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Abstract

Over the past decades, nanoparticles have increased in implementation to a variety of applications 

ranging from high-efficiency electronics to targeted drug delivery. Recently, microfluidic 

techniques have become an important tool to isolate and enrich populations of nanoparticles 

with uniform properties (e.g., size, shape, charge) due to their precision, versatility, and 

scalability. However, due to the large number of microfluidic techniques available, it can be 

challenging to identify the most suitable approach for isolating or enriching a nanoparticle of 

interest. In this review article, we survey microfluidic methods for nanoparticle isolation and 

enrichment based on their underlying mechanisms, including acoustofluidics, dielectrophoresis, 
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filtration, deterministic lateral displacement, inertial microfluidics, optofluidics, electrophoresis, 

and affinity-based methods. We discuss the principles, applications, advantages, and limitations 

of each method. We also provide comparisons with bulk methods, perspectives for future 

developments and commercialization, and next-generation applications in chemistry, biology, and 

medicine.
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For decades, nanoparticles have drawn significant attention from the scientific communities 

because their chemical and physical properties differ markedly from those of the bulk 

material.1–3 Defined as a particle with characteristic lengths of approximately 100 nm 

or less, nanoparticles roughly comprise both “soft nanoparticles” (i.e., naturally existing 

nanoparticles such as proteins, DNAs, viruses, and exosomes) and “hard nanoparticles” (i.e., 
synthesized inorganic nanoparticles such as gold, silver, and silicon). Today, nanoparticles 

are widely used in many fields such as catalysis,4,5 electronics,6,7 biology,8,9 and 

medicine,10–15 which can be readily witnessed by both the rapidly expanding market size as 

well as the ever-increasing number of scientific publications.

With the enormous amount of research on nanoparticles, it is broadly recognized that 

a homogeneous size, shape, charge, and/or chirality of nanoparticles usually greatly 

enhance their performance in various applications. For example, the optical properties of 

nanoparticles (e.g., Raman spectra,16 absorption,17 and plasmonic features18) are highly 

dependent on their size distribution.19 As a result, when using nanoparticles in biosensing 

applications, it is essential to have nanoparticles with a narrow size distribution. The 

homogeneity in the size of the nanoparticles also impacts their therapeutic efficacy.20 For 

example, the capability of nanoparticles to penetrate the blood-brain barrier21–24 or remain 

in circulation in the blood25–29 is largely determined by their size. A homogeneous size 

distribution also reduces unintended side effects of cytotoxicity.30–35 In addition to size, 

homogeneity in the shape and chirality of nanoparticles helps control their interaction 

with cells,36 thereby impacting efficacy and bioavailability in therapeutic applications.37–39 

However, most nanoparticle fabrication procedures are prone to impurities, producing 

Xie et al. Page 2

ACS Nano. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particles with undesired shapes and sizes. As a result, the rigorous development of 

postfabrication methods to enhance the homogeneity of nanoparticles is essential to 

advancing nanoparticle research and applications.

Isolation and enrichment are two complementary steps to improve the homogeneity of 

nanoparticles. Isolation is a process that acts as a selective barrier allowing relatively 

free passage of one component while retaining or deflecting other components.40,41 After 

isolation, the concentration of nanoparticles might decrease due to a loss of particles or the 

introduction of additional fluids; therefore, an enrichment procedure42 is often conducted to 

increase the concentration of specific nanoparticles for collection. Enrichment can also be 

used to enhance the local concentration of nanoparticles to facilitate detection.43 It should 

be noted that some techniques, such as density gradient centrifugation,44 are capable of 

simultaneously isolating and enriching nanoparticles.

Microfluidics is one of the emerging techniques that meets the growing and divergent 

needs for nanoparticle isolation and enrichment.45,46 Developed in the 1990s, microfluidics 

has grown as a multidisciplinary field that involves physics, chemistry, engineering, 

and nanotechnology and has succeeded in isolating and enriching a wide spectrum of 

nanoparticles. To cover recent advances and offer future perspectives on microfluidic 

nanoparticle isolation and enrichment, we have written this review article for readers from 

diverse disciplines and backgrounds. In this article, we will survey current microfluidic 

methods according to their technical mechanisms (e.g., acoustics, optics, dielectrophoresis, 

and filtration), and we will discuss both isolation and enrichment, if applicable (Figure 1). 

We will also provide a summary table of potential solutions for specific particle properties 

(e.g., size, shape, and charge), with the advantages and limitations of each technique (Table 

1). To be more focused and concise, we will confine the scope of “microfluidics” to devices 

with characteristic lengths of approximately 100 μm or less. As an exclusion, we will 

not cover methods like high-performance liquid chromatography (HPLC)47–50 or capillary 

electrophoresis,51–55 although they operate at the micrometer scale; readers are referred to 

excellent reviews on those techniques elsewhere.47–55

ACOUSTOFLUIDICS

Acoustofluidics,56–66 an approach that integrates acoustic manipulation with microfluidic 

devices, can efficiently separate nanoparticles. In principle, particles in acoustic fields 

deflect based on their material properties (e.g., density and compressibility) and size (i.e., 
volume).67–72 Researchers discovered that nanoparticles are influenced by the external 

acoustic field, resulting in trapping, focusing, and patterning,43,73 enabling nanoparticle 

separation with acoustofluidic methods. Wu et al. demonstrated the separation of a mixture 

of 500 and 110 nm polystyrene particles, using a 4 μL min−1 flow rate for the sample 

and a 12 μL min−1 flow rate for the sheath flow (Figure 2A,B). The yield of 110 nm 

nanoparticles can reach as high as 90.7%.74 With a longer distance for particle deflection, 

researchers achieved separation of polystyrene particles with sizes of 300 and 500 nm.75 

Since acoustofluidic methods operate with powers (10−2–10 W/cm2) and frequencies (1 kHz 

to 500 MHz) in a range similar to those used in ultrasonic imaging (2–18 MHz, less than 1 

W/cm2),57 they often have excellent biocompatibility. Based on the separation performance 
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of nanometer-sized polystyrene particles, Wu et al.76 further developed an acoustofluidic 

exosome isolation technique. Their design makes use of two separate, but connected, 

modules: the first module removes larger, microscale blood components, while the second 

module is an extracellular vesicle separation unit that removes larger microvesicles and 

isolates exosomes. Through integration of two components, they were able to isolate 

exosomes with 98.4% purity from a mixture containing both microvesicles and exosomes, 

and demonstrated a blood cell removal rate of over 99.999%. Similarly, other types of 

extracellular vesicles can also be separated with acoustofluidics. Lee et al.77 demonstrated 

an “acoustic nanofilter” system that size-specifically separates microvesicles in a continuous 

manner. They applied the acoustic nanofilter to isolate nanoscale (<200 nm) vesicles from 

cell culture media as well as microvesicles in stored red blood cell products and achieved a 

>90% separation yield (Figure 2C,D).

