters greatly vary between subsets and CD4+ T cells and should be 

investigated independently.

3. Susceptibility of CD4+ T cells to HIV infection

Early studies on the susceptibility of different cell subsets to HIV infection revealed 

that infection of activated CD4+ T cells is much more efficient than resting cells [40–

42]. Unlike that of activated CD4+ T cells, the viral genome is not completely reverse 

transcribed in quiescent cells [43], suggesting that a minimal state of activation is required 

to establish infection. Such cells with minimal levels of activation are found in tissues even 

in homeostatic conditions, which is in line with the high susceptibility of CD4+ T cells from 

the gut to HIV infection [44]. Among those, Th17 cells have been repeatedly shown to be 

Fromentin and Chomont Page 4

Semin Immunol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



preferentially infected by HIV [45–47]. Similarly, CD4+ T cells expressing the gut homing 

marker α4β7 and tissue resident memory CD4+ T cells all show enhanced susceptibility 

to HIV infection [48]. A high expression level of CCR5 is also a hallmark of enhanced 

susceptibility to HIV [49], particularly in tissues [50], which is in line with the observation 

that TEM cells, which express high levels of this HIV coreceptor, are preferentially infected 

during acute HIV infection [51]. This also partially explains the relative resistance of naïve 

cells to HIV infection by CCR5-using viral strains [52, 53], since this chemokine receptor 

is expressed at very low levels on these cells [54]. In addition to the activation status, Th17 

lineage and CCR5 expression, the anatomic location of some CD4+ T cell subsets may 

contribute to their preferential infection. This is best exemplified by the case of Tfh cells, 

which are known to be major producers of HIV particles during untreated HIV infection 

[55], possibly because they are relatively protected from HIV-specific CTLs [56].

The antigen specificity of CD4+ T cells also influences their susceptibility to HIV infection. 

While CMV-specific CD4+ T cells may be relatively protected through the autocrine 

production of CCR5 ligands [57], CD4+ T cells specific to HIV [58], mycobacterium 

tuberculosis [59] as well as tetanus toxoid and Candida albicans [60] have been shown to 

be preferentially targeted by HIV. Whether the increased susceptibility of these cells to HIV 

infection depends on their function or anatomical location remains unclear.

4. Generation of latently infected cells

Unlike productively infected cells which are primarily found during untreated HIV infection, 

proviruses integrated in persistently infected CD4+ T cells identified in PLWH on ART 

display low to no transcriptional activity [61]. Whether these cells are derived from 

previously productively infected cells that reverted back to a resting state or whether they 

were directly infected as resting cells and immediately established latency is still a matter of 

debate. These two models of establishment of HIV latency are known as the post- and the 

pre-activation latency models, respectively.

4.1 Post-activation latency

Post-activation latency is based on the idea that the transition from an activated and 

productively infected CD4+ T cells to a resting memory state is accompanied by HIV 

transcriptional silencing. The transition from an activated state to quiescence may offer a 

narrow window of opportunity that permits HIV silencing and persistence of the infected 

cells [62]. During the contraction phase of the immune response, when the antigen 

load decreases and activated cells transition from an effector to a memory phenotype, a 

rare subset of cells expressing CCR5 are still permissive to HIV infection but also are 

transcriptionally programmed to become quiescent, a state that is favorable to HIV latency 

[62]. In addition, the strength of TCR stimulation is key to influence the generation of 

memory CD4+ T cells [63]. Analogously, intermediate and low TCR signals predispose cells 

towards latent infections that are refractory to reversal [64].

Post-activation latency is likely to be an active rather than a passive phenomenon: During 

the resolution of immune responses, several pathways are known to dampen T cell activation 

and consequently could trigger HIV latency [65, 66]. T cell activation and proliferation can 
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be modulated by anti-inflammatory cytokines such as TGF-β and IL-10. TGF-β acts on 

TCR-induced activation [67] but also on the proliferation induced by γ-c cytokines [68]. 

