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Abstract

For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a 

first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, 

derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic 

tools and are considered also as building blocks for chimeric antigen receptors as well as for 

targeted drug delivery. The small size of nanobodies (~15 kDa), their stability, ease of manufacture 

and modification for diverse formats, short circulatory half-life, and high tissue penetration, 

coupled with excellent specificity and affinity, account for their attractiveness. Here we review 

applications of nanobodies in the sphere of tumor biology.

Introduction

In this review we capture developments in the application of antibody fragments, called 

nanobodies, to tumor biology, covering both diagnostics and therapeutics. Spontaneous or 

engineered, immune responses against cancers are seen as a powerful adjunct to other forms 

of treatment. The ensemble of antigen presenting cells (APCs), CD4+ T cells, CD8+ T 

cells and B cells regulate adaptive immunity. CD4+ T cells (helper T cells) respond when 

they recognize antigen presented on class II major histocompatibility complex (MHC-II) 

molecules on the surface of APCs. Activated helper T cells and their products enhance 

the adaptive immune response through activation of B cells, NK cells and macrophages. 

B cells present antigen via MHC-II, which is recognized by helper T cells. Helper T cells 

then secrete signals to differentiate B cells into immunoglobulin (Ig)-secreting plasma cells. 

Secreted Ig serves various purposes, from neutralization of infectious agents to enhancement 

of phagocytosis or complement-assisted destruction of pathogens. These effector functions 

are attributable mostly to crosslinking of fragment crystallizable (Fc) receptors.

In most mammals, Igs are composed of a heavy chain and a light chain, each containing a 

variable and a constant region. A unique type of Igs, devoid of light chains, was discovered 

in sharks [1] and in camelid species in 1989 [2]. Engineering of the heavy chains of 

the camelid heavy-chain only antibodies (hcAbs) yields single-domain antibody (sdAb) 

fragments, also known as nanobodies (Nb) or VHHs (figure 1A). In select cases, it has been 
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possible to generate sdAbs from the heavy chain variable segments of human and mouse 

(conventional) Igs [3–7]. While such human or mouse VH segments can be expressed in the 

absence of a light chain and retain proper solubility and antigen binding properties [8,9], this 

is not always the case. Therein lies the importance of the discovery and development of the 

camelid hcAbs.

Of late, sdAbs are having a major impact on how Igs and their derivatives are used in 

research and in practical applications. Despite being only ~1/10th the size of their full-sized 

counterparts, nanobodies retain the characteristics of antigen specificity and binding affinity. 

Other favorable attributes of nanobodies are their solubility [10] and stability [11], as well 

as ease of production in bacteria, thus enabling large-scale production [12]. Their small size 

(~15 kDa) endows nanobodies with excellent tissue penetration [13] and rapid clearance 

from the circulation (t1/2 < 30 min) [14]. Because of their unique characteristics and relative 

ease of production, nanobodies are increasingly used in a variety of applications, such as 

delivery of drugs or radioisotopes, as well as imaging of tumors and other tissue types. 

The half-life of nanobodies can be extended at will, for instance by chemical modification 

with polyethylene glycol (PEG) [15], through fusion of the nanobody to serum albumin 

nanoparticles [16] or to a serum albumin-binding nanobody [14]. The field of nanobodies 

continues to advance rapidly. Several excellent reviews on the generation, properties and 

application of nanobodies across broad areas of biomedical interest have appeared [12,17–

28]. The purpose of this review is to focus on recent applications of nanobodies in tumor 

immunology, primarily in the context of diagnostics, imaging, and therapeutics. We provide 

an overview of available nanobodies and the (tumor) targets they recognize, as well as their 

applications. While in many cases nanobodies are used in lieu of conventional antibodies, 

possibly to avoid intellectual property conflicts, it is helpful to think of nanobodies as 

immunological tools with unique properties.

Tumor-targeting nanobodies

Nanobodies have similar antigen-binding properties as conventional antibodies. However, 

because nanobodies employ a single Ig variable domain for antigen recognition, they can 

access epitopes that are beyond the reach of conventional antibodies or antibody derivatives 

such as single chain Fv fragments (scFvs). For example, nanobodies can penetrate into a 

cleft on a protein’s surface or at a domain-domain interface. Currently available nanobodies 

for tumor-relevant targets are listed in Table 1. Figure 1B shows an overview of nanobody 

targets in relation to the tumor (microenvironment). In some cases, the nanobodies cross

react with homologous targets from other species. This may facilitate the transition from 

pre-clinical to clinical applications. Examples include cross-reactivity with human and 

murine antigen for the anti-EGFR nanobody 8B6 [29], the anti-HER2 nanobody 2Rs15d 

[30] and the nanobody directed against the EIIIB splice variant of fibronectin [31].

EGFR family

Members of the epidermal growth factor receptor (EGFR) family are often over-expressed 

on the surface of tumor cells of epithelial origin and play a role in their proliferation, 

survival, and in angiogenesis [32]. Antibodies that target the EGF receptor have been proven 
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successful in cancer treatment. An example is cetuximab, a full-size chimeric mouse/human 

monoclonal antibody specific for the EGFR [33]. Therefore, EGFR family members have 

been among the first tumor markers targeted by nanobodies. EGFR1-targeting nanobodies 

were identified by phage display, using competitive elution with the ligand EGF to identify 

specific binders [34]. Using the same EGFR phage nanobody repertoire and selecting 

for the EGFR extracellular domain, the nanobodies 7C12 and 7D12 [35] and 9G8 [34] 

were identified. The former competes with cetuximab, the latter does not. Multivalent 

nanobody molecules can be built by fusion of individual nanobody gene segments or 

through chemical conjugation methods. EGFR-specific nanobodies were formatted into 

bivalent molecules in different combinations, all of which inhibited tumor cell proliferation 

in an in vitro epidermoid cancer model. Specifically, the combination of 7D12–9G8 anti

EGFR nanobodies performed best in inhibiting EGFR signaling and reduced the growth of 

human epidermoid carcinoma A431 cells. When linked to Alb1, a serum albumin-binding 

nanobody, the construct was called CONAN-1, which strongly inhibited EGF-induced 

signaling, leading to tumor regression in A431 xenograft-bearing mice [36].

Using similar methods, the anti-EGFR nanobodies 8B6 and OA-cb6 were obtained [29,37]. 