Acoustofluidic methods also enrich, concentrate, or trap nanoparticles, which can be 

integrated after nanoparticle isolation for better recovery or visualization. Nanoparticle 

enrichment is usually achieved through acoustic radiation force,72 acoustic streaming,71 or 

a combination of both. For instance, Mao et al.43 presented an acoustofluidic chip that 

can concentrate nanometer-sized particles at the central line of a glass capillary (Figure 

3A,B). Nanoparticle enrichment is achieved through the combined effect of the acoustic 

radiation force with vortex acoustic streaming. They demonstrated the focusing of silica and 

polystyrene particles with diameters ranging from 80 to 500 nm and the ability to integrate 

this process with downstream immunoassays. Collins et al.78 introduced highly focused 

surface acoustic waves at frequencies between 193 and 636 MHz that generate localized 

acoustic streaming vortices on microfluidic length scales. They can capture nanoparticles 

as small as 300 nm in diameter and enrich them at a point near the transducer. When 

the acoustic frequency is increased to the gigahertz regime, Cui et al.79 demonstrated the 

concentration of 87 nm particles through an acoustic streaming vortex with their hypersonic-

induced hydrodynamic tweezers. Other than acoustic streaming, Reyes et al.80 used primary 

radiation forces in bulk acoustic standing waves for concentrating nanoparticles. They 

successfully demonstrated the concentration of 200 nm gold nanoparticles at acoustic 

pressure nodes (Figure 3C–E).

In isolating biological nanoparticles, acoustofluidic methods avoid high shear stresses, high 

temperatures, or requirements for special liquid media. They allow for label-free isolations 

based on differences in size or other physical properties. A microfluidic channel provides 

precise fluid control during acoustic operation. In microfluidic devices, low Reynolds 

number (i.e., laminar flow) enabled high separation resolution that is not possible in bulk 

fluid. Acoustofluidic nanoparticle isolation is mainly based on exploiting differences in the 

size of particles. Furthermore, acoustofluidic devices can potentially be integrated to achieve 

isolation and enrichment in one system. Current limitations of acoustofluidics mainly 

arise from instrumentation. Bulky, expensive, and specialized electronics (such as function 

generators and amplifiers) involved in most acoustofluidic devices limit their widespread use 

in industrial applications. However, in recent years, much research has gone into developing 

low-cost,81–83 open-source84 alternatives to popularize acoustofluidic devices.
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MICROFLUIDIC DIELECTROPHORESIS

Microfluidic dielectrophoresis (DEP) describes the motion of a dielectric particle in 

a nonuniform electric field as a result of the polarization effect in a microfluidic 

device.85–90 DEP has been extensively studied in isolating and enriching a variety of 

nanoparticles.87,91–97 For example, Viefhues et al.98 developed a DEP-based device to 

separate polystyrene nanoparticles of 20 and 100 nm. They found that 85–100% of the large 

nanoparticles were deflected and expected that efficient and separation would be possible 

for nanoparticles that differ by about 30% in diameter. Zhao et al.99 separated nanoparticles 

with DEP using a nonuniform DC electric field (DC-DEP). In this approach, the electrical 

conductivity of the suspending solution is adjusted so that the polystyrene nanoparticles of 

a given size experience positive DEP while the polystyrene nanoparticles of another size 

experience negative DEP. Using this method, the separation of 51 and 140 nm nanoparticles 

and the separation of 140 and 500 nm nanoparticles were demonstrated (Figure 4A–C). 

Using a similar mechanism with a microarray device operating at 20 V peak-to-peak and 10 

kHz, Sonnenberg et al.100 separated DNA from blood cells, where high molecular weight 

DNA and nanoparticles were concentrated into high-field regions by positive DEP, while 

the blood cells were concentrated into the low-field regions by negative DEP. With this 

method, high molecular weight DNA could be detected at 260 ng/mL, a suitable range 

for DNA biomarkers (Figure 4D–F). Krishnan et al.101 demonstrated separation of 10 nm 

polystyrene nanoparticles, 60 nm DNA-derivatized nanoparticles, and 200 nm nanoparticles. 

They demonstrated the feasibility of this technique even in physiological solutions with high 

conductance.

Besides isolation, nanoparticles can also be enriched through a mechanism of DEP 

trapping.102–106 Cheng et al.107 developed electrode arrays to generate DEP forces and 

aggregate bacteria with silver nanoparticles. They used this method to rapidly identify 

bacteria from diluted blood with surface-enhanced Raman spectroscopy (SERS) (Figure 

5A,B). Han et al.108 superimposed alternating current DEP and electro-osmosis between two 

coplanar electrodes to concentrate bacteria, viruses, and proteins. They enriched nanometer-

sized MS2 viruses and troponin I antibody proteins. Yeo et al.109 removed the constraints 

of a microfluidic device and developed a dendritic, multiterminal nanotip (i.e., dendritic 

nanotip) for DEP-based concentration of viral particles. They showed that the dendritic 

nanotip could detect T7 phage as low as 104 particles per mL (20 particles in 2 μL sample 

volume) in 5 min (Figure 5C,D).

Microfluidic DEP features several advantages.88,90,110,111 First, DEP forces do not require 

the target particles to carry a charge; it can work with both charged and neutral 

nanoparticles. Second, DEP forces require a nonuniform electric field, which can be easily 

achieved with modern microfluidic designs and electrode fabrication techniques. In addition, 

the laminar flow nature in microfluidic channels provides superior flow control over bulk 

devices. However, microfluidic DEP has several limitations that still need to be addressed. 

First, despite the wide application of DEP-based approaches, its underlying mechanism is 

not yet fully understood. The dielectric properties of the material, angular frequency of 

the applied electric field, and the charge and size of the particles all affect the separation 

results.90 Therefore, it is not straightforward to predict the performance of DEP separations 
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prior to separation experiments. Second, many DEP-based biological applications require a 

specific medium with a predefined conductivity, which can affect the biological functions 

of the targets. In addition, applying external voltages to drive particle motion might induce 

electrothermal flows and joule heating,112 which can disrupt the separation process and the 

integrity of biological nanoparticles.

MICROFLUIDIC FILTRATION

Filtration is one of the most widely used industrial nanoparticle isolation methods in water 

treatment, which fractionizes nanoparticles with direct physical barriers. Its microfluidic 

counterparts113–117 are based on similar underlying concepts but are also designed to deal 

with samples with small volumes. Traditionally, microfluidic filtration is also categorized, at 

least in part, into field-flow fractionation,118 which is defined by features of the flow field, 

rather than the nature of filtration. In this regard, asymmetric flow field-flow fractionation 

(AF4) products are commercially available for the separation of a wide spectrum of proteins, 

liposomes, emulsions, viruses, polysaccharides, metals, and polymeric nanoparticles.119–122 

Recently, Zhang et al.123 used AF4 to identify two exosome subpopulations (large 

exosome vesicles of 90–120 nm and small exosome vesicles of 60–80 nm) and discovered 

an abundant population of nonmembranous nanoparticles termed “exomeres” (~35 nm). 

Besides commercial systems, emerging concepts on microfluidic filtration are under rapid 

development. For example, Davies et al.124 developed a microfluidic filtration system with 

porous polymer monolithic membranes in poly(methyl methacrylate) microfluidic chips by 

UV photopolymerization to isolate vesicles from whole blood samples. The filtration was 

driven by pump injection or DC electrophoresis. Liang et al.125 developed a double-filtration 

microfluidic device that isolated and enriched extracellular vesicles with a size range of 30–

200 nm from urine. They demonstrated an isolation yield of 80% in isolating extracellular 

vesicles from T24 cell culture and urine samples (Figure 6A,B) and applied their method 

to the detection of bladder cancer. We do not discuss nanoparticle enrichment based on 

filtration because isolation through filtration is typically also an enriching process.