Although the role these immunomodulatory cytokines may exert on HIV latency has not 

been formally demonstrated in vivo, in vitro evidence are emerging: Combination of TGF-β, 

IL-10 and IL-8 induces T cell quiescence and HIV latency in differentiated effector CD4+ 

T cells [69], suggesting that HIV latency can be established in Th1, Th2, Th17 and Treg 

cells post-activation. Additionally, T cell activation can be dampened by the engagement of 

immune checkpoint molecules such as PD-1, CTLA-4, TIGIT, LAG-3 and TIM-3 [70]. For 

instance, PD-1 is actively promoting HIV transcriptional silencing in productively infected 

cells [71, 72]. Consequently, PD-1 expressing memory CD4+ T cells are more likely to 

become latently infected and persist during ART [72–74].

4.2 Pre-activation latency

An alternative way to generate latently infected cells is to increase susceptibility of resting 

CD4+ T cells to HIV infection. Resting CD4+ T cells are largely refractory to productive 

HIV infection due to blocks at the levels of entry, reverse transcription, nuclear import, 

and viral gene expression [43, 75, 76]. However, CCL19 and CCL20, two chemokines 

involved in the trafficking of cells to lymph node and the gut-associated lymphoid tissues 

(GALT) via CCR7 and CCR6 respectively, enhance HIV infection of resting CD4+ T cells 

by modifying the actin cytoskeleton, thereby increasing nuclear entry and integration of 

the viral DNA [77]. These findings from an in vitro model are in line with the important 

contribution of CCR7 expressing cells, such as TCM cells, to HIV reservoirs during ART 

[73]. An in vitro model of HIV latency that recapitulates the complex dynamics of the 

establishment and maintenance of the latent reservoir in different memory T cell subsets 

was recently developed [78]. Interestingly, the generation of latent cells in this LAtency and 

Reversion Assay (LARA) does not require polyclonal T cell activation before infection but 

only exposure of resting CD4+ T cells to TGF-β, IL-7 and conditioned medium containing 

TGF-β, IL-9 and IL-21 to promote the survival of infected cells in long-term culture. In 

this model, latently infected cells display various memory status and functions including 

TCM, TEM, Th1, Th2 and Th17 cells [78]. In addition, IL-7, a cytokine involved in T cell 

homeostasis, modulates the activity of the restriction factor SAMHD1 and increases the 

permissiveness of resting CD4+ T cells to HIV infection [79, 80]. It is important to note that 

CD127, the α chain of the IL-7 receptor, was recently identified as a marker of susceptibility 

to latent HIV infection of memory CD4+ T cell isolated from tissues [81]. This particular 

tonsillar memory subset (CD57-CD127+) is endowed with the transcriptional signature of 

quiescent T cells which prompts infected cells to HIV transcriptional silencing.

Altogether, these studies suggest that within the memory compartment, TCM CD4+ T cells 

displaying a CCR7+/CD127+/CCR5+ may represent a subset particularly favorable to the 

establishment of latent infection. Given the plasticity of CD4+ T cells, it is difficult to 

determine if the cells in which HIV latency is established retain their phenotype after 

prolonged ART. As discussed below, the number of cell types in which HIV persist may be 

even larger than the number of subsets in which latency can be efficiently established.
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5. Persistence of HIV in CD4+ T cell subsets during ART

5.1 Dynamics of the HIV reservoir during ART

Following ART initiation, only a minute fraction of productively HIV-infected CD4+ T 

cells survive and are maintained as persistent and long-lived latently infected cells [51, 

