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Abstract
Slime mold algorithm (SMA) is a recently developed meta-heuristic algorithm that mimics the ability of a single-cell organ-
ism (slime mold) for finding the shortest paths between food centers to search or explore a better solution. It is noticed that 
entrapment in local minima is the most common problem of these meta-heuristic algorithms. Thus, to further enhance the 
exploitation phase of SMA, this paper introduces a novel chaotic algorithm in which sinusoidal chaotic function has been 
combined with the basic SMA. The resultant chaotic slime mold algorithm (CSMA) is applied to 23 extensively used standard 
test functions and 10 multidisciplinary design problems. To check the validity of the proposed algorithm, results of CSMA 
has been compared with other recently developed and well-known classical optimizers such as PSO, DE, SSA, MVO, GWO, 
DE, MFO, SCA, CS, TSA, PSO-DE, GA, HS, Ray and Sain, MBA, ACO, and MMA. Statistical results suggest that cha-
otic strategy facilitates SMA to provide better performance in terms of solution accuracy. The simulation result shows that 
the developed chaotic algorithm outperforms on almost all benchmark functions and multidisciplinary engineering design 
problems with superior convergence.

Keywords  Slime mold algorithm (SMA) · CSMA · Convergence rate

1  Introduction

Meta-heuristic algorithms being simple and easy to imple-
ment are effectively applied to continuous, discrete, con-
strained, or unconstrained problems which were found hard 
to solve using conventional methods such as conjugate gra-
dient, quadratic programming, and quasi-network methods. 
These meta-heuristic algorithms are single solution based 
which provides only one solution during optimization or 

population-based which mimics mostly natural phenomena 
and evolves a set of solutions during each iteration. These 
meta-heuristic algorithms are mainly categorized into four 
main groups: evolutionary, physics-based, human-based, and 
swarm intelligence type algorithms. Evolutionary algorithms 
(EAs) such as genetic algorithm (GA), differential evolu-
tion (DE) [1], genetic programming (GP) [2], and evolu-
tion strategy (ES) [3] mimics behaviors such as selection, 
recombination and mutation. The second class utilizes some 
physical laws such as gravitational search algorithm (GSA) 
[4], big-bang big-crunch (BBBC) [5], multi-verse optimizer 
(MVO) [6] and sine cosine algorithm (SCA) [7]. The third 
category mimics certain human behaviors which includes 
some of the well-known algorithms such as Tabu search 
(TS) [8], teaching learning based optimization (TLBO) [9], 
socio evolution and learning optimization (SELO). The last 
category of P-meta-heuristics uses collective or social intel-
ligence that artificially simulates the behaviors such mov-
ing in swarms, flocks and herds. This Swarm Intelligence 
includes particle swarm optimization (PSO) [10], ant col-
ony optimization (ACO) [11], artificial bee colony (ABC) 
[12], machine learning (ML) [13], bat-inspired algorithm 
(BA) [14], grey wolf optimization (GWO) [15], moth flame 
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optimization (MFO) [16], artificial neural network (ANN) 
[17] and Harris Hawk optimizer (HHO) [18]. Machine-
learning approach have great potential in solving numerical 
complexities involving large variables [19]. These algo-
rithms have their own strategies but although they have two 
common search feature steps: diversification and intensifica-
tion. The random search process is the explorative (diver-
sification) process where the operators search the different 
regions more intensely to obtain the global optima. The local 
search process is the intensification step which is performed 
after the exploration phase to enhance solution accuracy. A 

proper balance between exploration and exploitation is the 
basic need to avoid any local minima entrapment. A large 
variety of meta-heuristic algorithms has been invented to 
solve various numerical and engineering optimization prob-
lems but still, there is always a scope of improvement in the 
existing research by utilizing no-free-lunch (NFL) theory. 
This theorem persuades that no method is the globally best 
and there is always scope for new more efficient algorithms.

The researchers are continuously working on different 
variants to employ innumerable sorts of advanced methods 
on various problems. The concise surveys of the different 

Table 1   Review of some 
existing algorithms

Algorithm Year References Benchmark 
problems

Problem type

Variable neighborhood search 2007 [20] 16 Open vehicle routing
Biogeography-based optimization 2008 [21] 14 Real world
Gravitational search algorithm 2009 [4] 23 NA
Firework algorithm 2010 [22] 9 NA
Krill Herd algorithm 2012 [23] 20 NA
Multi-start methods 2012 [24] NA Standard benchmark
Water cycle algorithm 2012 [25] 19 Engineering design optimization
Animal migration optimization 2013 [26] 23 NA
Cultural evolution algorithm 2013 [27] 7 Reliability engineering
Grey wolf optimizer 2014 [15] 29 Engineering design optimization
Symbiotic organism search 2014 [28] 26 Engineering design optimization
Interior search algorithm 2014 [29] 14 Engineering design optimization
Binary PSO-GSA 2014 [30] 22 NA
Competition over resources 2014 [31] 8 NA
Chaotic Krill Herd algorithm 2014 [32] 14 NA
Stochastic fractal search 2014 [33] 23 Engineering design optimization
Exchange market algorithm 2014 [34] 12 NA
Forest optimization algorithm 2014 [35] 4 Feature weighting
Binary Gray Wolf optimization 2015 [36] 18 Design formulation
Bird swarm algorithm 2015 [37] 18 NA
Elephant herding optimization 2015 [38] 15 NA
Electromagnetic field optimization 2015 [39] 30 Global
Fuzzy optimization technique 2015 [40] 29 Optimization
Lightning search algorithm 2015 [41] 24 NA
Moth-flame optimization algorithm 2015 [16] 29 Engineering design
Multi-verse optimizer 2015 [6] 19 Engineering optimization
Grasshopper optimization algorithm 2017 [42] 19 Global
GWO-SCA 2017 [43] 22 Bio-medical optimization
Lion optimization algorithm 2017 [44] NA Engineering design optimization
Binary whale optimization algorithm 2018 [45] NA Unit commitment
Coyote optimization algorithm 2018 [46] 40 Standard benchmark
Self-adaptive differential artificial bee 

colony algorithm
2019 [47] 28 Optimization

The Sailfish optimizer 2019 [48] 20 Standard test function
Synthetic minority over-sampling 2019 [49] NA Data communication
Harris Hawks optimizer 2019 [18] 29 Standard benchmark
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stochastic meta-heuristics and heuristic methods are pre-
sented in Table 1. The rest of the paper is arranged as: Sect. 2 
includes a comprehensive review of the latest SMA variants. 
Section 3 comprises the basics of Physarum polycephalum 
and the mathematical model. In Sect. 4, standard benchmark 
test functions are included. Section 5 includes test results 
of the proposed algorithm and comparative analysis with 
well-known algorithms. Section 6 presents analysis of 10 
multi-disciplinary problems. In Sect. 7, paper is concluded. 
Finally, limitations and future scope are explored in Sect. 8.