Nanobodies that recognize HER2, another member of the EGFR family, specifically target 

HER2+ SKOV3 ovarian cancer cell-derived tumors in vivo [30]. HER2-targeting nanobodies 

11A4 [38] and 5F7GGC [39] have been used for a variety of (clinical) applications, 

described elsehwere in this review.

VEGFR2 and VEGF

Vascular epithelial growth factor receptor 2 (VEGFR2) is part of the human VEGFR family 

of receptors and is present on vascular endothelial cells. Its ligand, VEGF, is secreted by 

cell types such as macrophages and tumor cells, thereby inducing downstream signaling 

pathways involved in cell proliferation, angiogenesis and metastasis [40,41]. This makes 

VEGF and VEGFR2 appealing targets for nanobody-based therapies, for example to prevent 

the formation of new blood vessels on which tumors rely for nutrient and oxygen supply. 

The anti-VEGFR2 nanobody 3VGR19 was obtained by phage display on recombinant 

extracellular domains of the VEGFR2 receptor. It inhibits VEGFR2 signaling, thereby 

inhibiting the formation of capillary-like structures, as shown in an in vitro study on 

human umbilical vein endothelial cells (HUVEC) [42]. Ma et al. isolated an anti-angiogenic 

VEGFR2-D3 specific nanobody NTV1 from HuSdl™, a human single domain antibody 

library of ‘camelized’ human antibodies [43]. In similar fashion, nanobodies specific for 

VEGF were obtained. These inhibit endothelial cell proliferation in an in vitro angiogenesis 

assay using HUVECs [44]. A humanized version of one of these nanobodies, Nb42, has 

also been generated [45]. Lastly, the nanobody VA12, which specifically targets the binding 

domain of VEGF-A, showed anti-angiogenic potential in a chorioallantoic membrane assay 

[46].

c-Met and HGF

Hepatocyte growth factor (HGF) binds to the c-Met receptor [47], which activates pathways 

responsible for cancer progression, angiogenesis and metastasis [48]. For several different 

epithelial and nonepithelial cancers, overexpression of HGF and the c-Met receptor are 
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associated with a poor prognostic outcome [49,50]. Nanobodies against c-Met and HGF 

have been produced. The anti-cMet nanobody G2 competes with HGF for binding to the 

c-Met receptor [51]. Schmidt Slørdahl et al. used a bispecific nanobody, with one nanobody 

to target c-Met and the other nanobody to enable binding to human serum albumin for 

half-life extension. This bispecific anti-c-Met nanobody inhibited the interaction of c-Met 

with HGF and led to a reduction in cell migration and adhesion in multiple myeloma 

cells. This bispecific nanobody was even more efficient at inhibiting tumor growth than a 

conventional bivalent monoclonal anti-c-Met antibody [52].

The bispecific albumin- and HGF-specific 1E2-Alb8 and 6E10-Alb8 nanobodies showed 

a dose-dependent inhibition of HGF-induced proliferation of Bx-PC3 human pancreatic 

cancer cells. Nude mice bearing human glioma U-87 MG xenografts were treated with an 

anti-HGF nanobody, resulting in significant inhibition in tumor growth compared to the 

control group. Both 1E2-Alb8 and 6E10-Alb8 nanobodies show potential as a treatment 

option for multiple myeloma and other HGF-c-Met driven cancer types [53].

Other targets

In addition to the molecules described above, many other tumor-associated antigens have 

served as targets for nanobody development. Chemokine receptors, which are G-protein 

coupled receptors (GPCR), are overexpressed in a wide variety of malignancies [54]. 

Chemokines and their receptors drive migration and activation of a variety of cell types 

relevant for both innate and adaptive immune responses. If the goal is to interfere with 

cell migration, these molecules would appear to be ideal targets in view of the superior 

tissue penetration of nanobodies. Such nanobodies might neutralize the inhibition of 

chemorepellent signals, which would otherwise prohibit access of therapeutically efficacious 

immune cells to the tumor microenvironment. Conversely, immunosuppressive cells require 

chemoattractants to arrive at the site of the tumor. Nanobodies that target GPCRs and its 

ligands include reagents specific for human CXCR2 [55], CXCR4 [56–58], CXCR7 [59], 

CXCL11 and CXCL12 [60], and the viral GPCR US28 [61–63].

Furthermore, nanobodies have been identified that target human tumor-associated 

(trans)membrane proteins such as carcinoembryonic antigen (CEA) [64–66], prostate

specific membrane antigen (PSMA) [67–71], and human and murine macrophage mannose 

receptor (MMR) [72,73].

Other important targets are immune cell markers such as human CD7 [74,75], human and 

murine CTLA-4 [76,77], human and murine PDL-1 [78–82], murine CD8 [83] murine 

CD11b [19,84,85], human CD20 [86], human CD38 [87], mouse CD45 [84], mouse Ly-6C/

Ly-6G [88], human and murine MHC-II [89,90]. Other targets include fibronectin [31], 

TUFM [91], CapG [92], CAIX [93,94], CD33 [95], human and murine CD47 [96,97], 

murine ARTC2 [98], and TNFα [99] (table 1).

Nanobodies for diagnosis through imaging

Molecular imaging has become an important tool in cancer research, both for understanding 

the underlying biology of a disease, as well as for diagnosis and therapy [100]. Molecular 
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imaging requires a targeting moiety labeled with a diagnostic radioisotope [101] or a 

suitable fluorophore. Radiolabeled monoclonal antibodies have been used extensively as 

targeting moieties, but their effectiveness is limited by the large size of full-sized Igs 

and their comparatively long circulatory half-life [102]. Notwithstanding their large size, 

conventional fully human monoclonal antibodies used for therapy have been converted into 

imaging agents. This strategy has the obvious advantage that agents approved for clinical use 

can be used with only slight modification for imaging purposes, and with minimal risk of 

immunogenicity and unexpected adverse outcomes, especially given the modest amounts of 

imaging agent administered. Only recently have nanobodies been used in first human trials 

[28]. Aside from the kidneys, uptake of radiolabeled nanobodies in non-targeted organs 

is usually low, resulting in a high target-to-background ratio shortly after administration. 