61]. Whereas some studies suggest that the bulk of the persistent reservoir is established 

at this time [82], others have reported the presence of archived sequences corresponding to 

transmitted founders in CD4+ T cells persisting on ART [83]. Therefore, the reservoir is 

likely made of a mix of cells infected at different times before ART initiation. Whether 

the reservoir is replenished through de novo infection of CD4+ T cells during ART 

remains controversial [84–87]. Independently of the possible generation of newly infected 

cells, several lines of evidence indicate that the reservoir is highly dynamic in virally 

suppressed individuals [88]. This dynamic is attributed to sustained as well as sequential 

clonal expansions of infected cells which are attributed to i) proviral integration in genes 

controlling cell growth [89, 90], ii) homeostatic proliferation [73, 91] and iii) clonal 

expansions of infected CD4+ T cell clones following antigenic stimulation [92]. Here, we 

describe these mechanisms contributing to HIV persistence during ART and elaborate on the 

cell subsets in which they are more likely to occur (Figure 1).

5.2 HIV persistence in memory CD4+ T cells

HIV-infected cells need to survive for long periods of time to persist during ART. In the 

memory compartment, TCM CD4+ T cells, which are phenotypically defined as CD45RA−/

CD27+/CCR7+, show exquisite survival and self-renew abilities [38, 93] and have a long 

half-life [94, 95]. Accordingly, TCM are a key player in HIV persistence, as they highly 

contribute to the pool of HIV-infected cells [73, 96]. In addition, TCM cells are the source of 

the more differentiated TEM cells (CD45RA−/CD27−/CCR7−) which are rapidly generated 

upon antigen stimulation [97]. Although TEM CD4+ T cells contribute less than TCM cells 

to the pool of cells harboring HIV DNA [73], they account for the majority of clonal 

expansions in the reservoir as a result of their elevated proliferative capacity [98, 99]. 

In addition, TEM cells may play a critical role in viral rebound since they harbor higher 

frequencies of intact and inducible genomes [78, 98, 100–102] (see section 6). Although 

memory CD4+ T cell subsets are the main reservoirs for HIV during ART, naïve cells may 

also contribute to HIV persistence [103, 104]. A limitation to these findings stems from 

the difficulty in defining the phenotype of truly naïve cells (i.e. non antigen-experienced 

cells). In the two studies mentioned above, the combination of three cell surface markers 

CD45RA+, CD27+, CCR7+ does not allow to distinguish stem-cell like memory CD4+ T 

cells (TSCM), which are known to contribute to HIV persistence [105, 106]. Zerbato et al. 

isolated rare naïve cells, from which TSCM were excluded by depleting CD95-expressing 

cells, and from which replication-competent HIV was detected [107]. These studies raise 

the question of the nature of the mechanisms by which naïve CD4+ T cells, which are 

resting CD4+ T cells expressing extremely low levels of CCR5, get initially infected. They 

also emphasize the importance of combining several cell-surface markers to precisely define 

antigen-naïve cells and of using flow cytometry cell sorting to obtain highly pure cellular 

populations.
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TSCM cells own unique sternness properties which contribute to their ability to serve as a 

stable reservoir for HIV [108–110]. Since TSCM cells (and to a lower extent, TCM cells) have 

the ability to self-renew and to generate a progeny of more differentiated cells, they could 

represent an infinite source of infected cells. Interfering with the Wnt/β-catenin signaling 

pathways to induce the differentiation of TSCM and TCM cells has recently been proposed as 

a possible eradication strategy [111].

5.3 HIV persistence in CD4+ T cells expressing immune checkpoint molecules

As mentioned above (section 4.1), immune checkpoint molecules, and particularly PD-1, 

actively promote HIV latency [71, 72]. These receptors may also favor the persistence of 

HIV-infected cells over time by preventing reactivation of the latent provirus. Indeed, PD-1, 

LAG-3, TIGIT and CTLA-4 have been identified as markers enriching in HIV/SIV infected 

cells during ART, both in peripheral blood and tissues [74, 101, 112]. Of note, PD-1 is also 

a marker of T-cell activation and infected cells expressing PD-1 cells may also represent 

a labile pool of activated infected cells, particularly during the first months of ART [113]. 