2 � Literature survey of some recent SMA 
and chaotic variants

In this section, a comprehensive study of specific allied work 
has been presented to explore information regarding vari-
ous recent advancements related to SMA and Chaotic strate-
gies. The foraging behavior of Physarum polycephalum to 
discover new sites for food has been efficiently mimicked 
by many researchers to develop many new meta-heuristic 
algorithms with different platforms. Adamatzky et al. had 
experimentally proved that plasmodium (slime mold) could 
navigate through dissimilar channels without exploring all 
possible solutions. But, some irregularities are noticed that 
restrict the maze-solvers to compete with conventional archi-
tectures [50]. Nakagaki et al. presented mathematical statis-
tics showing intelligent behavior of plasmodium wherein a 
tabular network is formed to find multiple food sources via 
the shortest path. It is observed that the proposed method 
not only explores different shapes but also provides overtime 
depending states [51]. Andrew Adamatzky and Jeff Jones 
effectively implemented the foraging capability to search 
optimal routes in ten urban areas and perform reconfiguring 
of transport networks [52]. Beekman et al. carried out an 
intensive study about the decision-making process of slime 
molds for choosing the optimal path for getting nutrition 
by searching the shortest path [53]. Burgin et al. designed 
the modal of a structural machine by adopting the inher-
ent ability of molds to sense cell information. Further, it is 
noticed that structural machines have the potential to solve 
complex computational problems by implementing machine 
algorithms [54]. Daniel et al. had applied the SMA technique 
to solve the transportation issue due to growing urbaniza-
tion. In this concern, SMA provides an optimal solution to 
minimize the travel path by searching the shortest path [55]. 
Houbraken et al. have developed an extended fault-tolerant 
algorithm by utilizing the slime mold concept to improve 
the fault-tolerant network in the telecommunication sector 
[56]. Kropat et al. presented a deterministic approach to 
solving single path and multi-path optimization problems 
under uncertainty. This research also explores the robustness 
of the SMA algorithm to tackle emergencies and avoiding 

disasters [57]. Abdel-Basset et al. have developed a hybrid 
algorithm by incorporating Harris’s Hawk’s algorithm with 
whale optimization algorithm (WOA). In this work, the 
image segmentation problem (ISP) related to the X-ray of 
an infected person due to Covid-19 has been improved [58]. 
Zhao et al. presented a new levy fight distributed param-
eters to enhance the performance of basic SMA [59]. Patino-
Ramirez et al. described the influence of chemical composi-
tion on the morphology and dynamics of slime mold [60]. 
Kouadri et al. have analyzed the optimal power flow problem 
of a hybrid renewable system. This work also effectively 
improves system stability by integrating VAR compensators 
with the thermal-wind system [61]. GAO et al. have pre-
sented a hybrid algorithm by combining grey wolf optimizer 
with SMA and three different types of optimization prob-
lems [62]. Nguyen et al. incorporated SMA algorithm for 
handling hydropower generation and compared simulation 
results with other algorithms [63]. Davut et al. presented a 
novel solution to PID-controlled DC motor and AVR system 
by utilizing the exploitation capability of the SMA algo-
rithm [64]. Chen et al. introduced the SMA algorithm for 
solving stochastic optimization problems and had effectively 
applied the SMA algorithm to solve benchmark mark and 
engineering design problems [65]. Recently, researchers are 
getting more attracted toward hybrid and chaotic variants as 
these strategies have the inherent capacity to enhance the 
local search process. A large number of chaos optimization 
algorithms (COAs) and hybrid COA have proven that chaos 
could easily escape from local minima as compared to clas-
sical stochastic optimization algorithms. There are various 
chaotic variants such as adaptive chaotic sine cosine algo-
rithm [66], chaotic whale optimization algorithm [67], cha-
otic dragonfly algorithm [68], modified whale optimization 
algorithm [69], chaotic Krill Herd algorithm [32], binary 
grasshopper optimization algorithm [70], chaotic grey wolf 
optimization [71]. Some of the recent SMA and chaotic vari-
ants are explored in Table 2 to get more familiar with various 
concepts related to the proposed work.

From the above literature survey, it is noticed that a 
large variety of meta-heuristic and hybrid variants have 
been invented by the researchers to fix different types of 
stochastic complexities. Some real-world problems such as 
network foraging, fault-tolerant, transportation, structural 
machines, engineering design, image segmentation, optimal 
power flow, and feature selection were analyzed by various 
researchers using a heuristic approach. The solution accu-
racy of any algorithm depends on its capability to have a 
proper balance between intensification and diversification. 
Studies revealed that slow convergence is the common faint-
ness of most heuristic algorithms. This ultimately gives rise 
to reduced computational efficiency. Thus, to improve the 
solution efficiency, a trend of developing hybrid algorithms 
is escalating fast. In addition, diverse chaotic strategies 
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Table 2   Review of some recent SMA and chaotic variants

Sr. no. Algorithm References Year Main findings related to proposed work

1 HSMA_WOA [58] 2020 In this work, image segmentation problem (ISP) related to 
X-ray of an infected person due to Covid-19 was examined

2 K-means clustering and chaotic slime mold algorithm [72] 2020 This work deals with parameter setting using two different 
techniques. Eight benchmark problems are simulated on 6 
different datasets using the proposed algorithm

3 MOSMA: multi-objective slime mould algorithm [73] 2020 In this research, enlist sorting strategy was employed to 
improve the convergence rate. Forty-one different multi-
dimensional design are tested to validate the proposed 
method

4 Chaotic slime mold algorithm with Chebyshev map [74] 2020 In this work, 100 Monte Carlo experiments were performed 
using SMA and Chebyshev mapping. To check the validity 
of the proposed method, some standard benchmark func-
tions were simulated

5 Chaotic Salp swarm algorithm [75] 2020 An extensive study was carried by authors to study breast 
abnormalities in thermal images using CSSA algorithm 
with a proper balance between exploration and exploitation 
phases

6 Modified whale optimization algorithm [76] 2020 In this paper, the Tent chaos map and tournament selection 
strategy are presented. Six standard functions were tested 
for the truss problem analysis with lesser iterations, and the 
minimum weight

7 Adaptive chaotic sine cosine algorithm [66] 2020 This paper presents an improved SCA based using adaptive 
parameters and a chaotic approach. Two mechanisms were 
incorporated with SCA and tested on 31 benchmark func-
tions for solving a constrained optimization problem

8 Chaotic whale optimization algorithm [67] 2020 In this research, combined heat and power economic dis-
patch was analyzed using a chaotic base whale optimiza-
tion algorithm to minimize fuel costs as well as emissions. 
Two different nonlinear realistic power areas have been 
utilized to explore global challenges

9 Chaotic particle swarm optimization [77] 2019 In this work, the chaotic PSO method was implemented to 
solve the power system problem concerned with electric 
vehicles using MATLAB and CRUISE software. The 
result reveals that the parameters of the optimal function 
can be achieved for balancing the power performance and 
provides economic operation

10 Chaotic harmony search algorithm [78] 2019 In the research, properties such as uniform distribution to 
generate random numbers, employing virtual harmony 
memories, and dynamically tuning the algorithm param-
eters are explored. Combined economic emission dispatch 
problems were analyzed for Six test systems having 6, 10, 
13, 14, 40, and 140 units