As a direct derivative of filtration, microfluidic filtration shares some of the same intrinsic 

limitations which researchers are devoting efforts to overcome. For example, nanoparticles 

moving through a nanoporous filter usually require high energy and might block or clog 

the membrane. To address both issues, Ang et al.126 use surface acoustic waves (SAW) 

to enhance transport through graphene films. They achieved 100% filtration efficiency for 

microscale particles, 95% for the filtration of particles as small as tens of nanometers 

in diameter and demonstrated the ability to separate nanoparticles with diameters of 25 

and 50 nm. To circumvent clogging of the membrane, a backwash was applied to flush 

the incorporated nanoparticles simply by reversing the SAW-induced flow. A filtration 

efficiency of 98% was achieved after SAW-induced backwash (Figure 6C,D). Another 

limitation for filtration is that once a membrane is prepared, the pore size is difficult to 

change. To overcome this limitation, Haefner et al.127 demonstrated a method to adapt 

the size exclusion functionality of poly-N-isopropylacrylamide (PNIPAAm)-based nano/

microfilters in 2D and 3D microfluidic systems. The pore size can be adjusted from 

nanometers to micro-meters by shrinking or swelling in response to organic solvents.
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MICROFLUIDIC DETERMINISTIC LATERAL DISPLACEMENT (DLD)

Microfluidic DLD utilizes the arrangement of pillars to control the trajectory of particles, 

thus facilitating the separation of particles larger and smaller than a critical diameter.128,129 

DLD offers superior size resolutions for nanoparticle isolation. For example, Huang et al.130 

isolated microspheres of 0.8, 0.9, and 1.0 μm in 40 s with a resolution of ~10 nm at a flow 

speed of approximately 100 μm/s. They also succeeded in separating large bacterial DNA 

with sizes ranging from 1000 to 600 nm (Figure 7A,B). Later, Santana et al.131 used DLD 

to separate cancer-cell-derived (BxPC-3 cells) extracellular vesicles; they demonstrated a 

yield of 39% with a corresponding purity of 98.5% in target output. Although the yield 

is less than optimal, the high purity can potentially benefit downstream cancer diagnostic 

applications. Since established, researchers have worked on improving the performance of 

DLD for nanoparticle isolation. First, researchers enabled the isolation of nanoparticles with 

smaller sizes by creating a “Nano-DLD”. Wunsch et al.132 used manufacturable silicon 

to produce nanoscale DLD with uniform gap sizes ranging from 25 to 235 nm. They 

demonstrated the separation of nanoparticles between 20 and 110 nm based on size; they 

also separated exosomes based on their sizes (average 60–80 nm, ranging from 20 to 140 

nm), a necessary precursor for single-particle exosome analysis (Figure 7C,D). In addition, 

researchers enhance the dynamic range for nanoparticles in DLD separation by actively 

manipulating the particle size. For example, by altering the ionic concentrations of various 

buffer solutions, Zeming et al.133 are able to modulate the effective size of nanoparticles. 

This in turn changes the magnitude of the electrostatic force between the nanoparticles 

and the walls of the DLD device (Figure 7E). They demonstrated dynamic control of the 

separation spectrum, which ranged from 51 to 1500 nm, in a continuous flow matter; this 

separation spectrum is ~12 times larger than that of conventional DLD separation.

Although primarily used for isolation, DLD is also utilized for nanoparticle enrichment. It 

is based on the mechanism of nanoparticle focusing in pillar arrays. For example, Chen et 
al.134 reported an increase of DNA (diameter of ~250 nm) concentration by a factor of 87, 

with a throughput of 0.25 μL/h (at 40 μm/s flow velocity). Particularly, they increased the 

shear modulus and compacted the DNA molecules using polyethylene glycol (PEG, 10% 

w/v) to enhance separation performance. They claimed that the purification of DNA from 

enzymatic reactions can be integrated to produce next-generation DNA sequencing libraries.

DLD methods possess the characteristics of robust isolation performance, high resolution, 

and elimination of external forces for nanoparticle isolation and enrichment. Incorporating 

pillar structures into a microfluidic device allows precise control over interactions between 

particles, flows, and microstructures. However, current DLD methods still suffer from some 

intrinsic limitations: first, fluid volumes processed by DLD are typically very small (1–10 

μL/min). Second, devices can be easily clogged by larger particles and impurities. To 

circumvent the first limitation, DLD nanoparticle separation is primarily used in diagnostic 

purposes for extracellular vesicles and DNAs, where throughput is not a primary concern 

due to the high concentration of biomarkers. To address the second concern, DLD devices 

can be integrated with other mechanisms to pretreat samples and remove larger objects that 

may clog the device.
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INERTIAL MICROFLUIDICS

Inertial microfluidic135–140 approaches for nanoparticle isolation utilize the inertial 

migration of particles in a microfluidic channel with predesigned shapes (e.g., straight 

channel, spiral channel, or wavy channel) and cross-sectional geometries (e.g., rectangular, 

circular, or triangular) to focus nanoparticles at different positions. The effect of inertial 

focusing effect is driven by the shear-gradient lift and wall effect lift and is dependent 

on the design of the channel, the flow rates, and the size of the particle.141 Thus, inertial 

focusing is able to isolate nanoparticles with various sizes. In this regard, Bhagat et al.142 

demonstrated the extraction of 590 nm polystyrene particles from a mixture of 1.9 μm and 

590 nm particles in a straight microfluidic channel with rectangular cross section (Figure 

8A,B).

To better control the particle trajectories in microfluidic channels, polymers were introduced 

as the suspending liquid to carry nanoparticles. Particles, driven by the elastic force 

generated by the deformation of the polymer chains, migrate transverse to the flow direction, 

achieving “viscoelastic focusing”.141 Using viscoelastic focusing in nanoparticle isolation, 

Liu et al.143 used spiral microfluidic devices to separate binary mixtures of 100 and 2000 

nm polystyrene particles and λ-DNA molecules/blood platelets in solution of poly(ethylene 

oxide). They achieved a separation efficiency of >95%. Liu et al.144 designed a channel 

with a high-aspect-ratio cross section with a height of 50 μm and width of 20 μm; 

exosomes were isolated from cell culture media with a high separation purity (>90%) and 

yield (>80%) of exosomes. They also demonstrated the separation of 100 and 500 nm 

polystyrene nanoparticles. They could change the cutoff size of nanoparticles by tuning the 

viscoelasticity of the suspending medium by changing the concentration of poly(ethylene 

oxide). Wang et al.145 further optimized the wavy channel design and used thermoset 

polyester to replace polydimethylsiloxide (PDMS). By doing this, they reduced the pressure-

induced deformation of the channel cross section and maintained the focusing effect at 

larger flow rates up to 1400 μL/min. They demonstrated a separation between 920 and 200 

nm polystyrene microspheres, although the separation performance at this condition needs 

further characterization (Figure 8C).

Nanoparticles can also be enriched in the microchannel through the inertial focusing and 

viscoelastic focusing.138,140 Kim et al.146 designed a straight channel with a rectangular 

cross section, and they used it to focus fluorescent submicron polystyrene beads with 500 

and 200 nm diameters along the central line of a microchannel with the addition of 500 ppm 

poly(ethylene oxide). They also focused flexible DNA molecules (λ-DNA and T4-DNA), 

which have radii of gyration (Rg) of approximately 0.69 and 1.5 nm, respectively. Zhou et 
al.147 integrated the processes of focusing and isolation of exosomes into one device (Figure 

9). They periodically reversed the Dean secondary flow that is generated by repeated wavy 

channel structures, causing bigger particles (e.g., large extracellular vesicles) to be focused 

in the central line and smaller particles (e.g., exosomes) to be focused along the edge for 

separation. They achieved an exosome purity of 92.8% after one single separation process.