After prolonged ART, HIV genomes found in the less differentiated memory subsets (TCM 

and TTM) expressing PD-1 may have a selective advantage to persist over time compared 

to cells that do not express this molecule [74]. Importantly, CD4+ T cells co-expressing 

multiple immune checkpoint molecules (PD-1, LAG-3 and TIGIT) are further enriched for 

integrated viral genomes, suggesting an enhanced capacity to persist during ART. Since 

the co-expression of these molecules is a hallmark of profound immune exhaustion, it is 

possible that infected cells expressing multiple immune checkpoint molecules harbor deeply 

latent proviruses.

Besides their role in T cell exhaustion, some immune checkpoint molecules are 

constitutively expressed by subsets of cells in which HIV persists, independently of the 

functional role played by these receptors. For instance, PD-1 and TIGIT are markers of Tfh 

cells [32, 114], which are major cellular reservoirs for HIV during ART [115]. In addition 

to their high susceptibility to HIV infection [55], productively infected Tfh may escape 

CD8+ T cell killing by being localized in the germinal centers within the lymph node B-cell 

follicles, from which CTL are largely excluded [56, 116]. Additional factors may contribute 

to HIV persistence in Tfh cells, since their circulating counterparts (CXCR5+/PD-1+/

CXCR3−) are also enriched in HIV [117]. Another example is CTLA-4, which identifies 

CD4+ T cell with regulatory properties [118, 119]. Using a model of virally suppressed 

SIV-infected rhesus macaques, McGary et al. recently characterized the contribution of 

CTLA-4 expressing T cells to viral persistence [112]. CTLA-4+/PD-1− memory CD4+ T 

cells residing outside of the lymph node follicle were enriched in replication-competent 

virus. Their ability to support viral persistence was not related to spatial escape from CD8+ 

T cell killing but more likely to increased potential of survival (high Bcl-2 expression) 

and homeostatic proliferation (high levels of phosphorylated STAT5). Whether these cells 

expressing CTLA-4 exert regulatory functions remains to be determined. Indeed, the 

contribution of Tregs in HIV persistence remains unclear: Initial studies of the latent 

HIV reservoir were performed using “resting CD4+ T cells” from which CD25+ cells 

were depleted, which obviously excluded Tregs from these analyses. More recently, several 

studies highlighted that Treg cells (typically identified as CD25hi/CD127lo) are enriched 
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in HIV DNA and have the ability to produce infectious virus [120–122]. Since Tregs 

are hyporesponsive to stimulation and relatively resistant to killing, they may represent a 

particularly challenging reservoir to eliminate [123]

5.4 HIV persistence in functional CD4+ T cell subsets

As discussed above (section 2.1), CD4+ T cells can be defined by their functional 

properties. Although the spectrum of cytokines they produced remains the gold standard 

way to characterize these subsets, expression of chemokine receptors are commonly used 

as surrogate markers to identify functionally polarized CD4+ T cell subsets such as 

Th1 (CXCR3+/CCR4−/CCR6−), Th2 (CXCR3−/CCR4+/CCR6−), Th17 (CXCR3−/CCR4+/

CCR6+) and Th1/Th17 cells (CXCR3+/CCR4−/CCR6+) [124]. Extensive work using CD4+ 

T cells isolated from the blood of ART-treated PLWH allowed the identification of CCR6 

as a marker of HIV susceptibility and persistence during ART [125, 126]. In addition, 

CCR6+ cells are imprinted with gut homing properties, which is reflected by preferential 

persistence of HIV in this subset in the gut [11, 47]. Th17, and by extension Th1/Th17, are 

relatively heterogenous and plastic in their fate. Thus, a fraction of Treg and Th1 cells could 

be the progeny of subsets of Th17 cells [127, 128]. In addition, Th17 cells are endowed 

with sternness properties supporting their long-lived capacity [128, 129]. Such properties 

support the ability of Th17 cells to serve as long-lived viral reservoir for HIV. Of note, 