11 Binary grasshopper optimization algorithm [79] 2019 This paper presents binary grasshopper algorithm and 
comparative results of five well-known swarm-based algo-
rithms used in feature selection problems for 20 data sets 
with various sizes

12 Chaotic dragonfly algorithm [80] 2019 In this paper, the Chaotic Dragonfly Algorithm using ten 
chaotic maps were implemented by adjusting the main 
parameters of dragonflies’ activities to increase the conver-
gence rate and enhance the competence of DA

13 Modified dolphin swarm algorithm [81] 2019 In this paper, chaotic mapping was incorporated with DSA. 
Rastrigin function with an optimal chaotic map was 
explored among eight chaotic maps. Rotated Hyper-Ellip-
soid function and Sum Squares function, respectively, were 
used for high-dimensional Levy function

14 Genetic algorithm using theory of chaos [82] 2019 In this paper, chaotic strategy is applied to solve optimiza-
tion problems. The results of experiments were found to be 
the average of all task results related to the three individual 
types of functions



S2743Engineering with Computers (2022) 38 (Suppl 4):S2739–S2777	

1 3

have been effectively incorporated by many researchers to 
optimize their specific objective function. The ultimate aim 
of these techniques is to provide an optimal solution for a 
pre-defined objective function. Recently, a chaotic variant 
of SMA using the “Chebyshev function” was presented by 
Zhao et al. [74]. In this work, 100 Monte Carlo experiments 
were performed using SMA and Chebyshev mapping. Only 
the “Sargan function” of the uni-modal test function was 
simulated for 100 iterations. “Sine Wave function” was 
simulated for multi-modal test function for the same num-
ber of iterations. It was noticed that the solution of these 
benchmark functions is not exploited to an appreciable 

level. To check the validity of this method, only two stand-
ard benchmark functions had been tested. It was noticed 
that the results given by Chebyshev and sine wave function 
were not capable of giving efficient solutions. In most cases, 
simulation results are subjected to premature convergence. 
Although the methodology of the proposed CSMA is similar 
to the basic variant but differs in terms of the selection of 
chaos map. In the proposed research the local search capa-
bility of basic SMA has been enhanced using “sinusoidal 
chaotic function”. The CSMA method has been effectively 
employed to evaluate global optimization, standard bench-
mark, and engineering design problems. The comparative 

Table 2   (continued)

Sr. no. Algorithm References Year Main findings related to proposed work

15 Chaotic genetic algorithm [82] 2019 In this research, eight different chaotic variants were applied 
to improve the search ability of the basic system

16 Chaotic whale optimization algorithm [83] 2018 Twenty benchmark functions were tested to endorse the 
applicability of the suggested scheme with 30 and 50 itera-
tions

17 Chaotic grasshopper optimization algorithms [84] 2018 In this research, the author has clubbed GOA with 10 
different chaotic maps. Ten shifted and biased functions 
were considered with 30-dimensional and 50-dimensional 
benchmark problems. Further three truss bar designs were 
investigated and the results are compared with authentic 
algorithms

18 Cat swarm algorithm [85] 2017 In this study, Chaos Quantum-behaved Cat Swarm Optimi-
zation (CQCSO) algorithm has been projected to improve 
the accuracy of the CSO, by introducing a tent map for 
escaping local optimum. Further, CQCSO has been tested 
for five different test functions

19 Chaotic fruit fly algorithm [86] 2017 In this study, the chaotic element adjusts the fruit fly swarm 
location to search for food sources. Two separate procrea-
tive methods were implemented for new food sources, for 
local global search based on swarm location

20 Chaotic grey wolf algorithm [71] 2017 Ten different chaotic maps were tested for 13 standard 
benchmark functions. Further, five engineering design 
problems were tested using the CGWO algorithm

21 Chaotic particle swarm algorithm [70] 2016 In this work, the chaotic dynamics property was combined 
with PSO to enhance the diversity of solutions for escaping 
from premature convergence. Four multi-modal functions 
were tested to check the optimality of the suggested Cha-
otic PSO technique

22 CS-PSO: chaotic particle swarm algorithm [87] 2016 In this study, combinatorial optimization problems are 
solved by utilizing the periodicity of the chaotic maps

23 Cooperative optimization algorithm [88] 2015 This paper presents, chaotic ant swarm algorithm for analyz-
ing the dynamic characteristics of a distributed system 
in a multi agent system at micro level for allocation in a 
networked multi agent system

24 Swarm optimization with various chaotic maps [89] 2014 In this paper, effects of nine chaotic maps on the perfor-
mance of system. For all problems, swarm size was set to 
20, while the number of dimensions was set to 30 and 50 
with maximum iterations of 2000 and 3000

25 Chaotic invasive weed algorithm [90] 2014 In this research, the standard IEEE 30-bus system is tested 
using chaos, and optimal settings of Power flow control is 
explored with non-smooth and non-convex generator fuel 
cost curves
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analysis demonstrated in the result section revealed that the 
suggested method gives outstanding performance in terms 
of fitness evaluation and solution accuracy.

3 � Chaotic slime mold algorithm

3.1 � Background of proposed research

It was found that the organism’s behavior could be easily 
adopted and statistically modeled to handle unconstrained 
and non-convex mathematics. Investigators have endeavored 
to mimic the working guidelines to progress computations 
and algorithms. Slime molds have acknowledged ample 
courtesy in contemporary years. The slime mold points out 
in this article normally refers to the Physarum polycepha-
lum which belongs to the species of order Physarales, sub-
class Myxogastromycetidae, class Myxomycetes, division 
Myxostelida. Since it was first classified as a fungus, named 
as “slime mould” [65]. Typically, the plasmodium forms 
a network of protoplasmic tubes connecting the masses of 
protoplasm at the food sources, which is efficient in terms 
of network length and elasticity [50]. During the relocation 
cycle, the front end reaches out into a fan-molded, trailed 
by an interconnected venous organization that permits cyto-
plasm to stream inside, as shown in Fig. 1. Molds use their 
venous network for searching multiple food sources thus 
secreting enzymes to trap the food centers. It may even cul-
tivate to extra than 900 cm2 when there is adequate food in 
the environment [57].

In the case of food scarcity, the slime mold even flows 
vibrantly, that helps to understand how slime mold search, 
moves, and connect food in the changing environment. When 
a secretion approaches the target, slime can judge the posi-
tive and negative feedback and find the ultimate route to 
grasp food in a better way. This suggests that slime mold 
can construct a concrete path subject to the level of food 
concentration. It prefers to select the region of high food 

concentration. Depending upon the food concentration and 
environmental risk, the mold weighs the speed and decides 
to leave the old location, and begins its new search during 
foraging [58]. Slime mold adopts empirical rules based on 
currently available insufficient data to decide to initialize new 
search and exit present location while foraging. Even if a food 
source is available in abundance, mold may divide its bio-
mass to exploit other resources on the information of some 
rich high-quality food information. It may dynamically adjust 
their search patterns as per the quality of food stock [59].