This allows same-day imaging and the use of shorter-lived radioisotopes, in contrast to the 

low target-to-background ratio found shortly after administration of 89Zr-labeled full-sized 

monoclonal antibodies used for the same purpose [102,103].

These characteristics explain why nanobodies have been used in molecular imaging 

techniques such as positron emission tomography (PET) [104], single photon emission 

computed tomography (SPECT) [29], near-infrared fluorescence imaging (NIR) [105], and 

ultrasound-based molecular imaging [106] (figure 2A).

PET imaging

PET imaging uses positron-emitting radiotracers. Positrons collide with electrons in the 

tissue. This produces energy in the form of photons, which can be detected with a PET 

scanner [107]. Isotopically labeled Igs and Ig fragments used as PET imaging agents 

show exquisite specificity for select targets in vivo [108,109]. The EGFR-targeting 7D12 

nanobody, radiolabeled with 68/67Ga or 89Zr, was among the first nanobodies to be used for 

PET imaging. The PET images of A341 tumor-bearing mice show clearly visible tumors 

with good tumor-background contrast [104]. Some anti-HER2 nanobodies have also been 

used for imaging purposes, and the lead compound 2Rs15d has been studied in some detail. 

Coupled to 68Ga-NOTA, the nanobody yielded high-contrast images of tumors in SKOV3 

tumor-bearing rats [110]. The use of this nanobody has also successfully been translated to 

the clinic, with the first in-human phase I study of 68Ga-NOTA-2Rs15d used in PET/CT 

scans of HER2-overexpressing cancer patients. The nanobody-based imaging agent showed 

favorable biodistribution and high accumulation in the primary lesions and/or metastases 

of the patients without side effects, indicating its safety and clinical potential [111]. Two 

phase II studies with this tracer have since been initiated, evaluating its potential to detect 

local and distant metastases in breast cancer patients (clinicaltrials.gov, NCT03331601 and 

NCT03924466). A similar approach with the anti-MMR nanobody 3.49 in 3LL-R tumor

bearing mice gave equally encouraging results, with promise for use in a phase I and II 

clinical trial (clinicaltrials.gov, NCT04168528) [112].

Labeling of biomolecules with 68Ga requires a specific 68Ge68/Ga generator. The relatively 

short half-life of 68Ga (T1/2 < 68 min) [113] can result in low resolution PET images. These 

challenges can perhaps be overcome using 18F for radiolabeling of nanobodies. 18F has a 

half-life of ~109.8 min [114] and radiolabeling with 18F provides better biodistribution and 
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tumor targeting, as has been shown in vivo in PET/CT images of HER2+ SKOV3-tumor 

bearing mice when compared to labeling with 68Ga [115]. 18F labeling has also been 

performed on the anti-MMR 3.49 nanobody and resulted in specific visualization of the 

tumors of 3LL-R tumor-bearing mice [73].

Imaging of the myeloid compartment within the tumor microenvironment (TME) via 

PET is considered a desirable goal, as tumors are often infiltrated with myeloid-derived 

suppressor cells (MDSCs) [15]. Treatment with checkpoint blocking antibodies such as 

anti-PD-1 and anti-CTLA4 has changed the landscape of tumor therapy [116,117], and 

can likewise affect the distribution of myeloid cells within the tumor [118–120]. Thus, 

imaging the myeloid compartment within tumors can aid in understanding responses to 

cancer immunotherapies [15]. Nanobodies modified for use as PET imaging agents have 

now been applied to a variety of targets in pre-clinical models, directed against class II 

MHC (VHH7, VHH4), PD-L1, CTLA-4, fibronectin EIIIB (NJB2), CD8 (X118), CD11b 

(DC13), CD36 (DC20), and CD45 [15,31,82,89,90,121,122] labeled with 18F, 64Cu, or 
89Zr. Several tumor models have thus been examined, including the mouse B16 melanoma, 

PANC02 pancreatic adenocarcinoma, MC38 colorectal adenocarcinoma, and C3.43 human 

papillomavirus-induced cancer models. All of these agents visualize tumors by virtue of the 

fact that myeloid cells and lymphocytes are present in the TME [19].

SPECT with Micro-CT imaging

Single photon emission computed tomography (SPECT) imaging uses gamma-emitting 

radioisotopes. EGFR-targeting nanobodies 7D12 and 7C12, labeled with 99mTc, have been 

used in SPECT and micro-CT applications. Both nanobodies showed clear localization to 

the tumors of A431 xenograft-bearing mice [35]. SPECT imaging with the 99mTc-labeled 

anti-EGFR nanobody 8B6 also showed good tumor localization in mice bearing DU145 and 

A431 tumor xenografts [29]. When 99mTc-2Rs15d was evaluated for tumor accumulation by 

SPECT and Micro-CT, it showed clear accumulation at the tumor site of HER2+ SKOV3 

or LS174T xenograft-bearing mice, whereas no tumor localization of 99mTc-2Rs15d was 

observed in tumors of HER2− xenografted mice [30]. 99mTc-labeled NbCEA5, evaluated 

by total pinhole SPECT and Micro-CT, showed rapid clearance from the blood and 

efficient tumor targeting in LS174T xenografted mice [123]. The same held true for the 
99mTc-labeled anti-MMR nanobody cl1 evaluated for tumortargeting potential in TS/A 

and 3LL-R tumor-bearing mice, imaged using pinhole SPECT and Micro-CT [72]. For 

diagnostic purposes, visualization of PD-L1 expression levels in patients can be valuable. 

SPECT imaging with 99mTc-labeled anti-PD-L1 nanobodies showed intense and specific 

uptake in PD-L1-overexpressing tumor models of melanoma and breast cancer in mice [79]. 

Moreover, these results were translated for human application in a phase I clinical trial on 

sixteen patients with non-small cell lung cancer (NSCLC), where an 99mTc labeled anti-PD

L1 nanobody showed clear visualization of the primary NSCLC tumors and metastases, 

while presenting favorable biodistribution and limited side-effects [81].