CD161, a marker of Th17 and Th17 precursor cells [130], identifies HIV-infected cells 

which have the ability to persist through proliferation during ART [131]. Remarkably, a 

recent study characterized HIV persistence in polarized CD4+ T cell subsets defined by 

their cytokines expression [132]. Th9 cells, specialized in antitumor immune responses 

[25], were enriched for HIV genomes, but these were mostly defective, while Th1 cells 

harbored clonally expanded intact HIV genomes. Interestingly, despite their relatively short 

half-life, Th1 cells may significantly contribute to HIV persistence through antigen-induced 

proliferation. This is well supported by a recent study in which antigen induced clonal 

expansion of HIV proviruses was observed in HIV- and CMV-specific CD4+ T cells [92]. A 

broader assessment of the contribution of different antigens to HIV persistence will be key to 

the development of targeted HIV cure strategies.

5.5 Additional cellular markers associated with HIV persistence

In addition to the subsets described above and that are usually defined by combinations of 

cellular markers, individual markers highly expressed at the surface of HIV-infected CD4+ T 

cells persisting during ART have been identified. Some of these receptors can be targeted by 

antibodies to specifically deplete the infected cells, which make them particularly attractive 

for HIV eradication strategies: This is the case of CD20-expressing cells which can be 

depleted by rituximab [133] and CD30-expressing cells which are targeted by brentuximab 

vedotin [134]. Interestingly, the latter is a marker of transcriptionally active HIV-infected 

cells persisting during ART, highlighting the potential and controversial contribution of 

leaky latency to HIV persistence [135, 136]. Finally, CD32a, also known as Fc gamma 

receptor IIa (FcγIIa), is expressed on rare CD4+ T cells which are enriched for HIV DNA 

at a unprecedently reported high level (up to a 1,000-fold enrichment when compared to 

their negative counterparts) [137]. Although the role of CD32-expressing CD4+ T cell in 

the persistence of the latent and replication-competent HIV reservoir remains controversial 
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[138–142], several reports indicate that CD32 may be preferentially expressed by HIV­

infected and transcriptionally active CD4+ T cells, particularly in tissues [143, 144].

6. Contributions of CD4+ T cell subsets to HIV rebound

Although persistently infected macrophages [8] and viral particles retained in follicular 

dendritic cells [145] can contribute to rebound, HIV-infected CD4+ T cells persisting 

represent a likely source of viral recrudescence upon ART cessation. The identification of 

the CD4+ T cells subsets from which infection reignites will be key to develop eradication 

strategies based on the prevention of burst of viral replication. Obviously, only cells 

harboring intact HIV genomes can contribute to viral rebound. Recent studies indicate 

that these cells have a shorter half-life than those carrying defective proviruses [146, 147]. 

Whether this difference is due to intrinsic properties of the cells harboring intact genomes 

(shorter half-life) or to a greater immune pressure that negatively select for defective viruses 

over time remains to be determined. In any case, viral rebound may originate both from 

latently infected cells or from cells harboring transcriptionally active proviruses, as long as 

they carry intact genomes.

6.1 Transcriptionally active cells as a source of HIV rebound

Transcriptionally active HIV-infected cells persist during ART and may represent the 

first cells to fuel viral rebound. Indeed, the size of the active reservoir, as measured 

by cell-associated viral RNA, predicts time to viral rebound [148, 149]. Phylogenetic 

studies identified these transcriptionally active cells present before analytical treatment 

interruption as the source of plasma viral rebound [150, 151]. Interestingly these cells tend 

to harbor clonally expanded proviruses suggesting that proliferating cells are more likely to 

be the source of rebounding viruses. In addition, a single-genome sequencing approach 

combined with quantification of cell-associated HIV RNA revealed the transcriptional 

activity of expanded proviruses [152]. Although, the phenotype of HIV-infected cells was 

not determined in this study, this active reservoir maybe less stable [153]. TEM cells own 

these characteristics (active viral transcriptional and proliferation), suggesting their potential 

prominent role in viral rebound, although this remains to be formally demonstrated (Figure 