3.2 � Basic slime mold algorithm

Step 1 In this step, mathematics for the slime mold behav-
ior is formed and following rule is assigned to find updated 
position of during search for food. The criteria for this 
depends upon r and p. This is the contraction mode of mold:

where ��⃗vb is a parameter with a range of [−a , a] , ��⃗vc is the 
parameter which approaches linearly toward zero. ‘t’ is the 
current iteration, ���⃗Xb is the location of each particle in region 
where odor is maximum, X⃗ is the mold’s location, X⃗A and 
X⃗B are the randomly selected variables from the swarm, ���⃗W 
is the measure of weighs of masses.

The maximum limit of p is as follows:

where i ∈ 1, 2,… , n, S(i) = fitness of X⃗ , DF = overall fitness 
from all steps.

The equation of v⃗b as follows:

The equation of ���⃗W  is listed as follows:

where S(i) rank first half of the population, r is the ran-
dom value in the interval of [0, 1], bF is the optimal fitness 
obtained in the current iterative process, wF is the worst 
fitness value obtained in the iterative process, and Sort (s) 
function sorts fitness values.

(1)�������������⃗X(t + 1) =

{
�������⃗Xb(t) + ��⃗vb ⋅

(
���⃗W ⋅

��������⃗XA(t) −
��������⃗XB(t)

)
r < p

��⃗vc ⋅
������⃗X(t) r ≥ p

,

(2)p = tan h|S(i) − DF|,

(3)��⃗vb = [−a , a]

(4)a = arctan h

(
−

(
t

max _t

)
+ 1

)
.

(5)

������������������������������⃗W(smell index(i)) =

⎧⎪⎨⎪⎩

1 + r ⋅ log
�

bF−S(i)

bF−wF
+ 1

�
, condition

1 − r ⋅ log
�

bF−S(i)

bF−wF
+ 1

�
, others

,

(6)Smell Index = sort(S),

Fig. 1   Searching structure of Physarum polycephalum (slime mold)
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Step 2 The equation for upgrading the positions of agents 
(i.e. to wrap food) is given as follows:

where LB and UB are the search limits, and rand and r 
denote the random value in [1].

Step 3 With the up gradation in the search process, the 
value of ��⃗vb vibrantly changes between [−a, a] and ��⃗vc varies 
between [−1, 1] and at last shrinks to zero. This is known to 
be as ‘grabbling of food’.

3.3 � Types of chaotic functions

The concept of probability distribution is captured by lot 
of meta-heuristics algorithms to gain randomness. Chaotic 
maps could be beneficial if randomness due to ergodicity, 
idleness and molding properties are replaced. These crite-
ria’s are full filled by the following equation:

In Eq. (8), yk+1 and f (yk) are the (k + 1)th and Kth cha-
otic number, respectively. The action of chaotic function is 
dependent on initial value y0 . The particular type of chaotic 
function will generate a solution within the standardized 
equations as shown in Table 3.

(7)���⃗X∗ =

⎧
⎪⎨⎪⎩

rand ⋅ (UB − LB) + LB, rand < z

�������⃗Xb(t) + ��⃗vb ⋅ (W ⋅
��������⃗XA(t) −

��������⃗XB(t), r < p

��⃗vc ⋅
������⃗X(t), r ≥ p

,

(8)yk+1 = f (yk).

3.4 � Algorithm of proposed work

The basic SMA is combined with the sinusoidal chaotic 
approach to further enhance the performance. The pseudo-
code for method proposed is as shown in Fig. 2.

There are several complex optimization problems wherein 
mathematical reformulations restrict to perform algorithms 
efficiently. The proposed Chaotic SMA variant is advanta-
geous over standard algorithms along with standard SMA. 
The convergence rate of stochastic methods was noticed 
not much efficient due to premature convergence. When-
ever some additional functionality is incorporated with the 
original system, the performance starts getting degraded. 
After a thorough review of various SMA and chaotic vari-
ants, it is observed that the sinusoidal function to be the most 
appropriate to improve exploitation. The proposed algorithm 
utilizes a sinusoidal chaotic function to intensify the search 
capacity of classical SMA and optimize the objective fitness 
of various problems. The chaotic approach enables SMA to 
regulate the initial parameters of the search and thus rec-
tifies the local entrapment of molds. It is seen that some 
algorithms lack global search capability. For the efficient 
performance of any algorithm, there should a proper balance 
between its local and global search capabilities. In the pro-
posed research, to incorporate these local and global search 
requirements, no composite operations are involved. Second, 
the efficacy of any algorithm is judged by the simulation 
time required to simulate a particular objective function. The 
experimental section of the paper reveals that the suggested 
method has improved solution efficacy to a greater extend. 

Table 3   Chaotic map functions Sr. no. Chaotic name Mathematical description Chaotic 
descrip-
tion

1 Chebyshev yi+1 = cos
(
cos−1

(
yi
))

[−1 , 1]

2 Iterative yi+1 = Sin
(
a�

/
yi

)
, a = 0.7 [−1 , 1]

3 Sinusoidal yi+1 = axi Sin(�xi) ; a = 2.3 [0, 1]

4 Sine yi+1 =
a

4
Sin(�yi) , a = 4 [0 , 1]

5 Circle yi+1 = mod (yi + b −
(
a∕2�

)
Sin

(
2�yi

)
, 1) ; a = 0.5, b = 0.2 [0 , 1]

6 Piecewise ⎧⎪⎪⎨⎪⎪⎩

yi
�
p 0 ≤ yi ⟨ p�

yi − p
��
(0.5 − p) p ≤ yi ⟨ 0.5�

1 − p − yi
��
(0.5 − p) 0.5 ≤ yi ⟨ 1 − p�

1 − yi
��
p 1 − p ≤ yi ⟨ 1 , p = 0.4

[0 , 1]

7 Gauss/mouse
{

1, yi = 0
1

mod (yi ,1)
otherwise

[0 , 1]

8 Singer yi+1 = �
(
7.86 yi − 23.3 y2

i
+ 28.75 y3

i
− 13.301875 y4

i

)
, � = 1.07 [0 , 1]

9 Logistic yi+1 = a yi
(
1 − yi

)
, a = 4 [0 , 1]

10 Tent
yi+1 =

{ (
yi∕0.7

)
, yi < 0.7

(10∕3)(1 − y), yi ≥ 0.7

[0, 1]
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Lastly, during the cumulative run process, as the simula-
tion successive progresses, premature convergence “local 
area stagnation” is the most common problem of many 
algorithms. This local area stagnation problem is omitted 
in the proposed method by utilizing the properties of ergo-
dicity. The basic feature of Chaotic SMA is to enhance the 
optimization process by improving local search capabilities. 
Twenty-three benchmark problems including uni-modal, 

multi-modal and fixed dimensions are tested using the sug-
gested chaotic slime algorithm.