Compared with methods that utilize external forces such as optics, acoustics, or electronics, 

inertial microfluidic nanoparticle isolation and enrichment techniques possess advantages 
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in terms of their ease of use, lack of requirements for external actuation, and robust 

performance once operational parameters are optimized. Compared with DLD methods, 

the removal of pillars avoids concerns over channel clogging and increases the throughput. 

A microfluidic channel also enabled precise fluid control over capillary number, Reynold 

number, and Peclet number,135 which is challenging in bulk devices. Nonetheless, inertial 

microfluidic operation often works at high flow rates, where the shear might cause potential 

damage to biological nanoparticles. Although there are no reports studying this effect in 

detail, further validation might be necessary in order to confirm the biocompatibility of 

inertial techniques.

OPTOFLUIDICS

Integrating optics with microfluidics (i.e., optofluidics)148–153 provides a powerful tool to 

isolate and enrich nanoparticles with high resolution.154–161 Nan et al.162 isolated metal 

nanoparticles with dynamic and tunable optical forces generated by phase gradients of light. 

Size-dependent optical forces drive nanoparticles of different sizes with different velocities 

in solution, leading to their separation. They demonstrated the separation of silver and gold 

nanoparticles in the diameter range of 70–150 nm with a resolution down to 10 nm. Particle 

separation was conducted in static flow conditions (Figure 10A,B). Shilkin et al.163 used 

high-quality Mie resonances to exert optical forces on spherical silicon nanoparticles for 

size-based nanoparticle separation. They resolve nanoparticles of diameters 130, 150, and 

160 nm, resulting in a resolution of 10 nm. The separation was also conducted in static 

flow conditions (Figure 10C,D). To increase throughput, Wu et al.164 combined optical and 

hydrodynamic forces to separate gold nanoparticles in a flowing system (Figure 10E,F). 

They demonstrated the separation of gold nanoparticles with diameters of 50 vs 100 nm and 

100 vs 200 nm. The sorting purities are 92% for the 50/100 nm combination and 86% for 

the 100/200 nm set, with a throughput of 300 particles/min. The throughput is much higher 

than those conducted in static conditions. They also reported a successful nanoparticle 

separation with smaller heterogeneity (i.e., 50 vs 70 nm). In addition to dealing with “hard” 

nanoparticles (e.g., Ag and Au), researchers also attempted to sort “soft” particles with 

stiffnesses ranging from 10−10 to 10−8 N/m (e.g., polymers, viruses, and DNAs). Shi et 
al.165 synchronized the optical force and drag force to separate 100 and 150 nm polystyrene 

nanoparticles with single nanometer precision.

Optical methods have also been applied to enrich nanoparticles, which is usually achieved 

through a laser-induced thermophoretic effect.166–169 For example, Weinert et al.170 used 

laser-induced bidirectional flow combined with a perpendicular thermophoretic molecule 

drift to concentrate biological nanoparticles (Figure 11A,B). They demonstrated the 

accumulation of a hundredfold excess of 5-base DNA within seconds and polystyrene 

nanoparticles with 40 nm diameters. Later, Yu et al.171 reported a laser thermophoresis-

based method to detect DNA (Figure 11C,D). They concentrate both DNA-functionalized 

gold nanoparticles and fluorescent DNA probes to capture target DNA in free solution. 

Once DNA and probes are bonded, the thermophoretic properties of the fluorescent 

probes changed. Their work shed a light on detecting DNA in serum-containing buffers 

without any channel, pump, or washing steps. The thermophoretic effect can be controlled 

more precisely with plasmonic structures.172–174 For example, Braun et al.175 created 
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nanostructures by depositing gold films on glass cover slides, which acted as microscopic 

heat sources to generate localized temperature gradients. They were able to enrich 200 nm 

nanoparticles at a predefined position via localized thermophoretic trapping.

Optofluidic methods are especially suitable for manipulating nanoparticles. First, the 

interaction of light and nanoparticles provides a wide spectrum of forces to drive the 

motion of nanoparticles. Those forces include, but are not limited to, scattering and gradient 

forces, surface plasmon resonance, and thermal-hydrodynamic forces. Second, light has 

great directionality and can be controlled precisely by tuning the wavelength, power, and 

duration, which enables high-resolution nanoparticle separations. Reported optical methods 

can isolate nanoparticles with a 10 nm resolution, which is very difficult to achieve through 

other mechanisms. Third, optical methods are convenient to integrate into microfluidic 

devices. Nonetheless, separation of nanoparticles by light also suffers some theoretical and 

practical challenges: (1) Since light can interact with nanoparticles in various ways, the 

performance of separation is difficult to predict for each type of nanoparticle. For example, 

the studies we discussed earlier are all based on single material systems (e.g., Ag or 

Au); however, once the material changes, the separation performance can be drastically 

different. (2) Most current reports are based on metallic or silicon particles. When separating 

biological nanoparticles, the biocompatibility is a concern since the medium might absorb 

the energy from the light and convert it into heat.

ELECTROPHORESIS

Nanoparticles that have different charges can be readily isolated and enriched with 

microfluidic electrophoresis.176–180 The mechanism of microfluidic electrophoresis is 

similar to that in conventional gel electrophoresis181,182 or capillary electrophoresis,183 

which is based on differences in the electrophoretic mobility of solutes (e.g., zeta-

potential176 and size). Electrophoresis has been widely used in separating nanoparticles such 

as inorganic nanoparticles, proteins, peptides, and DNAs.184,185 Using microfluidic devices 

allows for a greater amount of flexibility in the spatial configurations of the electrical field 

and sample flow. Sun et al.186 used a free-flow microfluidic electrophoresis chip to separate 

a mixture of FITC-BSA, FITC-lysozyme, and FITC-pepsin based on their charges and/or 

sizes. Jeon et al.187 separated molecular dyes of BODIPY2− and PTS4− with microfluidic 

electrophoresis based on the charge differences. Interestingly, electrophoretic methods were 

also used to isolate nanoparticles with differences in shape. For example, Hanauer et al.188 

demonstrated the separation of gold and silver nanoparticles according to their size and 

shape by agarose gel electrophoresis after coating nanoparticles with a charged polymer 

layer. They used color, a shape-dependent optical property of gold and silver nanoparticles, 

to validate the separation effect. They also demonstrated the capability of shape-dependent 

separation by separating silver rods with aspect ratios (length/width) of 8.3 ± 0.8 vs 3.1 ± 

0.7.

Electrophoretic methods have been extensively used for nanoparticle separations. They have 

several advantages. First, the electrophoretic force does not decay cubically with particle 

diameter (it is linear with the particle diameter);187,189 therefore, the electrophoresis-based 

methods can maintain high performance even for particles at the nanoscale. Second, it is 
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able to conveniently separate peptides and proteins. Because the charges of peptides and 

proteins usually change with pH, isoelectric focusing190,191 can be utilized to move the 

molecules in the presence of a pH gradient until the net charge of the molecule is zero 

(i.e., isoelectric point). Third, electrophoretic methods can be used to separate nanoparticles 

with surface modifications. nanoparticle surface modification is a critical step to adjust 

surface properties, which is important for catalysis and biomedicine.192–194 As an example 

of separating nanoparticles with different surface properties, Wang et al.195 used capillary 

electrophoresis to monitor changes in the surface ligands of quantum dots. Integrating 

electrophoretic separation into microfluidic devices allows more precisely controlling the 

flow and electrodes over bulk operations. On the other hand, microfluidic electrophoresis 

generates Joule heating112 and might cause bubble generation,196 both of which can be 

damaging to biological samples and hinder consistent device performance. Researchers 

have developed flow-induced electrophoresis,187 buffer additives,197 and insulating wall198 

structures to circumvent these limitations.