NIR fluorescence

The use of isotopically labeled imaging agents has as an obvious drawback the risk of 

radiation exposure for both patient and physician. Shorter lived isotopes with a high 
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positron yield such as 18F in principle allow imaging shortly after administration of the 
18F-labeled agent, but this requires that tissue penetration and clearance from the circulation 

are compatible with visualization of the target of interest. Methods that do not rely on the 

use of radioisotopes therefore remain attractive alternatives, although these, too, have their 

limitations. Fluorescence-based methods suffer from absorption of light of the excitation 

and emission wavelengths by tissue and bodily fluids. Nonetheless, suitably labeled 

nanobodies have been used in these optical applications. The HER2-targeting nanobody 

11A4 conjugated to a near-infrared fluorophore IRDye 800CW, localized specifically 

to the tumor site of HER2+ SKBR3 xenograft-bearing mice, while maintaining good 

biodistribution. Near-infrared fluorescence imaging (NIR) has been exploited to enable 

image-guided surgery for the precise resection of HER2+ tumors. In a clinical setting, this 

NIR-conjugated anti-HER2 nanobody should allow specific non-invasive classification of 

HER2-postive tumors and more precise surgical tumor resection [38]. A similar approach 

was used to label the EGFR-targeting nanobody 7D12. NIR fluorescence identified OSC-19 

tongue tumors .Ex vivo fluorescence imaging of histology sections showed localization of 

the nanobody to cervical lymph node metastases [124]. The anti-carbonic anhydrase IX 

(CAIX) nanobody B9 has been exploited for the same purpose and yielded acceptable 

images in an orthotopic xenograft mouse model [94]. Because the tumor microenvironment 

is often hypoxic and CAIX is a marker enzyme of hypoxia, this approach should allow 

its non-invasive visualization. Kijanka et al. conjugated the 11A4 and B9 nanobodies to 

either IRDye 800CW or IRDye 680RD and injected both simultaneously into MCF10DCIS 

breast cancer xenograft-bearing mice. The results indicate the possibility of imaging and 

surgical resection of heterogeneous tumors at improved tumor-to-background ratios [38]. 

Using the 2Rs15d nanobody labeled with IRDye 800CW, NIR fluorescence image-guided 

surgery aided the precise debulking of ovarian tumors in SKOV3 xenograft-bearing mice 

[125]. The anti-ARTC2 nanobody S+16a has been conjugated to the fluorescent dye 

AlexaFluor-680 and was used for in vivo NIR imaging and ex vivo dissection of ARTC2

positive tumors in mice [126]. Combined, these examples show that fluorescence-based 

methods that exploit nanobodies as the targeting moieties have considerable potential, not 

only in the characterization of the tumor microenvironment, but also as an adjunct to 

surgery aimed at physical elimination of a tumor. Nevertheless, a study comparing the 

biodistribution of random and site-specific labeled 2Rs15d nanobodies shows the effect of 

different conjugation strategies on nanobodies’ properties, which should be considered when 

developing nanobody-based fluorescent imaging agents [127].

Ultrasound-based molecular imaging

A wide branch of molecular imaging is ultrasound-based. Microbubbles or nanobubbles can 

be used as ultrasound contrast agents (Zhang et al. 2019). Nanobubbles can have various 

types of shells (polymers or phospholipids) and cores (gas, liquid, or solid) [129,130]. They 

can carry antibodies specific for tumor-associated antigens, aiding in the early diagnosis of 

different malignancies. The large molecular weight of full-sized antibody-particle complexes 

results in a limited number of nanobubbles that actually reach the intended target site. 

Therefore, the use of nanobodies may improve nanobubble performance [106] as tested with 

nanobubbles filled with C3F8 ultrasound imaging gas and carrying an anti-PSMA nanobody. 
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The modified nanobubble specifically adhered to prostate cancer cells and displayed high 

specificity in prostate cancer xenograft imaging in vivo [70].

Several issues must be addressed before nanobodies can be fully implemented for imaging 

in a clinical setting. Importantly, nanobodies show high renal retention due to reabsorption 

in the proximal tubules, caused by megalin receptors [131]. Kidney retention can lead to 

renal damage, especially when the nanobody is labeled with a radioisotope or equipped 

with a cytotoxic drug. Kidney retention also produces a strong signal in several imaging 

applications, possibly overshadowing the signal of the desired molecular targets when 

physically close to the kidneys. Several strategies have been pursued to address these issues, 

such as coadministration of gelofusin or positively charged amino acids, which interact with 

megalin receptors and thereby reduce kidney retention [131]. Modification of nanobody 

imaging agents with PEG can also mitigate this problem, as observed with the anti-CD8 

nanobody X118, used to image T cell infiltration into mouse B16 and Panc02 tumors 

in vivo via PET [83]. Lastly, incorporation of a brush border enzyme-cleavable linker, 

a glycine-lysine dipeptide, between the 18F-containing moiety and the 2Rs15d nanobody 

reduced renal activity levels as seen in micro-PET/CT images of SKOV-3 xenograft bearing 

mice [132].

Nanobodies for therapy

Nanobodies as checkpoint blockade therapies

Conventional checkpoint blockade therapies use monoclonal antibodies to bind to immune 

checkpoints such as PD-1 or CTLA-4 to improve the anti-tumor immune response 

[116,117,133,134]. The anti-PD-L1 nanobody KN035 fused to Fc (KN035-Fc) induced 

strong T cell responses and inhibited tumor growth of A375-PD-L1 cells in NOD-SCID 

mice in vivo (Zhang et al. 2017). The anti-CTLA-4 nanobody H11 alone failed to control 

B16 tumor growth in mice treated with the GVAX immunotherapy, but when linked to 

a murine Fc region, H11 resulted in better overall survival than an anti-mouse CTLA-4 

monoclonal antibody [77]. CD47 is an antiphagocytic ligand (the “don’t eat me” signal) 

exploited by tumors. It does so by blunting antibody-mediated phagocytosis through binding 

to signal regulatory protein alpha (SIRPα) on phagocytes. The anti-CD47 nanobody A4 

alone or in combination with a tumor-specific antibody fails to generate antitumor immunity 

against syngeneic B16 tumors, but CD47 antagonism substantially improved response rates 

against B16 tumors when used in combination with PD-L1 blockade [97]. Interestingly, 

administration of the A4 nanobody synergized with PD-L1, but not CTLA4 blockade [135].

Nanobody-drug conjugates

Specific tumor-targeted therapies include the use of antibody-drug conjugates (ADCs). 