4 � Test benchmark functions

The developed Chaotic SMA algorithm has been simu-
lated on Intel Core TM, i5-3320 M CPU@2.60 GHz sys-
tem. These standard benchmark function are characterized 
by their objective fitness in parameter space within a par-
ticular dimension (Dim), range, and frequency ( fmin ). In 
the entire work, F1–F7 represent as uni-modal test func-
tions (U-Modal), F8–F13 are multi-modal test functions 
(M-Modal) and F14–F23 are fixed dimension (FD) func-
tions. The effectiveness of the proposed Chaotic SMA 
optimization technique is examined by referring bench-
mark functions are taken [91, 92]. The characteristics of 
benchmark functions differ from each other. Some functions 
show better performance in exploring local search while a 
few functions are found to excellent in determining global 
optima. Table 4 illustrates equations of F1–F7 with their 
name, dimension, range, and frequency. On similar grounds, 
Tables 5 and 6 explore the details of multi-modal and fixed 
dimensions functions.

In the whole research study, 30 search agents are 
taken into considerations and the proposed algorithm 
is simulated for maximum iterations of 500. Figures 3, 
4, and 5 illustrate the 3D view along with their objec-
tive space representing convergence for F1–F7, F8–F13 
and F14–F23, respectively. It is clear from the various 

Fig. 2   Pseudo-code of chaotic slime mold algorithm

Table 4   Standard uni-modal 
benchmark

Uni-modal test function Name Dim Limit f
min

f1(y) =
∑n

i=1
y2
i

Sphere function 30 [− 100, 100] 0
f2(y) =

∑n

i=1
��yi�� +

∏n

i=1
��yi�� Schwefel absolute function 30 [−10, 10] 0

f3(y) =
∑n

i=1

�∑i

j=1
yj

�2 Schwefel double sum function 30 [− 100, 100] 0

f4(y) = maxi
{||yi||, 1 ≤ i ≤ n

}
Schwefel max. function 30 [− 100, 100] 0

f5(y) =
∑n−1

i=1

�
100(yi+1 − y2

i
)2 + (yi − 1)2

� Rosenbrock function 30 [−30, 30] 0

f6(y) =
∑n

i=1

��
yi + 0.5

��2 The step function 30 [−100, 100] 0

f7(y) =
∑n

i=1
iy4

i
+ random[0, 1] Quartic random function 30 [−1.28, 1.28] 0
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Fig. 3   Three-dimensional view 
of F1–F7 along with conver-
gence curve for SMA and 
CSMA
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comparative results that the newly developed chaotic 
strategy appreciably increases convergence rate and thus 
improves its ability to easily escape from local minima 
entrapment.

5 � Results of proposed algorithm

In this section, test results for benchmark functions are 
discussed with their average, best, worst, median, standard 
deviation, and p value have been taken into account. The 

Fig. 4   Three-dimensional view of F8–F13 along with convergence curve for SMA and CSMA
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stochastic complexity of the proposed algorithm is justified 
and analyzed by running the algorithm for 30 trial checks 
and 500 iterations. To analyze the feasibility of the solu-
tion, Wilcoxon sum test has been taken into account. The 

parameter setting for the proposed CSMA method is illus-
trated in Table 7. On similar grounds, results are compared 
with other universally validated systems.

Fig. 5   Three-dimensional view of F14–F23 along with convergence curve for SMA and CSMA
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5.1 � Testing of uni‑modal functions (U‑modal)

The search process for the best position depends upon the 
capability of the search agents to reach closer to origin. Dur-
ing the search process by various agents, there may be the 
possibility of getting entrap far or nearby and accordingly 
defined in terms of exploration and exploitation. Explora-
tion comes under the global search process and exploita-
tion falls under the local search category. The statistical 
outcomes of U-Modal (F1–F7) have a few pick points with 

increased convergence validates the effectiveness of the pro-
posed algorithm. Figure 6 illustrates a comparison between 
Chaotic SMA and different methods. It can be seen from the 
convergence curves that the suggested algorithm converges 
to optima much earlier.

To check the appropriateness of the proposed algorithm, 
each test function is simulated with SMA and CSMA. 
Table 8 illustrates statistical outcomes of the uni-modal 
benchmark function in terms of average, standard deviation, 
the best value, worst value, median value, and p value. In 
the search space, there are some regions of global optima 
whereas some regions are stagnated to local optima. The 
global search process determines the exploration phase 
whereas in the local search process, exploitation phase is 
evaluated. The performance of any algorithm is judged by its 
ability to attain the maxima or minima with less computation 
time. Table 9 shows the computational time in terms of best, 
mean, and worst time. Table 10 shows the comparison of 
the CSMA method with other techniques such as PSO [93], 
GWO [15], GSA [94], BA [95], FA [96], GA [97], BDA 
[98], BPSO [99], MFO [16], MVO [6], BGSA [100], SMS 

Fig. 5   (continued)

Table 7   Parameter setting for the proposed method

Parameter setting CSMA

Number of search agents 30
Number of iterations for U-Modal, M-modal, and F-Modal 500
Number of iterations for engineering optimization design 

problems
500

Number of trial runs test functions 30
Number of trial engineering design problems 30
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Fig. 6   Convergence curve for U-Modal test function showing comparison of CSMA with other algorithms

Table 8   Test results for 
U-modal function using CSMA

Functions Average value STD Best value Worst value Median value p value

F1 1.2E−280 0 0 3.5E−279 0 0.5
F2 3.4E−156 1.7E−155 3E−258 9.4E−155 1.3E−188 1.7344E−06
F3 0 0 0 0 0 1
F4 5.1E−134 2.8E−133 1.5E−269 1.5E−132 2.7E−190 1.7344E−06
F5 5.035453 9.27916 0.044388 28.19006 1.219173 1.7344E−06
F6 0.004431 0.003059 2.06E−05 0.016714 0.004434 1.7344E−06
F7 0.0003 0.000211 2.17E−05 0.000935 0.000274 1.7344E−06
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[101], FPA [102], DE [103], ALO [104], and WOA [105] in 
terms of average (AVG) and standard deviation (SD).

The characteristics of benchmark functions vary from 
each other. These test functions have different exploration 
and exploitation search capacities. Griewank, levy, Ackley, 
Rastrigin, Schwefel functions, sphere function, explore many 
local minima points while sum square function, Zakharov 
are applicable to explore global minima points. In this 
regard, test assessment of seven uni-modal benchmark func-
tions (F1–F7) are analyzed. The test results for each function 
in terms of average and standard deviations over 30 inde-
pendent trial runs and 500 iterations are recorded. The scal-
ability assessment is carried out to investigate the impact of 
chaos on the solutions of SMA. The statistical results shown 
in Table 10 reveals an appreciable gap between CSMA and 
other methodologies. As it can be seen in Table 10, that by 
introducing a chaotic function, the exploration and exploita-
tion phase of SMA has been improved. The results of CSMA 
when compared with PSO, GWO, DE, FA, GA, BBO, MFO, 
SCA, and SSA show remarkable performance in dealing 
with F3, F4, and F7 test functions. As per the convergence 
curves in Fig. 6, it is observed that the optimality of results 
is increased with higher efficiency. On the other hand, the 
former method are found to be subjected to premature con-
vergence. Further, to verify the effectiveness of the proposed 
method, independent trial runs for each benchmark function 
are illustrated in Fig. 7. Comparative analysis revealed that 
the sinusoidal chaotic function facilitates to explore the local 
search phase more intensively.