MICROFLUIDIC AFFINITY ISOLATION

Certain biological nanoparticles (e.g., virus and exosomes) can be isolated based on 

specific antigens that are expressed on their surface using target antibodies. Microfluidic 

affinity-based nanoparticle separation has been studied extensively to enrich extracellular 

vesicles from various biological matrices. Chen et al.199 reported a microfluidic exosome 

capture device, which employed an anti-CD63 modified microfluidic channel. Herringbone 

structures were fabricated on the ceiling of the microchannel to enhance capture efficiency. 

Compared to conventional ultracentrifugation, the microfluidic affinity capture method 

shortens the sample processing time and eliminates the need for expensive instruments. 

Kanwar et al.200 fabricated an exosome capture device with circular wide channels that were 

interconnected with narrow fluid channels to promote the interaction between exosomes 

and surface-immobilized exosomes (Figure 12A,B). Exosomes captured by the device are 

examined using fluorescence microscopy or recovered for off-chip RNA analysis. Lo et 
al.201 employed micropost structures to enhance the capture of exosomes in microfluidic 

channels. Desthiobiotin-conjugated antibodies were used as the capture antibodies, enabling 

the release of exosomes after capture. In addition to the channel geometry, channel surface 

properties are critical to the performance of affinity-based separation. Zhang et al.202 

developed a method of coating graphene oxide and polydopamine to form nanostructures 

on the channel surface (Figure 12C). This coating improves exosome capture while reducing 

nonspecific binding. An exosome ELISA assay based on this strategy achieved a limit 

of detection of 50 μL−1 with a 4 order of magnitude dynamic range. To further improve 

the detection sensitivity of exosomes, combining herringbone structures with nanoscale 

features on the channel surface have been demonstrated to be effective.203,204 Recently, 

Zhang et al. fabricated nanopatterns on the surface of herringbone structures through a 

self-assembly process, achieving a limit of detection of 10 exosomes/μL.204 In addition, 

affinity-based isolation devices are generally amenable to the integration of detection 

function units. He et al.205 reported an integrated exosome separation and intravesicular 

protein analysis based on two-stage immunomagnetic captures. The first stage isolates 

exosomes using antibody modified magnetic beads. After on-chip lysis, the second-stage 
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immunomagnetic separation allows for the isolation of target intravesicular proteins for 

ELISA analysis. Im et al.206 combined surface plasmon resonance with affinity capture to 

achieve multiplexed detection of exosomes for a panel of protein markers. Jeong et al.207 

combined immunomagnetic capture and electrochemical detection to develop a portable 

and integrated exosome separation and detection device for studying exosomes in plasma 

samples from ovarian cancer patients (Figure 12D). In addition to exosomes, Wang et 
al.208 developed a microfluidic affinity capture device to isolate subtypes of HIV using an 

anti-gp120 modified channel surface. A capture efficiency of 75% was achieved for spiked 

human blood samples.

Affinity-based separation allows researchers to isolate phenotypically pure biological 

nanoparticles from a mixture of background particles, which can provide more relevant 

results for biologists as compared to physical property-based methods. Conventionally, 

affinity separation is typically performed with antibody-labeled magnetic particles or 

affinity-based chromatography. To date, many microfluidic affinity separation methods have 

been reported to possess advantages over conventional methods. First, microfluidics can 

control the fluid profile and shear stress precisely, enabling optimal separation conditions to 

maximize capture efficiency while maintaining low levels of nonspecific binding. Second, 

microfluidic devices offer large surface-to-volume ratios, which promotes the interaction 

between particles and the affinity surface, thereby improving the capture efficiency. Third, 

affinity separation microdevices can be integrated with upstream sample preparation 

units and downstream particle characterization units to streamline and simplify the entire 

nanoparticle isolation workflow. Nonetheless, design of affinity separation requires prior 

knowledge on the surface biochemical properties of nanoparticles.

COMPARISONS BETWEEN BULK AND MICROFLUIDIC METHODS FOR 

NANOPARTICLE ISOLATION AND ENRICHMENT

Nanoparticles can be isolated and enriched with large-scale, bulk methods which 

are capable of processing large volumes of sample material. Applications such as 

water treatment209,210 utilize bulk ultrafiltration114,211–213 and reverse osmosis214,215 

techniques to remove nanoparticles (e.g., ions and proteins) and microparticles (e.g., 
bacteria and particles). Filtration,216–218 centrifugation,219–222 electrophoresis,52,223–225 

and chromatography226–229 are well-established bulk methods for separating proteins and 

cellular components from liquid media and/or other micro/nanoscale objects. Although bulk 

methods can be robust in processing large volume samples, they can also be constrained 

in certain applications. First, bulk methods typically require a minimum sample volume 

to perform nanoparticle separations; however, in diagnosis or catalysis, obtaining such 

volumes from rare samples can be problematic. Second, bulk methods have difficulties 

maintaining uniform separation conditions across the whole separation unit. For example, 

due to differences in the electrophoretic mobilities of ions at the center and edges of 

the gel plate arising from nonuniform temperatures, a so-called “smiling effect” occurs in 

protein/DNA gel electrophoresis, impairing the separation performance.230 Considering the 

small size of nanoparticles, along with the miniscule differences between subpopulations of 

nanoparticles, nonuniform separation conditions prevent high separation efficiencies from 
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being achieved. Therefore, while bulky methods are robust and well-established, there is a 

great need for smaller, more precise approaches for nanoparticles isolation and enrichment.

To address these limitations, microfluidic devices45,46,231–234 can be effective.235 With the 

miniaturization of separation units to the micrometer scale, microfluidics provides several 

advantages over bulky methods. First, it is easier to maintain a homogeneous force field and 

separation conditions at smaller length scales, which helps to achieve a higher separation 

performance (e.g., better purity and yield). Second, microfluidics is advantageous in dealing 

with nanoparticles contained in small sample volumes, which is particularly suitable for 

diagnostic and catalytic applications. Third, microfluidics features compact devices which 

render them easy to integrate into existing nanoparticle workflows. By eliminating the need 

to transfer a sample between multiple units, process stability is improved, and batch-to-batch 

variability can be reduced. Nonetheless, we understand that microfluidics is not a “one-

size-fits-all” solution for nanoparticle isolation and enrichment. For example, microfluidics 

shares the same theoretical limitations with bulky methods in dealing with small particles 

down to the nanometer scale and in certain applications, additional investments on devices 

and equipment are required.

ADDRESS THEORETICAL CHALLENGES IN THE MICROFLUIDIC 

ISOLATION AND ENRICHMENT OF NANOPARTICLES

As we discussed above, microfluidic methods offer distinct advantages over their bulky, 

benchtop counterparts in terms of control over conditions of isolation and enrichment, 

minimal sample volume requirements, and compactness of the device. However, these 

methods still face challenges from both theoretical and experimental aspects. For example, 

a volume of literature suggests that size is currently the most dominant characteristics 

for nanoparticle isolation and enrichment,236 where nanoparticles are fractionized by their 

size, and then particles with certain sizes are enriched for later analysis. This strategy has 

achieved great success when applied to microparticles and cells for the following reasons. 

First, size is the most straightforward characteristics, which can be readily confirmed with 

microscope imaging. Second, most driving forces used to deflect particles are proportional 

to particle volume; as a result, small differences in the diameters of particles result in 

significant differences in the amount of force exerted on those particles. Third, size-based 

separation usually requires minimal sample pretreatment (e.g., labeling), which simplifies 

the isolation process.