ADCs exploit the targeting efficiency of antibodies combined with the action of the 

cytotoxic payload conjugated to it [136,137]. This ought to result in specific targeting of the 

cancer cells, thus alleviating off-target side-effects. The appeal of this approach is reflected 

by the large number of clinical trials that use ADCs (registered on clinicaltrials.gov), with 

almost 40 being completed and over 80 in progress. Popular targets for ADCs are HER2, 

c-MET, CD30, and PSMA.
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Despite evidence for the effectiveness of ADCs, there are drawbacks to the use of 

monoclonal antibodies in cancer therapy. These include a limited capacity of antibodies 

to penetrate the tumor due to their relatively large size. Smaller antigen-binding fragments 

such as Fabs, scFVs, minibodies, and diabodies have therefore attracted attention as a 

platform for ADCs. Nonetheless, the efficiency of these smaller formats is often limited 

because of decreased stability, lower affinity, or difficulties in production [12]. Nanobodies 

can overcome most of these challenges, due to their shorter circulatory half-life, increased 

tissue penetration, stability and ease of production [136]. Figure 2B shows an overview of 

the described uses for nanobodies in cancer therapy.

Nanobody-drug conjugates under investigation include a nanobody-albumin nanoparticle 

(NANAP), which has an albumin core modified on its surface with EGFR-targeting 

nanobodies conjugated to PEG (EGa1-PEG). The NANAP is loaded with the multikinase 

inhibitor 1786. When internalized and digested in lysosomes, it causes the intracellular 

release of the kinase inhibitor and inhibition of proliferation of EGFR-positive 14C 

squamous head and neck cancer cells [16]. Furthermore, conjugation of the drug Mertansine 

(DM1) to an MHC-II targeting nanobody, VHH7, resulted in a reduction in liver metastases 

in mice engrafted with the A20 lymphoma [138]. The central role of MDSCs in driving 

cancer progression has raised interest in their depletion via ADCs for therapeutic benefit. In 

mice, CD11b is expressed on several myeloid cell types including monocytes, macrophages, 

and granulocytes, whereas Ly-6C is highly expressed on monocytes with lower levels on 

granulocytes, while Ly-6G is expressed on granulocytes [139,140]. Thus, the anti-CD11b 

nanobody DC13 and Ly-6C/Ly-6G-specific nanobodies (VHH16 and VHH21, respectively) 

were conjugated to Pseudomonas exotoxin A to deplete myeloid cells in vitro and in 
vivo [88]. All conjugates showed cytotoxicity in vitro. However, granulocytes were more 

sensitive than monocytes to Ly-6C/Ly6-G-specific immunotoxins in vivo despite similar 

binding of the nanobody-immunotoxins to each cell type, indicating the need to thoroughly 

characterize myeloid-specific ADC candidates.

Targeted radionuclide therapy (TRNT)

TRNT is an increasingly prevalent anti-cancer therapy, designed to deliver cytotoxic 

radiation to cancer cells, with delivery vehicles such as monoclonal antibodies, antibody 

fragments, or other small molecules equipped with a suitable radioisotope. Targeted delivery 

should limit exposure of healthy tissue to radiation. TRNT using antibodies has been 

approved by the FDA for Ibritumomab tiuxetan, a 90Y-labeled CD20-targeting monoclonal 

antibody for radioimmunotherapy of non-Hodgkin’s lymphoma [141–143], and the similar 
131I-tositumomab [144]. Furthermore, promising results in early clinical trials have been 

obtained for antibodies specific for CD33 [145,146], or preclinical results for a combination 

of CD20 and CD22 targeting antibodies [147,148]. Nevertheless, the targeting of (large) 

solid tumors remains a challenge, as shown in trials with antibodies specific for MUC1 

[149], CEA [150–152], and CEA [153]. Because the poor penetration of labeled antibodies 

into solid tumor tissue is to a large extent due to their size, smaller labeled molecules such 

as peptides and nanobodies, have been explored as alternatives for TRNT, especially for the 

treatment of solid tumors.
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D’Huyvetter et al. were the first to use a nanobody for TRNT, in a study with mice bearing 

HER2+ SKOV3 xenografts treated with the 177Lu-DTPA-2Rs15d nanobody. The treated 

mice showed an almost complete arrest in tumor growth and significantly longer disease

free survival compared to the control group, while no evidence of renal inflammation or 

necrosis was observed [154]. The same nanobody, labeled with 131I, has been used in 

a phase I clinical trial with breast cancer patients (NCT02683083) [155]. The 5F7GGC 

nanobody, labeled with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-125/131

I-iodobenzoate (*I-SGMIB), designed to trap radioiodine inside a tumor cell [156], showed 

promising results in targeting HER2+ cancers with different radioisotopes useful for TRNT 

[157].

The promising results with Ibritumomab tiuxetan prompted researchers to repeat this 

strategy with CD20-specific nanobodies, which should limit the toxicity seen with mAbs 

in non-targeted tissues. The nanobody 9079, radiolabeled with 177Lu, showed better disease

free survival when used for treating mice with B16 melanoma compared to controls. 

More importantly, minimal renal toxicity was seen when mice were treated with 177Lu

DTPA-sdAb 9079 [86]. The results of these preclinical studies underscore how the unique 

characteristics of nanobodies could be leveraged perhaps also in a clinical setting. Further 

optimization to decrease renal retention is necessary to further reduce any possible adverse 

effects.

Nanobody-based carrier delivery systems

To increase tumor efficacy and decrease toxicity in non-targeted tissues, it is important to 

target the delivery of a drug or compound to the tumor. Nanoparticles used as carriers for 

targeted drug delivery include liposomes, polymeric nanoparticles, micelles, and albumin 

nanoparticles [158]. Despite their differences in structure and mechanism of action, they all 

depend on a targeting ligand at the surface of the nanocarrier to achieve adequate specificity.