2). Interestingly, CD32a and CD30 identify actively transcribing cells persisting in blood 

and tissues during ART [134, 143], but whether the viral genomes persisting in these cells 

are intact and can produce replication-competent HIV is unknown. Circulating CD4+ T 

cells expressing CD32a display a TEM phenotype and co-express multiple markers of T 

cell-activation such as CD69, CD25, HLA-DR, CD38 and Ki67 [143]. Remarkably, the 

frequency of CD30+ CD4+ T cells increases before viral rebound, suggesting that CD30 

may represent a surrogate marker of early replication or transcriptional activity during 

analytical treatment interruption (ATI) [154]. To characterize the source of viral rebound 

phenotypically and virologically, an SIV barcoded virus, which allows infection of rhesus 

macaques with more than a thousand different viral variants, has recently been developed 

[155]. This novel tool will certainly be used in the near future to molecularly track viral 

rebound after ART cessation and to characterize the phenotype of the cells responsible for 

the initial burst of replication A way to assess the potential ability of a viral genome to 

generate replication-competent HIV particles is to evaluate the intactness of the provirus 
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using near full length genome sequencing [156]. During the past few years, several groups 

characterized the phenotype of CD4+ T cell subsets harboring intact proviruses [98, 99, 

132]. Collectively, the results from these studies indicate that TEM cells (CD45RA−/CD27−/

CCR7−), Th1 cells (IFN-γ+) and activated CD4+ T cells (HLA-DR+) are enriched in 

intact genomes. Of note, the markers used in these studies are not mutually exclusive and 

their combination may identify a subset of proliferating cells enriched in intact genomes 

[157] and from which infection may reignite. The possibility that viral recrudescence may 

originate from multiple tissues [158] and that recombinant viruses may contribute to viral 

rebound [159] complicate the efforts to identify the cellular sources of HIV rebound.

6.2 Latently infected cells as a source of HIV rebound

A prerequisite to viral rebound from latently infected cells is an efficient viral reactivation 

of the latent provirus to generate infectious viral particles. Several studies identified TEM 

cells as the memory subset harboring the highest frequency of inducible proviruses [78, 100, 

101]. These findings have recently been challenged by a study suggesting that all subsets 

have an equal ability to generate infectious HIV particles upon activation [160]. However, 

the exclusion of CD69+/CD25+/HLA-DR+ CD4+ T cells, which are enriched in intact 

genomes [99] and from which latent HIV may preferentially reactivate [102], provides a 

possible explanation for the discrepancy with the aforementioned studies.

An additional layer of complexity emerged from a recent study that combined integration 

sites and near full length proviral sequencing. This approach revealed that intact HIV 

genomes are characterized by a particular integration landscape and are more frequently 

found in non-genic chromosomal positions, in opposite orientation relative to host genes 

and distant from accessible chromatin regions [161]. These observations suggest that intact 

proviruses integrated in more silent regions of the host genome may be selected over time, 

resulting in a viral reservoir characterized by a deeper degree of viral latency after prolonged 

ART.

Altogether, these studies suggest that in addition to the intactness of the HIV genomes, their 

inducibility (i.e their capacity to produce viral particles upon stimulation) should be assessed 

to better identify potential sources of rebound upon ATI.

7. Perspective: Single cell approaches to study HIV cellular reservoirs

Most studies describing the phenotypic heterogeneity of HIV-infected cells during the 

course of HIV infection mainly used well-characterized cell subsets to identify distinct 

cellular reservoirs. This approach may not suffice to grasp the complex heterogeneity of 

HIV reservoirs during ART. During the past five years, single-cell approaches opened new 

avenues to analyze the HIV reservoir dynamics with an unprecedented depth.