Despite the success of microfluidic isolation and enrichment of microparticles,237–242 

simply migrating size-based methods to nanoparticles introduces several theoretical 

limitations. First, the driving force decreases quickly at the nanometer scale as compared 

with the micrometer scale. For example, the magnitude of the acoustic radiation 

force,68,72,243 which drives nanoparticle deflections in acoustic isolation, is proportional to 

the particle volume; however, the drag force, which impedes particle motion, is proportional 

to the diameter of particles.243 Therefore, particles with a 100 nm diameter experience 

1/1000 of the radiation force, but 1/10 of the drag force compared to particles with 1 μm 

diameter. As a result, deflecting 100 nm particles in laminar flow is much more difficult 
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than that of 1 μm particles. Similar volume-proportional forces also govern DEP-based 

isolation.235,244 In addition to the diminished driving force, the noise from Brownian 

motion245,246 is not negligible for nanoparticles. Taken together, isolation and enrichment at 

the nanoscale are theoretically more challenging than their counterparts at the microscale. 

To overcome the diminished performance of size-based isolation and enrichment at the 

nanoscale, the following strategies are suggested for consideration.

Optimize Parameters for Isolation and Enrichment at the Nanoscale.

Researchers are often tempted to extrapolate isolation and enrichment parameters from the 

microscale to the nanoscale. For example, researchers reduce the pore size in filtration,125 

shorten the wavelength in acoustics,247,248 increase power input, redesign channel shapes,132 

flow rates,143 and apply recirculation249,250 for repeated isolation. However, to increase 

the power in optical and acoustic methods requires additional power supplies and cooling 

units. Recirculation, which effectively increases the path of particles under impact, increases 

the purity but impairs the yield. Although parameter optimization can result in additional 

challenges, it is typically one of the first considerations for improving the performance of 

nanoparticle isolation and enrichment methods.

Scale Down the Dimensions of the Device.

Besides the aforementioned limitations arising from the nature of the driving forces, 

most microfluidic devices are still too large to manipulate nanoparticles. Thus, scaling 

microfluidic devices down to the nanofluidic scale can drastically improve performance 

for the isolation and enrichment of nanoparticles. For example, DLD has demonstrated 

its superior performance in separating microscale cells and particles. To apply DLD in 

nanoparticle isolations, researchers reduced the gaps between each pillar and switched 

the device material from PDMS to silicon to form nano-DLD that is able to separate 

nanoparticles below 100 nm in diameter.132 In addition to nano-DLD, nanochannels are also 

considered; Huh et al.251 demonstrated tunable nanochannels which are able to selectively 

sieve particles with approximately 20 nm quantum dots. Stavis et al.252 developed a 

nanofluidic channel that had a maximum depth of 620 nm, a minimum depth of 80 nm, 

and an average step size of 18 nm, to sort a bimodal mixture of nanoparticles by nanofluidic 

size exclusion. They separated nanoparticles with diameters of 100 and 210 nm and claimed 

that the minimum difference in diameter can be as small as 18 nm. However, in order to 

scale down devices to the nanoscale, alternative materials (e.g., PDMS in micro-DLD to 

silicon in nano-DLD) and fabrication techniques (e.g., soft lithography to high-resolution 

photolithography) are needed. In addition, with further scaling to the nanofluidic range, 

interactions at molecular levels are not negligible, which introduces further complexity for 

particle manipulations.253–255

Dynamically Adjust the Size of Nanoparticles.

Zeming et al.133 used different NaCl ionic concentrations to adjust the Debye length 

of polystyrene beads, therefore adjusting the isolation effect in real time of their DLD 

devices. Their strategy can be extended to a variety of nanoparticles. For example, 

the size of biological nanoparticles (e.g., DNAs and proteins) depends on biochemical 

factors of the surrounding environment (e.g., pH and salt concentration).256 Likewise, the 
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hydrodynamic radius of many synthesized nanoparticles also depends on surface interactions 

with molecules in the suspending medium.257 Therefore, it is possible to control the 

surrounding environment to increase their size or magnify the size difference between 

two particles. However, this approach directly changes the size and isolation effect, and 

additional postisolation procedures to recover nanoparticles in their natural structure are 

required, which may affect the bioactivity of proteins or DNAs.

Develop Mechanisms Based on Different Chemical and Physical Properties.

Biological nanoparticles such as DNAs, proteins, vesicles, and exosomes can be isolated 

and enriched, with affinity-based methods in a single step.199,203,205–207 In this case, the 

pros and cons of affinity-based methods, size-based methods, and other mechanisms must 

be considered. Size-based operations are free of labeling, immune-binding, and washing 

steps but lack specificity compared with antibody-based operations. Other than size, shape-

based mechanisms188,219,236 might be a good alternative to size-based isolation. Shape is 

important for nanoparticle applications in catalysis since it determines the surface-area-to-

volume ratio. Shape also plays an important role in the bioavailability of nanoparticles, 

where studies have demonstrated that cylindrical nanoparticles interact with cells very 

differently than spherical ones.258,259 In addition, characterizing shape differences is as 

straightforward as that of size. Nonetheless, understanding how different shapes respond to 

force fields is not clear, which hinders shape-based nanoparticle separation and enrichment. 

For example, particles with the same volume but different shapes seem to have different 

forces of acoustofluidics and DEP;188,219,236 unfortunately, the quantitative analysis on these 

forces is not straightforward.

CONSIDERATIONS FOR THE FUTURE DEVELOPMENT AND 

COMMERCIALIZATION OF MICROFLUIDIC NANOPARTICLE ISOLATION 

AND ENRICHMENT SYSTEMS

Despite the numerous demonstrations of microfluidic nanoparticle isolation and enrichment, 

several aspects still need to be improved, including the specificity of application, ease of 

integration, and accessibility to end users.

Tailor Microfluidic Methods for Specific Applications.

Due to the complex nature of nanoparticles, it is unlikely to have one mechanism that can 

be classified as a “one size fits all” approach. For example, separation methods that work 

best for metal nanoparticles may not be the optimal method for biological nanoparticles. 

Purification and enrichment of extracellular vesicles from various kinds of biological fluids 

has become increasingly important in recent years. Methods that target extracellular vesicles 

need to be tailored to accommodate the requirements and characteristics of extracellular 

vesicles.76,132,144,147,227 For example, for certain applications, the integrity of extracellular 

vesicles needs to be preserved, which requires gentle separation mechanisms or mild 

separation procedures. In addition, to facilitate the characterization of protein or RNA 

contents of a vesicles,260–264 a method needs to be capable of both enriching nanoparticles 

and exhibiting high compatibility with a wide range of biochemical characterization assays.
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Develop Integrated Microfluidic Separation-Enrichment-Analysis Platforms.

One of the advantages of microfluidic methods is the potential for integration with multiple 

working mechanisms or functional units. As an example of integrating different working 

mechanisms, acoustic and magnetic methods have been combined with surface affinity 

bindings to isolate and enrich exosomes.76 Here, exosomes are specifically bonded onto 

microparticles through surface biomarkers for enrichment; then, an acoustic or magnetic 

field is applied to deflect bonded exosomes with free ones for isolation. In addition to 

integrating multiple working mechanisms to improve isolation performance, combining the 

nanoparticle isolation, enrichment, and characterization units into one system is expected to 

provide a “sample in-answer out” device. For example, Cheng et al.107 demonstrated the 

enrichment of Ag nanoparticles with bacteria to facilitate SERS detection; Yu et al.171 

demonstrated the enrichment of probe-coated nanoparticles with DNAs for fluorescent 

detection; Yeo et al.104,109 reported concentrating viruses onto nanotips for fluorescent and 

electron microscopy imaging detection.