Conjugation of the anti-EGFR nanobody EGa1 to PEGylated liposomes induced 

internalization and downregulation of EGFR in 14C cells, both in vitro and in vivo 
[159]. When formulated as a polymeric PEGylated micelle, similar receptor binding and 

internalization were observed, making micelles promising systems for active drug targeting 

[160]. To this end, EGa1-decorated micelles were loaded with temoporfin (mTHPC), a 

photosensitizer compound used in the clinic for photodynamic therapy (PDT) of head 

and neck squamous cell carcinoma (HNSCC). These micelles show prolonged circulation 

in vivo compared to free mTHPC, indicating a potential of these micelles to improve 

the selectivity and efficacy of PDT in EGFR+ tumors [161]. Extracellular vesicles (EV) 

are also being explored as nanoparticles for therapeutic purposes [162]. To be tumor 

specific, such EVs must be equipped with a targeting moiety. By anchoring EVs through 

a glycosylphosphatidylinositol (GPI) anchor to the EGa1 nanobody, the engineered EVs 

showed localization to and internalization in EGFR-expressing cells, but the conditions will 

require further improvement for pre-clinical use [163].

Verhaar et al. Page 10

Semin Immunol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02683083


Tumor vaccination, lentiviral vector-based cancer therapy, and CAR-T cells

Vaccination against cancer would be a valuable prophylactic or therapeutic strategy and 

would benefit from specifically delivering tumor antigens to APCs. To this end, lentiviral 

vectors (LVs) have been used to deliver cancer autoimmune antigens to APCs [164]. 

Antibodies [165], and more importantly nanobodies, can be used to specifically deliver 

these LVs to APCs. LVs displaying the dendritic cell-targeting nanobody DC2.1 exclusively 

transduce only DCs and macrophages in vitro and in vivo [166]. Tropism of human 

adenovirus serotype 5 (Ad5), which can efficiently transduce human cells, can be altered 

by capsid modifications that incorporate a nanobody against human CEA (hCEA). These 

CEA nanobody-expressing Ad5 vectors successfully transduced murine MC38 cells that 

express hCEA [66]. In a similar manner, nanobodies can be used to improve the targeting 

and transduction of adeno-associated viral vectors, as shown by the successful transduction 

of myeloma cells with AAV1P5 displaying an anti-CD38 nanobody [167].

Another vaccination strategy focuses on activating cytotoxic CD8+ T cells through targeted 

delivery of cancer antigens to APCs by anti-CD11b nanobodies [168]. This has been 

explored for HPV+ tumors driven by the E6 and E7 genes of the oncogenic HPV type 

16 strain. Vaccination based on anti-cd11b nanobodies conjugated to E7-peptide antigens 

elicited a strong CD8+ T cell response in vivo and showed slower tumor growth and longer 

overall survival in an in vivo C3.43 cancer model [19]. These results highlight a new 

role for nanobodies in tumor vaccination strategies. In a similar approach, a strong Th1 

immune response against the tumor-specific antigen MUC1 was generated by attaching 

a site-specifically glycosylated MUC1 peptide to the class II MHC-targeting nanobody 

VHH7 [122]. The enhanced production of antibodies in response to immunization with the 

nanobody-peptide adduct implied the induction of an adequate CD4 T helper response in 
vivo.

Adoptive cell transfer (ACT) employs a patient’s own immune cells to target cancer cells. 

The T cells are engineered to express a cloned T cell receptor (TCR) or chimeric antigen 

receptor (CAR) that targets a tumor antigen of interest, the latter allowing for recognition 

of non-MHC restricted antigens. An ACT strategy using T cells engineered with a CAR 

comprised of an scFv against mouse VEGFR2 was effective in eliminating several different 

vascularized syngeneic tumors in mice [169]. Multiple CAR-T cells derived from antibodies 

or ScFvs are currently under investigation in a clinical setting. Some clinical trials show 

an immune response directed against the CAR-T cells [170–172], presumably due to 

immunogenicity to the non-human scFv component in the CAR constructs [173]. This 

problem might be solved by using humanized nanobody-based CARs. Albert et al. used their 

UniCAR system, a unique type of CAR T cell that can be redirected via simultaneously 

infused target modules (TM), allowing the UniCAR to be switched off in the absence of 

target modules. The UniCAR decorated with anti-EGFR nanobodies effectively target A431 

cells in vivo [174], and showed an even better anti-tumor responses when formulated as 

a bivalent α-EGFR-EGFR nanobody-based UniCAR [175]. A VEGFR2-nanobody specific 

CAR showed promising results in vitro, with high concentrations of secreted IL-2 and 

IFN-ƴ by the CAR T-cells, as well as a cytotoxic activity measured by an LDH release 

assay in response to the VEGFR2 antigen on target cells [176]. Bispecific CAR-T cells that 
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target two antigens simultaneously might be effective to counteract potential antigen-escape 

in tumor cells. In vitro experiments show the great potential of a bispecific anti-CD20 and 

anti-HER2 nanobody-based CAR, which targets and kills Jurkat cells expressing either one 

or both antigens [177]. Targeting the TME rather than the tumor directly can be beneficial 

for targeting multiple tumor types. Anti-PD-L1-nanobody based CAR-T cells slow tumor 

growth rates in vivo in B16 and MC38 models. CAR-T cells based on a nanobody against 

the fibronectin splice variant EIIIB, which is exclusively expressed on tumor stroma and in 

the neovasculature, as found around tumors, significantly slowed B16 melanoma growth in 
vivo [178]. The anti-tumor efficacy of the EIIIB-nanobody CAR-T cells was improved in 

cells that simultaneously secreted nanobodies against PD-L1 or CTLA4, and their systemic 

cytotoxicity was reduced by secretion of a CD47 nanobody by the CAR T cells [179]. 

Because the sequence of the EIIIB splice variant is identical for mouse and man, there may 

be a future for the clinical use of human CAR T cells equipped with this nanobody as a 

recognition module.

These examples primarily focus on engineering the patient’s autologous T cells. However, 

selecting non-malignant T cells is difficult for patients with T cell-specific cancer such as T

ALL. To overcome this problem, CAR-NK cells can be used. An anti-CD7 nanobody-based 

CAR on NK cells showed an inhibitory effect on tumor cells in a PDX mouse model [180]. 

Bispecific anti-CD38 nanobody-based CAR-NK cells effectively deplete CD38+ cells from 

patient-derived multiple myeloma bone marrow cells in vitro [181]. Nanobody-based CAR

T cell therapy is now being pursued in clinical trials for CD19/CD20 bispecific targeting in 

patients with B Cell lymphoma (NCT03881761) and BCMA targeting in multiple myeloma 

(NCT03664661).