Single-cell transcriptomic studies identified a new type of cell 

(CD25+CD298+CD63+BST-2+) highly permissive to HIV infection in vitro [162]. This cell 

subset expressing activation markers is imprinted with a downregulated interferon-mediated 

response and low expression levels of several known restriction factors. Single-cell RNA 

sequencing analysis using in vitro models of HIV latency highlighted the heterogeneity of 
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the cell types in which HIV latency is established and from which HIV can be reactivated 

by latency-reversing agents (LRAs) [163–165]. Ex vivo studies identifying HIV-infected 

cells through the detection of viral proteins or transcripts confirmed the downregulation of 

cellular antiviral immunity pathways and the presence of pro-survival factors as common 

features of persistently HIV-infected cells [166, 167]. Of note, a limitation to these studies 

is the need for a stimulation step to reveal latently infected cells, which likely induces 

transcriptomic and phenotypic changes.

Single-cell flow cytometry based analysis of the phenotype of HIV-infected cells is currently 

going through a revolution supported by the usage of multiparametric flow cytometry 

and mass cytometry (CyTOF) associated with high-dimensional analysis. They confirmed 

CD127 as a marker of cells permissive to latent HIV infection [81, 168] and TIGIT as a 

cellular marker of persistently infected cells [169]. The heterogeneity of different cellular 

reservoirs in response to a variety of LRAs was formally demonstrated by single-cell flow 

cytometry based studies [170–172]. These studies revealed that CD4+ T cells displaying 

a TEM phenotype are generally more responsive to current LRAs when compared to TCM 

cells. Single-cell epigenetic studies using ATAC-seq should help to further understand the 

molecular mechanisms responsible for these differential responses to LRAs.

In situ hybridization methods to visualize single infected cells have also been developed and 

present the advantage of visualizing HIV-infected cells in the context of a preserved tissue 

architecture [14, 173]. Remarkably, the development of new whole body imaging positron 

emission tomography coupled with magnetic resonance imaging allows the visualization 

of foci of HIV-infected cells which co-localize with activated T cells in lymph nodes of 

PLWH [174, 175]. Although this novel technology will require an increased resolution to 

detect HIV at the single-cell level, it will certainly contribute to a better understanding of the 

biology of persistent HIV reservoirs in the near future.

More than 20 years of research on HIV reservoirs have revealed the heterogeneity of the 

cells in which HIV persists during ART. Although these discoveries may be seen as an 

increased level of complexity and an additional obstacle to the development of a cure for 

HIV infection, they also reveal common features of HIV-infected cells shared by cells 

displaying distinct phenotypes. Therefore, rather than adding more cellular reservoirs to the 

list, it is now time to identify shared cellular markers, metabolic pathways and functions that 

are hallmarks of persistently infected cells. The development of single cell approaches that 

can identify reservoir cells with an unprecedented level of specificity and which allow the 

combination of multiple parameters will certainly help in this endeavor.
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Highlights

• HIV persists in a large variety of CD4+ T cells

• Cellular reservoirs contribute to HIV persistence through different 

mechanisms

• Tissue locations, survival and capacity to proliferate promote HIV persistence

• Cellular reservoirs differ in their ability to cause viral rebound

• Novel single-cell approaches revolutionized this area of research

Fromentin and Chomont Page 25

Semin Immunol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Contributions of CD4+ T cells subsets to HIV persistence.
CD4+ T cell subsets can be classified according to their functions (yellow), memory status 

(blue) and localization (green). Some of these classifications largely overlap. The relative 

contributions to viral persistence in depicted by their proximity to the red zone representing 

the HIV reservoir.
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Figure 2. Cellular features involved in the establishment and maintenance of HIV reservoirs and 
in viral rebound.
Common features of HIV-infected cells (outer cyle) are required for the establishment, 

maintenance and rebound of the HIV reservoirs (inner cycle). Multiple CD4+ T cell subsets 

likely contribute to each phenomenon.
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