5.2 � Testing of multi‑modal test functions (M‑modal)

Figure 8 illustrates comparison between Chaotic SMA and 
other methods for multi-modal benchmark (F8–F13).The 
multi-modal function is tested for 30 introductory attempts 
and 500 iterations and results are shown in Table 11. Simula-
tion time for M-Modal utilizing CSMA appears in Table 12. 
Table 13 shows compared results with other meta-heuristics 
search algorithms such as PSO [93], GWO [15], GSA [94], 
BA [95], FA [96], GA [97], BDA [98], BPSO [99], MFO 

Table 9   Simulation time for uni-modal benchmark problems using 
CSMA

Functions Best time (s) Mean time (s) Worst time (s)

F1 2.71875 2.915625 3.453125
F2 2.78125 2.890625 3.375
F3 2.984375 3.295313 4.078125
F4 2.84375 3.039583 3.875
F5 2.84375 2.991667 3.578125
F6 2.8125 2.955208 3.453125
F7 2.9375 3.077604 3.59375

[16], MVO [6], BGSA [100], SMS [101], FPA [102], DE 
[103], ALO [104], and WOA [105] in terms of average value 
and std. deviation. It can be seen Fig. 8 that test outcomes 
of M-Modal (F8–F13) have some pick points with increased 
convergence using CSMA, justifies the effectiveness of algo-
rithm in solving multi-modal test functions.

From the statistical data analysis illustrated in Table 13, 
it is observed that the optimality of multi-modal test func-
tions is marginally improved by implementing the sinusoidal 
chaotic function. According to the best and standard devia-
tion results, CSMA shows better performance for almost 
all seven test functions. As can be seen from convergence 
curves shown in Fig. 8, CSMA gives optimal convergences 
except for a few of the test functions. It can be understood 
from the convergence comparison that CSMA converges 
faster and seizes the run as soon as it reaches the stop cri-
terion. As per comparative curves shown in Fig. 8, it is 
observed that the suggested algorithm shows superior per-
formance in dealing with F9, F10 and F11 and comparative 
operation in the case of F8, F12 and F13. Trial run accuracy 
matrices shown in Fig. 9 reveal that proposed CSMA signifi-
cantly searches the local and global space more intensively.

5.3 � Testing of fixed dimension function (F‑modal)

Fixed dimension test functions (F14–F23) are tested for 30 
trial runs and 500 iterations as shown in Fig. 11. Simula-
tion results for FD test function using CSMA are shown in 
Table 14. Table 15 illustrates simulation results of F-Modal. 
It can be seen that results for F-Modal have many pick points 
with better convergence. Simulation time for F-Modal 
benchmark problems using CSMA is shown in Table 15. 
Table 16 illustrates CSMA results compared with others 
variants such as GWO [15], PSO [10], GSA [4], DE [1], 
and FEP [91] in terms of average (AVG) and standard devia-
tion (SD).

The statistical data analysis illustrated in Table 16 shows 
that solution accuracy of fixed dimension test functions is 
appreciably improved by implementing the sinusoidal cha-
otic function. Rendering to the best and standard deviation 
results, CSMA shows enhanced performance for nearly all 
ten test functions. As can be seen from convergence curves 
shown in Fig. 10, CSMA gives optimal convergences except 
for a few of the test functions. It can be implicit from the 
convergence evaluation that CSMA converges faster and 
seizes the run as soon as it reaches the halt criterion. As per 
comparative curves shown in Fig. 8, it is observed that the 
suggested algorithm shows superior performance in deal-
ing with F14, F18, F19 and F20 and comparative operation 
in the case of F15, F21, F22 and F23. Trial runs shown in 
Fig. 11 reveal that proposed CSMA significantly searches 
the local and global space for finding the optimal solution.
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6 � Multi‑disciplinary engineering design 
problems

In this section, ten real-world design problems are tested 
which includes “3-bar truss problem, pressure –vessel 
design, compression design, welded beam, cantilever beam 
design, gear train design problem, speed reducer problem, 

Belleville spring problem, rolling element problem and 
multidisc clutch brake problem” [112]. Each design problem 
is simulated with CSMA algorithm. The abbreviations for 
various multidisciplinary engineering functions (EFs) has 
been shown in Table 17. The comparison of the engineer-
ing design problem with their average, standard deviation, 
best, worst and p value has been elucidated in Table 18 and 

Table 10   Comparative results of U-Modal test function

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Algorithm Parameters Uni-modal test function

F1 F2 F3 F4 F5 F6 F7

PSO [93] AVG 1.3E−04 0.04214 7.01256E+01 1.08648 96.7183 0.00010 0.12285
SD 0.0002.0E−04 0.04542 2.1192E+01 3.1703E+01 6.01155E+01 8.28E−05 0.04495

GWO [15] AVG 6.590E−29 7.180E−18 3.20E−07 5.610E−08 26.8125 0.81657 0.00221
SD 6.3400E−07 0.02901 7.9.1495E+01 1.31508 69.9049 0.00012 0.10028

GSA [4] AVG 2.530E−17 0.05565 896.534 7.35487 6.7543E+01 2.500E−17 0.08944
SD 9.670E−18 0.19407 318.955 1.741452 6.2225E+01 1.740E−17 0.04339

DE [1] AVG 8.200E−15 1.50E−09 6.80E−11 0.00 0.00 0.00 0.00463
SD 5.900E−15 9.900E−11 7.40E−11 0.00 0.00 0.00 0.0012

FEP [91] AVG 0.0005 0.0081 0.016 0.3 5.06 0.00 0.1415
SD 0.0001 0.0007 0.014 0.5 5.87 0.00 0.3522

ALO [104] AVG 2.59E−10 1.84E−06 6.07E−10 1.36E−08 0.3467724 2.56E−10 0.00429249
SD 1.65E−10 6.58E−07 6.34E−10 1.81E−09 0.10958 1.09E−10 0.00508

BA [14] AVG 0.77362 0.33458 0.11530 0.19218 0.33407 0.77884 0.13748
SD 0.52813 3.81602 0.76603 0.890266 0.30003 0.67392 0.11267

CS [106] AVG 0.0065 0.212 0.247 1.120E−06 0.00719 5.95E−06 0.00132
SD 0.00020 0.0398 0.0214 8.250E−07 0.00722 1.08E−07 0.00072

GOA [42] AVG 0.000 0.002 0.001 0.000 0.000 0.000 0.000
SD 0.000 0.001 0.0203 0.000 0.000 0.000 0.000

MFO [16] AVG 0.00011 0.00063 696.730 70.6864 139.1487 0.000113 0.091155
SD 0.00015 0.00087 188.527 5.27505 120.2607 9.87E−05 0.04642

MVO [6] AVG 2.08583 15.9247 453.200 3.12301 1272.13 2.29495 0.05199
SD 0.64865 44.7459 177.0973 1.58291 1479.47 0.63081 0.02961

DA [98] AVG 2.850E−19 1.490E−06 1.290E−07 9.88E−04 7.6 4.170E−17 1.03E−02
SD 7.160E−19 3.760E−06 2.100E−07 2.78E−03 6.79 1.320E−16 4.69E−03