Conclusions

Research has illuminated a valuable role for nanobodies in cancer diagnostics and 

therapy. Their biophysical properties are fundamentally distinct from those of their 

conventional two-chain counterparts. The small size, antigen specificity, binding affinity, 

and stability of nanobodies allows successful targeting of antigens in the tumor, the 

tumor microenvironment and of the immune cells that are recruited there. Nanobodies are 

increasingly being used as a diagnostic tool in molecular imaging techniques such as PET, 

SPECT and NIR fluorescence imaging, as evidenced also by successful early clinical trials. 

As therapeutic agents, nanobodies can aid delivery of drugs or radioisotopes and can be 

used for tumor vaccination strategies and CAR-T cell therapy. The full range of possible 

applications of nanobodies has yet to be explored, but as a complement or an alternative to 

conventional immunoglobulins: nanobodies are here to stay.
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Figure 1. Nanobodies and their targets in relation to the tumor (microenvironment).
A. Schematic representation of a conventional human Ig, camelid HCab, and a nanobody. B. 

Schematic overview of the tumor-associated targets for which nanobodies have currently 

been established. Important targets are immune cell markers, tumor cell (membrane) 

proteins, receptor ligands, and proteins associated with the tumor microenvironment.
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Figure 2. Overview of the applications of nanobodies in cancer diagnosis and therapy.
A. Nanobodies have been successful in diagnosis through molecular imaging techniques 

such as PET, SPECT, NIR, and ultrasound-based molecular imaging. B. Nanobodies can be 

used in a variety of tumor therapies, such as targeted radionuclide therapy, nanobody-drug 

conjugates, adoptive cell transfer, and vaccination.
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Table 1

Currently available nanobodies for tumor-relevant targets.

Target Disease examples Origin Model system tested Nanobody 
name

References

ARTC2 Murine (ART2.2 in Llama 
matahari)

CD38 KO mice S+16a [98]

CAIX Breast Cancer 
(ductal carcinoma)

rCAIX in Camelus 
dromedarius

PC3 and HeLa cell lines K24 [93]

Human (HeLa cells in Llama 
glama)

DCIS and CAIX 
xenograft-bearing SCID/
beige mice

B9 [94]

CapG Breast Cancer 
TNBC, melanoma, 
PDAC

Human (Recombinant CapG 
in Llama glama)

MDA-MB-231 cells, 
MDA-MB-231 cells in 
nude mice

CAPNb2 [92]

CD11b Innate immune cell 
marker

Murine (BMDC in Llama 
glama)

BMDC and macrophage 
cell lines

V36, 76, 51, 81, 
B10 and 42

[84]

HPV E7 xenograft 
bearing mice

VHHCD11b (also 
known as 
VHHDC13)

[19]

CD20 B16 melanoma 
Melanoma, lung 
cancer, breast cancer

Human (hCD20-encoding 
plasmid and hCD20pos cells 
in Llama glama)

hCD20pos B16 xenograft
bearing mice

9077, 9079 [86]

CD33 AML rCD33 in Llama glama THP-1 tumor xenograft
bearing mice

Nb_7, Nb_21, 
Nb_22

[95]

CD38 Multiple myeloma Human (rCD38 ectodomain, 
C-terminal domain, or cDNA 
expression vector for full
length CD38 in Llama glama)

LP-1, OPM2 and 
RPMI8226 myeloma cell 
lines, Primary malignant 
plasma cells

MU375, 
MU1053, 
MU551

[182]

Human CD38-expressing 
DC27.10 cells in nude 
mice

WF211, 
MU1067, JK36, 
JK2, MU523, 
WF14 and 
MU738

[87]

CD45 Mouse (Mouse BDMC cells 
in Llama glama)

In vitro assays G7 and 32b [84]

CD47 AML, NHL, gastric, 
ovarian, colon and 
hepatocellular cancer

Mouse (Ig-like V-type domain 
(ECD) of mouse CD47 in 
alpaca)

Tubo-EGFR mouse breast 
cancer cell line, BALB/c 
BMDMs, B16F10 cells

A4 [97]

BMDMs and 
B16F10 xenograft
bearing C57BL/6 mice

A4 fusion to 
IgG2a Fc 
(A4Fc)

[135]

Human (hCD47(ECD)-Fc in 
Camelus bactrianus)

Raji cell lymphoma 
NOG mice, cynomolgus 
monkeys

HuNb1-IgG4 [96]

CD7 Leukemia Human (CD7+ Jurkat cells in 
Llama glama)

Leukemia cell lines, CEM 
xenograft-bearing nude 
mice

VHH6 [74]

T-ALL PDX model for 
humanized VHH6

Humanized 
VHH6

[75]

CD8 B16 melanoma, 
pancreatic cancer

Human and mouse 
(recombinant mouse CD8αβ 
heterodimer in alpacas)

C57BL/6 mice with B16 
and B16 GVAX, MMTV
PyMT transgenic mouse 
model, human biopsy 
tumor sections

VHH-X118 [83]
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Target Disease examples Origin Model system tested Nanobody 
name

References

CEA Epithelial cancers 
(lung, thyroid, 
pancreas, uterus, 
breast, ovary, 
colorectal)

Human and murine (CEA in 
Camelus dromedarius)

LS174T cells 
and LS174T xenograft
bearing mice

cAb-CEA5 [64]

Human (CEA in Vicugna 
pacos)

LS174T cells and 
MC38(CEA) mouse colon 
cancer cells

JJB-B2 [66]

H460 xenograft-bearing 
nude mice

99mTc-nanobody [65]

c-Met Brain, liver, 
pancreatic and 
gastric cancer, 
multiple myeloma

Human (c-MET-Fc in Llama 
glama)

hMSCs Anti-c-Met 
nanobody, 
bispecific

[52] Nb patent 
by Beste et al., 
WO 
2012/042026 
A1

Human (A431 cells in Llama 
glama)

A549 cells, MKN-45 cells G2 [51]

CTLA-4 B16 melanoma Human (CTLA-4 protein in 
Camelus dromedarius)

B16/B6 melanoma cell 
injected C57BL/6 mice

Nb16 [76]

Murine (CTLA-4 ECD fused 
to Fc domain in alpaca)

H11 [77]

CXCL11 Pre-B lymphoma Human (Chemokine mixture 
in Llama glama)

HEK293T cells 11B1, 11B7 [60]