Improve the Accessibility of Microfluidic Systems through Commercialization.

Despite the great promise of microfluidic methods, ultracentrifugation is still the most 

widely used approach for nanoparticle isolation and enrichment despite concerns over its 

biocompatibility. This is largely because ultracentrifugation and other conventional methods 

are commercially available and have established operation protocols that even nonexperts 

on the instrumentation can perform. Most of the existing microfluidic methodologies 

are still at the proof-of-concept stage and must be performed by skilled personnel in 

microfluidics.46 Many nonstandard device fabrication and operation procedures make 

microfluidic methods difficult to be adopted by other communities. Efforts should be made 

to improve device fabrication procedures and reduce the need for peripheral equipment. 

For example, the central components of microfluidic channels can be fabricated with 

materials of paper,265,266 plastic,267,268 or glass,43,55 rather than PDMS, through standard 

industrial manufacturing processes. Ultimately, the broader impact of instrumentation 

comes from the commercialization of the instrument. In this regard, one example is the 

commercially available Eclipse AF4, which utilizes the flow field-flow fractionation for 

size-based separations of proteins, liposomes, virus, and other nanoparticles.119,121,123 

On the other hand, in resource-limited settings, developing point-of-care nanoparticle 

separation, enrichment, and characterization systems could be especially attractive for 

microfluidic-based methods. For example, Bachman et al.82 developed an on-demand 

acoustofluidic pump and mixer by incorporating a cell phone, a Bluetooth speaker, a 

sharp-edge-based acoustofluidic device, and a simple portable microscope. They created 

a fully functional prototype with commercially available Arduino components that holds 

great potential for use in point-of-care applications.84

EMERGING MARKETS OF MICROFLUIDIC NANOPARTICLE ISOLATION 

AND ENRICHMENT IN BIOMEDICINE

In this section, we provide our perspective on biological and medical applications of 

microfluidic nanoparticle isolation and enrichment. We will cover both fundamental research 
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in the study of membrane-bound and membrane-less organelles, as well as clinical 

diagnostics and therapeutics.

Research on Membrane-Bound Organelles.

To date, a myriad of microfluidic methods for the isolation and enrichment of extracellular 

vesicles have been reported.76,132,144,147,227 In addition to extracellular vesicles, there 

are many membrane-bound organelles with great significance for human health, such 

as those forming the mitochondria, secretory vesicles, endosomal and lysosomal system, 

peroxisomes, lipid droplets, autophagosomes.269 These organelles are often nanometer-sized 

particles with a variety of transmembrane markers presenting for their vesicular trafficking 

and functions.269 To study organelles’ function, development, and use in diagnostics, 

methods to isolate and enrich these organelles are preferable. Although conventionally 

isolated and enriched by ultracentrifugation, these organelles are attainable targets for 

microfluidic methods, due to their nanoscale size and enriched surface markers. In 

fact, microfluidic methods are expected to be advantageous compared to conventional 

ultracentrifugation because high-speed rotation (>100,000g in ultracentrifugation)270 and the 

formation of centrifuge pellets might damage membrane-bound organelles and alter protein 

functions.

Research on Membrane-Less Organelles.

Besides membrane-bound organelles, a number of cell compartments are membrane-less 

(e.g., membrane-less organelles).271 They lack the boundary of a lipid bilayers, exist 

usually transiently, and are formed via the mechanism of liquid-liquid phase separations.272 

Although current biological studies have revealed the importance of membrane-less 

compartments in neurodegenerative diseases,273,274 stress responses,275 and many other 

important physiological processes,271 little has been reported on their isolation and 

enrichment due to technical challenges. For example, stress granules,276 a membrane-less 

organelle of dense aggregations of proteins and RNAs that appears when the cell is 

under stress, are 100–200 nm in diameter. They have recently been isolated and collected 

with a multistep immune-affinity-based method.277 Membrane-less organelles appear to be 

unsuitable for centrifugation because subjecting them to a strong centrifugal force may 

degrade them due to their lack of a membrane structure. In this regard, microfluidic methods 

are superior in handling these organelles as they can work under mild conditions, operate 

continuously to isolate “fresh” objects, and deal with small volume samples.

Diagnosis of Diseases.

Nanoparticles have been extensively studied and widely applied in disease diagnostics. 

“Hard nanoparticles” (e.g., gold) were conjugated with antibodies, enabling the binding and 

detection of protein biomarkers which are secreted from tumor cells.278 Superparamagnetic 

nanoparticles were used as contrast agents to improve the resolution of magnetic resonance 

imaging.279 On the other hand, “soft nanoparticles” (e.g., exosomes and extracellular 

vesicles) have been utilized as a biomarker to diagnose cancer76 and central nervous 

system diseases.280 Isolation and enrichment of nanoparticles can benefit diagnostics in 

the following aspects. First, when using “hard nanoparticles” as probes for diagnostics, 

a procedure of isolation and enrichment can enhance the diagnostic performance because 
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the optical and magnetic responses are closely correlated with the size and shape of 

the nanoparticles. Second, the isolation and enrichment of “soft nanoparticles” provides 

possibility in disease diagnostics. Similar to exosomes, other membrane and membrane-less 

cellular organelles, isolated and enriched by microfluidic methods, can be a biomarker for 

diseases. In this regard, microfluidic methods are advantageous because they are capable of 

handling small volume samples that can be collected in a noninvasive manner. Using this 

approach, it is possible to develop point-of-care microfluidic devices for early stage disease 

diagnostics and treatment monitoring.

From “Precise Medicine” to “Ultraprecise Nanomedicine”.

The interaction between medical nanoparticles and biological systems depends on the 

properties of the nanoparticles, including their size, shape, surface charge, surface 

roughness, and hydrophilicity/hydrophobicity.26,30,31,258,281 These properties influence the 

specificity and toxicity of nanomedicines. To achieve “precise medicine”, material scientists 

have devised various strategies to improve the selectivity of nanoparticles282,283 to a 

particular tissue or cell population. Microfluidic researchers are expected to make “ultra-

precise nanomedicine” by adding nanoparticle isolation and enrichment steps to enhance 

the homogeneity of nanoparticles. For example, a better homogeneity in the size of 

nanoparticles may improve their circulation time in blood and tumor targeting ability. 

It is reported that nanoparticles with approximately 100 nm diameter favors for blood 

circulation and tumor accumulation via the enhanced permeability and retention effect;284 

on the other hand, nanoparticles with sizes less than 10 nm can cause genotoxic effects 

through point mutations, chromosomal fragmentation, and DNA strand breakages.285 

Taken together, impurities from small nanoparticles might lead to severe side effects 

during nanoparticle cancer therapy. However, nanoparticles fabricated by either bottom-

up (e.g., nucleation-growth) or top-down mechanisms (e.g., sonication and fracturing) 

suffer from a wide size distribution. Separation methods will become a powerful tool to 

produce uniform nanoparticles, and enrichment methods will increase the concentration of 

target nanoparticles, thereby improving homogeneity, reducing unwanted side effects, and 

eventually enabling ultraprecise nanomedicine.