BDA [98] AVG 2.82E−01 5.89E−02 1.4E+01 2.48E−01 2.36E−01 9.53E−02 1.22E−02
SD 4.18E−02 6.93E−02 2.27E+01 0.331 34.7 0.13 0.0146

BPSO [107] AVG 5.59 0.196 15.5 1.9 86.4 6.98 0.0117
SD 1.98 0.0528 13.7 0.484 65.8 3.85 0.00693

BGSA [100] AVG 83 1.19 456 7.37 3100 107 0.0355
SD 49.8 0.228 272 2.21 2930 77.5 0.0565

SCA [108] AVG 0.000 0.000 0.0371 0.0965 0.0005 0.0002 0.000
SD 0.000 0.0001 0.1372 0.5823 0.0017 0.0001 0.0014

SSA [109] AVG 0.000 0.2272 0.000 0.000 0.000 0.000 0.0028
SD 0.000 1.000 0.000 0.6556 0.000 0.000 0.007

WOA [105] AVG 1.410E−31 1.060E−22 5.390E−08 7.258E−02 27.8655 3.11626 0.00142
SD 4.910E−31 2.390E−22 2.930E−07 3.9747E−01 7.6362E−01 0.53242 0.00114

CSMA AVG 1.2E−280 3.4E−156 0 5.1E−134 5.035453 0.004431 0.0003
SD 0 1.7E−155 0 2.8E−133 9.27916 0.003059 0.00021
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simulation time for best, mean and average values are shown 
in Table 19.

6.1 � Three‑bar truss design problem

The proposed chaotic SMA method is applied for solving 
problem of truss design as shown in Fig. 12 [113, 114]. 
Truss design problem depends on two variables and three 
parameters. The main focus of truss design problem is to 
minimize weight. The various constraints involved in truss 
bar design problem are warping, deflection and stress. These 
constraints are optimized to achieve the desired objective. 
The mathematical modeling of 3-bar truss are illustrated 
through Eqs. (9.1) to (9.1d) subject to various constraints. 
The solutions of CSMA were compared with existing meth-
ods and illustrated in Table 20. It is seen that the suggested 
method appreciably improves the objective of cost minimi-
zation. The design problem is modeled as shown below:

Consider,

Minimize,

Subjected to:

(9.1)y⃗ =
[
y1, y2

]
=
[
A1,A2

]
.

(9.1a)f
�
y⃗
�
=
�
2
√
2y1 + y2

�
∗ l.

(9.1b)g1
�
y⃗
�
=

√
2y1 + y2√

2y2
1
+ 2y1y2

P − 𝜎 ≤ 0

6.2 � Pressure vessel engineering problem

The design specification for this kind of engineering prob-
lem as illustrated in Fig. 13 [113, 114] is selected for refer-
ence. The chaotic SMA is applied to diminish the expense 
which includes the material cost and welding cost to form 
the vessel in cylindrical form. The four variables used to 
design the pressure vessel are: (i) shell thickness (Ts), (ii) 
head thickness (Th), (iii) length of cylindrical unit (Lh), 
(iv) without head thickness (R). These four variables are 
modeled as y1–y4. The numerical formulation of this kind 
of problem is shown in Eqs. (9.2) through (9.2e). Table 21 
shows the result assessment of suggested CSMA with some 
recent algorithms. From the comparative analysis, it is found 
that CSMA effectively reduces the expense of design by con-
trolling the design variables:

Consider:

Minimize;

Subject to:

(9.1c)g2
�
y⃗
�
=

y2√
2y2

1
+ 2y1y2

P − 𝜎 ≤ 0

(9.1d)g3
�
y⃗
�
=

1√
2y2 + y1

P − 𝜎 ≤ 0.

(9.2)y⃗ =
[
y1y2y3y4

]
=
[
TsThRLh

]
.

(9.2a)
f (y⃗) = 0.6224y1y3y4 + 1.7781y2y

2
3
+ 3.1661y2

1
y4 + 19.84y2

1
y3
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Fig. 7   Trial runs of Uni-modal benchmark function
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Fig. 8   Convergence curve for M-Modal test function showing comparison of CSMA with other algorithms

Table 11   Testing of multi-
modal using CSMA

Functions Average value STD Best value Worst value Median value p value

F8 − 12,569.1 0.319584 − 12,569.5 − 12,568.1 − 12,569.2 1.7344E−06
F9 0 0 0 0 0 1
F10 8.88E−16 0 8.88E−16 8.88E−16 8.88E−16 4.32046E−08
F11 0 0 0 0 0 1
F12 0.003937 0.006237 5.64E−07 0.032017 0.002066 1.7344E−06
F13 0.00664 0.00989 7.428E−05 0.05034892 0.00270 1.7344E−06
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Va r i a b l e  r a n g e  0 ≤ y1 ≤ 99  ,  0 ≤ y2 ≤ 99  , 
10 ≤ y3 ≤ 200 , 10 ≤ y4 ≤ 200 , 0 ≤ y1 ≤ 99.

6.3 � Compression spring engineering design

Compression spring design concerned with mechanical 
engineering [113, 114] is shown in Fig. 14. The main inten-
tion of this type of problem is minimization of the spring 
weight. There are three design variables: (1) no. of active 
coils (Nc), (2) wire diameter (dr), and (3) mean coil diameter 
(Dm). The formulation is shown in the Eqs. (9.3) through 
(9.5f). The proposed method is applied to solve compression 
spring design problem and results are compared with other 
methods shown in Table 22 for validation. It is clearly seen 
from the analysis that CSMA method is efficient for reducing 
spring weight marginally.

Consider

Minimize

Subject to:

(9.2b)g1
(
y⃗
)
= −y1 + 0.0193y3 ≤ 0

(9.2c)g2
(
y⃗
)
= y3 + 0.00954y3 ≤ 0

(9.2d)g3
(
y⃗
)
= −𝜋y2

3
y4 −

4

3
𝜋y3

3
+ 1296000 ≤ 0

(9.2e)g4
(
y⃗
)
= y4 − 240 ≤ 0.

(9.3)y⃗ =
[
y1y2y3

]
=
[
drDmNc

]
,

(9.3a)f (y⃗) =
(
y3 + 2

)
y2y

2
1
,

(9.3b)g1
(
y⃗
)
= 1 −

y3
2
y3

71785y4
1

≤ 0,

(9.3c)g2
(
y⃗
)
=

4y2
2
− y1y2

12566
(
y2y

3
1
− y4

1

) +
1

5108y2
1

≤ 0,

Variable range 0.005 ≤ y1 ≤ 2.00, 0.25 ≤ y2 ≤ 1.30, 2.00 
≤ y3 ≤ 15.0.

6.4 � Welded beam design

In welded beam design, welding is carried out by fusing 
different sections by molten metal as shown in Fig. 15 [113, 
114]. The main focus is on minimization of the making cost 
of the welded beam. The four variables are: (1) bar thick-
ness (b) is specified by y1, (2) bar length (l) is specified by 
y2, (3) weld thickness (h) is specified by y3, and (4) the bar 
height (h) is specified by y4 which is subject to constraints, 
such as Buckling of bar (Pc), side constraints, End deflec-
tion of beam (d), bending stress of the beam (h) and stress 
of shear (s). The equations of the above-mentioned design 
problem are noted by Eqs. (9.4) through (9.4n). The results 
are compared with other methods as shown in Table 23. The 
comparative analysis shows that proposed method is com-
petent for handling beam design problem more precisely.