CXCL12 12A4

CXCR2 Acute and chronic 
inflammatory 
diseases, cancer 
metastases

Human (CXCR2-expressing 
cells or pVAX1-hCXCR2 
DNA in Llama glama)

CHO-CXCR2 cells 127D1, 163E3 [55]

CXCR4 HIV-1, tumor growth 
and metastasis, 
WHIM syndrome

Human (CXCR4-expressing 
HEK293T cells in Llama 
glama) 90% sequence identity 
with murine ortholog

Cynomolgus monkeys 238D2and 
238D4 (mono- 
and biparatopic)

[56]

HEK293T and CXCR4
R334X overexpressing 
K652 cell lines

10A10 [57]

Human (CXCR4-expressing 
lipoparticles in Llama glama)

SUP-T1 and Jurkat cells VUN400, 
VUN401, 
VUN402

[58]

CXCR7 Head and neck 
cancer

Human (CXCR7-expressing 
HEK293 cells or pVAX1
CSCR7DNA in Llama glama)

22A xenograft-bearing 
nude mice

NB1, NB2, 
NB3, NB4, NB5 
(mono- and 
biparatopic)

[59]

EGFR Epithelial cancers Human (EGFRvIII peptide in 
Camelus bactrianus)

Ascites fluid of NSCLC OR1–83, OR2–
83

[183]

Human (A431 cells in Llama 
glama)

Murine xenograft models Ia1, IIIa3, L2–
3.40, 9G8

[34]

EGa1 [184]

8B6 [29]

aEGFR-aEGFR-
aAlb

[14]

7C12, 7D12 [35]

CONAN-1 
(7D12-9G8-
Alb1)

[36]

OA-cb6 [37]

OR1–83, OR2–
83

[183]
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Target Disease examples Origin Model system tested Nanobody 
name

References

Fibronectin 
(EIIIB)

Mammary carcinoma Mixture of ECM proteins, 
domains and peptides in 
alpaca

LM2 xenografts in NSG 
mice

NJB2 [31]

HER2 Breast cancer Human (HER2-Fc 
recombinant fusion protein in 
Camelus dromedarius)

HER2+ SKOV3 tumor 
bearing mice

2Rs15d, 1R136d [30,154]

Human (MCF7 or BT474 
cells in Llama glama)

SKBR3 xenograft-bearing 
mice

11A4 [38]

Human (SKBR3 cells in 
Llama glama)

BT474M1 xenograft
bearing mice

5F7GGC [39]

HGF Glioma Human (HGF in Llama 
glama)

U87 MG xenograft
bearing mice

1E2-Alb8, 
6E10-Alb8

[53]

Ly-6C/Ly-6G Myeloid cells in 
immune diseases and 
cancer

Mouse (mouse splenocytes in 
alpaca)

NUP98/HOXB4 cells and 
C57BL/6j mice

VHH16, 
VHH21

[88]

MHC-II Pancreatic cancer Murine (murine splenocytes in 
alpaca)

panc02-tumors in 
C57/BL6 mice

VHH7, 
VHHDC8, and 
VHHDC15

[90]

Graft versus Host 
Disease

Human (Purified HLA antigen 
in Vicugna pacos)

Xenograft model of 
GvHD

VHH4 [89]

MMR TAMs infiltrating 
tumors

Human (MMR EC in Vicugna 
pacos)

TS/A and 3LL-R tumor
bearing mice

Nb cl1 [72]

Human and murine (recomb. 
Monomeric fusion proteins in 
Vicugna pacos)

3.49 [73]

PD-L1 NSCLC, colon, 
thyroid, uterus, 
pancreas, and ovary 
cancer

Human (PD-L1 Fc fusion 
protein in Camelus 
bactrianus)

PD-L1+ A375 cells 
+ hPBMCs xenograft
bearing nude mice

KN035 [118]

Murine (RAW264.7 cells in 
Camelus dromedarius)

TC-1 (WT and PD-L1 
KO) in WT or PD-L1 KO 
mice

C3, E2 [80]

Human (PD-L1-Fc protein in 
alpaca)

PD-L1+ MCF7 and 624
MEL xenograft-bearing 
nude mice

K2 [79]

Human clinical trial Human NSCLC patients NM-01 [81]

PSMA Prostate cancer Human (Purified PSMA 
antigen in Camelus 
dromedarius)

In vitro binding 
predictions

C9, C24, N14, 
N50

[71]

Human (rPSMA in Camelus 
bactrianus)

LNcaP and PC3 cells C3 [69]

Human (LNCaP cells, PSMA 
peptide, rPSMA EC in 
Camelus dromedarius)

PC-3 and LNCaP 
xenograft-bearing nude 
mice

PSMA30 [68]

Human (4 different PCa cell 
lines in Llama glama)

PC-310 and PC-3 
xenograft-bearing NMRI 
mice

JVZ-007 [67]

LNCaP, C4-2 or 
MKN45 xenograft 
bearing BALB/c-nu nude 
mice

[70]

TNFα Sarcomas, 
melanomas, 
carcinomas

DNA sequences encoding the 
camelidae antihuman TNFa 
single-domain)

MCF-7, T-47D and 
MDA-MB-231 cell lines, 
4T-1 breast cancer mouse 
model

anti-TNF-VHH [99]
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Target Disease examples Origin Model system tested Nanobody 
name

References

TUFM Glioblastoma Human (GBM stemlike cells 
in Alpaca)

Several GBM cell lines 
and tissues

Nb206 [91]

VEGF(R-2) Angiogenesis in 
solid tumors

Human (293KDR cells in 
Camelus dromedarius)

HUVEC cells 3VGR19 [42]

Human (VEGF121 in Camelus 
dromedarius)

Nb22, Nb23, 
Nb35, Nb42; 
Humanized 
Nb42

[44,45]

Human sdAb from HuSdl™ NTV1 [43] through 
HuSdl™

Chorioallantoic 
membrane

VA12 [46]

Viral GPCR 
US28

Glioblastoma pVAX1-US28 DNA boosted 
with HEK293T-US28 
expressing cells in Llama 
glama

U251 cells, intracranial 
GBM mouse model

(bivalent) US28 
nanobody

[62]

pcDEF3 vector encoding for 
VHL/E US28 in Llama glama

U251 cells VUN100 [63]

In silico Nb7 [61]
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