CONCLUSION

Over the past several years, there has been a rapid expansion in the number of microfluidic 

techniques for the isolation and enrichment of nanoparticles. Various technologies, including 

acoustofluidics, dielectrophoresis, microfluidic filtration, deterministic lateral displacement, 

inertial microfluidics, optofluidics, electrophoresis, and microfluidic affinity isolation are 

discussed in this review article. As this review is intended for readers from diverse 

backgrounds, we provided an overview explaining the underlying mechanism behind 

multiple microfluidic approaches. The governing equations behind each method was well 

described in the following review papers on acoustofluidics,56–61,63,67,72 DEP,88,90,93,96,111 

inertial microfluidics,135,136,141 and DLD,128,129 etc.

By providing insights into the benefits and drawbacks of each technique, we hope to 

equip researchers with the necessary information to choose the microfluidic approach that 
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is best suited for their research needs. Microfluidic methods possess many advantages 

over conventional, bulk methods, including the ability to maintain homogeneous separation 

conditions at smaller length scales to achieve a higher separation performance and the ability 

to process nanoparticles from small volume samples. In addition, microfluidic devices are 

compact devices which render them easy to integrate into existing nanoparticle workflows. 

The performance of microfluidic methods has been comprehensively validated with both 

soft nanoparticles (e.g., DNAs, exosomes, and viruses) and hard nanoparticles (e.g., metal 

and silicon nanoparticles) in laboratory settings. In the near future, due to increased 

commercialization efforts, we expect microfluidic technologies for nanoparticle isolation 

and enrichment to have a broader impact in both research and commercial settings. By 

making microfluidic technologies more widely available and easy to use for researchers 

from diverse backgrounds, many applications and research directions, such as investigations 

into the role of membrane-less organelles in various diseases, will be enabled.
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VOCABULARY

nanoparticle isolation
a process that acts as a selective barrier allowing relatively free passage of one component in 

the mixture of nanoparticles, while retaining or deflecting other components

nanoparticle enrichment
a procedure that is conducted to increase the concentration of specific nanoparticles for 

collection

soft nanoparticles
naturally existing, organic nanoparticles such as proteins, DNAs, viruses, and exosomes

hard nanoparticles
synthesized, inorganic nanoparticles such as gold, silver, and silicon

acoustofluidics
an approach that integrates acoustic manipulation with microfluidic devices

optofluidics
an approach that integrates optical manipulation with microfluidic devices
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Figure 1. 
Diagram showing the procedures and mechanisms of isolation and enrichment of 

nanoparticles in a microfluidic system.
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Figure 2. 
Acoustic-enabled nanoparticle separation. (A) Schematic and (B) simulation of the 

separation of nanoparticles with standing surface acoustic wave fields that are tilted with 

respect to the microfluidic channel. Reprinted with permission from ref 74. Copyright 2017 

Wiley. (C) Schematic and (D) simulation of the separation of nanoparticles using standing 

surface acoustic wave fields that are parallel to the microfluidic channel. Reprinted from ref 

77. Copyright 2015 American Chemical Society.
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Figure 3. 
Acoustic enrichment of nanoparticles. (A) Schematic and (B) experimental demonstration of 

acoustic streaming in a capillary tube that concentrates 110 nm polystyrene beads. Reprinted 

from ref 43. Copyright 2017 American Chemical Society. (C) Schematic illustrating how the 

primary acoustic radiation force is used to concentrate nanoparticles at pressure nodes. (D–

F) Experimental images showing how the concentration effect is size-dependent. Reprinted 

with permission from ref 80. Copyright 2018 Wiley.
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Figure 4. 
Dielectrophoretic-enabled nanoparticle separation. (A) A nano-orifice-based 

dielectrophoretic method to separate nanoparticles with sizes of (B) 50 and (C) 140 nm. 

Reprinted with permission from ref 99. Copyright 2016 Royal Society of Chemistry. (D) 

Microscopic image and (E) schematic of a dielectrophoretic microarray device that works 

in a semicontinuous manner for (F) separation of DNA and nanoparticles from blood. 

Reprinted with permission from ref 100. Copyright 2012 Wiley.
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Figure 5. 
Dielectrophoretic (DEP)-enabled nanoparticle enrichment. (A,B) Schematics depicting the 

DEP concentration of bacteria and Ag nanoparticles with electrodes deposited on a glass 

substrate. Reprinted with permission from ref 107. Copyright 2014 Springer. (C) Schematic 

and (D) microscopic image of the DEP concentration of viruses (i.e., T7 phage) on a 

dendritic nanotip. Reprinted with permission from ref 109. Copyright 2013 IOP Publishing.
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Figure 6. 
Filtration-enabled nanoparticle separation. (A,B) Double-filtration microfluidic device to 

separate extracellular vesicles from urine and cell cultures. Reprinted with permission from 

ref 126. Copyright 2017 Royal Society of Chemistry. (C,D) Integrating surface acoustic 

waves with a graphene filter to isolate nanoparticles suspended in water. Reprinted with 

permission from ref 125. Copyright 2017 Nature Publishing Group.
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Figure 7. 
DLD-enabled nanoparticle separation. (A,B) DLD separation of nanoparticles with three 

sizes. Reprinted with permission from ref 130. Copyright 2004 American Association 

for the Advancement of Science. (C,D) Nano-DLD separates nanoparticles with size 

differences less than 100 nm. Reprinted with permission from ref 132. Copyright 2016 

Nature Publishing Group. (E) Tuning the size of nanoparticles via the addition of solvents in 

DLD separations. Reprinted with permission from ref 133. Copyright 2016 Royal Society of 

Chemistry.
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Figure 8. 
Inertial microfluidic-enabled nanoparticle separation. (A,B) Nanoparticle separation in a 

straight, rectangular microchannel based on shear-induced inertial lift forces. Reprinted 

with permission from ref 142. Copyright 2009 Springer. (C) High-throughput nanoparticle 

separation in a spiral channel. Reprinted with permission from ref 145. Copyright 2017 

Wiley.
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Figure 9. 
Inertial microfluidics-based enrichment and isolation of exosomes. Reprinted from ref 147. 

Copyright 2019 American Chemical Society.
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Figure 10. 
Optically enabled nanoparticle separation. (A,B) Nanoparticle separation with phase 

gradients of light. Reprinted from ref 162. Copyright 2018 American Chemical Society. 

(C,D) Nanoparticle separation with Mie resonances. Reprinted from ref 163. Copyright 2017 

American Chemical Society. (E,F) Nanoparticle separation with a combination of optical 

and hydrodynamic forces. Reprinted from ref 164. Copyright 2016 American Chemical 

Society.
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Figure 11. 
Optical methods to enrich nanoparticles. (A) Mechanism of thermophoretic effect. (B) 

Its application in concentrating 40 nm polystyrene nanoparticles. Reprinted from ref 170. 

Copyright 2009 American Chemical Society. (C–F) Using a laser-induced thermophoretic 

effect to enrich DNA with probes for DNA detection. Reprinted from ref 171. Copyright 

2015 American Chemical Society. (G,H) Plasmonic structures regulate the localized 

temperature distribution. (I) Integrated plasmonic structures utilizing the thermophoretic 

effect to concentrate nanoparticles at predefined positions. Reprinted from ref 175. 

Copyright 2013 American Chemical Society.
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Figure 12. 
Affinity-based nanoparticles isolation. (A) Design of circular shaped microfluidic channels 

for enhancing exosome capture and (B) a device picture. Reprinted with permission from 

ref 200. Copyright 2014 Royal Society of Chemistry. (C) Improving exosome capture 

using a graphene oxide and polydopamine surface coating. Reprinted with permission from 

ref 202. Copyright 2016 Royal Society of Chemistry. (D) Integrated exosome separation 

and detection device based on immunomagnetic capture and electrochemical detection. 

Reprinted from ref 207. Copyright 2016 American Chemical Society.
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