Consider

Minimize

Subject to

(9.3d)g2
(
y⃗
)
=

4y2
2
− y1y2

12566
(
y2y

3
1
− y4

1

) +
1

5108y2
1

≤ 0,

(9.3e)g3
(
y⃗
)
= 1 −

140.45y1

y2
2
y3

≤ 0,

(9.3f)g4
(
y⃗
)
=

y1 + y2

1.5
− 1 ≤ 0.

(9.4)y⃗ =
[
y1y2y3y4

]
= [hltb].

(9.4a)f (y⃗) = 1.10471y2
1
y2 + 0.04811y3y4

(
14.0 + y2

)

(9.4b)g1(y⃗) = 𝜏(y⃗) − 𝜏maxi ≤ 0,

(9.4c)g2(y⃗) = 𝜎(y⃗) − 𝜎maxi ≤ 0,

(9.4d)g3(y⃗) = 𝛿(y⃗) − 𝛿maxi ≤ 0,

(9.4e)g4(y⃗) = y1 − y4 ≤ 0,

(9.4f)g5(y⃗) = Pi − Pc(y⃗) ≤ 0,

(9.4g)g6(y⃗) = 0.125 − y1 ≤ 0,

Table 12   Simulation time for M-modal using CSMA

Functions Best time Mean time Worst time

F8 2.796875 2.929167 3.421875
F9 2.765625 2.911458 3.546875
F10 2.828125 2.948438 3.40625
F11 2.84375 2.996875 3.6875
F12 3.09375 3.206771 3.765625
F13 3.09375 3.198958 3.765625
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(9.4h)
g7(y⃗) = 1.10471y2

1
+ 0.04811y3y4(14.0 + y2) − 5.0 ≤ 0. Variable range 0.1 ≤ y1 ≤ 2, 0.1 ≤ y2 ≤ 10, 0.1 ≤ y3 ≤ 10, 

0.1 ≤ y4 ≤ 2,
where

Table 13   Comparison of multi-modal test function

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Algorithms Parameters M-modal

F8 F9 F10 F11 F12 F13

GWO [15] AVG − 6.1200E+02 3.1100E−02 1.0600E−14 4.4900E−04 5.3400E−03 6.5400E−02
SD − 4.0900E+02 4.740E+01 7.7800E−03 6.6600E−04 2.0700E−03 4.470E−03

PSO [10] AVG − 4.8400E+04 4.670E+01 2.760E−01 9.2200E−04 6.9200E−04 6.6800E−04
SD 1.1500E+04 1.160E+01 5.090E−01 7.7200E−04 2.6300E−03 8.9100E−04

GSA [4] AVG − 2.820E+03 2.600E+01 6.210E−02 2.770E+01 1.800E+00 8.900E+00
SD 4.930E+02 7.470E+00 2.360E−01 5.040E+00 9.510E−01 7.130E+00

DE [1] AVG − 1.110E+04 6.920E+01 9.700E−08 0.000E+00 7.900E−15 5.100E−14
SD 5.750E+02 3.880E+01 4.200E−08 0.000E+00 8.000E−15 4.800E−14

FEP [91] AVG − 1.2600E+03 4.6000E−01 1.8000E−03 1.6000E−03 9.2000E−05 1.6000E−05
SD 5.260E+00 1.200E−03 2.100E−02 2.200E−03 3.600E−05 7.300E−06

ALO [104] AVG − 1.61E+03 7.71E−06 3.73E−15 1.86E−02 9.75E−12 2.00E−11
SD 3.14E+02 8.45E−06 1.50E−15 9.55E−03 9.33E−12 1.13E−11

SMS [101] AVG − 4.21E+00 1.33E+00 8.88E−06 7.06E−01 1.23E−01 1.35E−02
SD 9.36E−16 3.26E−01 8.56E−09 9.08E−01 4.09E−02 2.88E−04

BA [14] AVG − 1.070E+03 1.230E+00 1.290E−01 1.450E+00 3.960E−01 3.870E−01
SD 8.580E+02 6.860E−01 4.330E−02 5.700E−01 9.930E−01 1.220E−01

CS [96] AVG − 2.090E+03 1.270E−01 8.160E−09 1.230E−01 5.600E−09 4.880E−06
SD 7.620E−03 2.660E−03 1.630E−08 4.970E−02 1.580E−10 6.090E−07

GA [110] AVG − 2.090E+03 6.590E−01 9.560E−01 4.880E−01 1.110E−01 1.290E−01
SD 2.470E+00 8.160E−01 8.080E−01 2.180E−01 2.150E−03 6.890E−02

GOA [42] AVG 1.000E+00 0.000E+00 9.750E−02 0.000E+00 0.000E+00 0.000E+00
SD 2.000E−04 7.000E−04 1.000E+00 0.000E+00 7.000E−04 0.000E+00

MFO [16] AVG − 8.500E+03 8.460E+01 1.260E+00 1.910E−02 8.940E−01 1.160E−01
SD 7.260E+02 1.620E+01 7.300E−01 2.170E−02 8.810E−01 1.930E−01

MVO [6] AVG − 1.170E+04 1.180E+02 4.070E+00 9.400E−01 2.460E+00 2.200E−01
SD 9.370E+02 3.930E+01 5.500E+00 6.000E−02 7.900E−01 9.000E−02

DA [98] AVG − 2.860E+03 1.600E+01 2.310E−01 1.930E−01 3.110E−02 2.200E−03
SD 3.840E+02 9.480E+00 4.870E−01 7.350E−02 9.830E−02 4.630E−03

BDA [98] AVG − 9.240E+02 1.810E+00 3.880E−01 1.930E−01 1.490E−01 3.520E−02
SD 6.570E+01 1.050E+00 5.710E−01 1.140E−01 4.520E−01 5.650E−02

BPSO [107] AVG − 9.890E+02 4.830E+00 2.150E+00 4.770E−01 4.070E−01 3.070E−01
SD 1.670E+01 1.550E+00 5.410E−01 1.290E−01 2.310E−01 2.420E−01

BGSA [100] AVG − 8.610E+02 1.030E+01 2.790E+00 7.890E−01 9.530E+00 2.220E+03
SD 8.060E+01 3.730E+00 1.190E+00 2.510E−01 6.510E+00 5.660E+03

SCA [108] AVG 1.000E+00 0.000E+00 3.800E−01 0.000E+00 0.000E+00 0.000E+00
SD 3.600E−03 7.300E−01 1.000E+00 5.100E−03 0.000E+00 0.000E+00

SSA [109] AVG 5.570E−02 0.000E+00 1.950E−01 0.000E+00 1.420E−01 8.320E−02
SD 8.090E−01 0.000E+00 1.530E−01 6.510E−02 5.570E−01 7.060E−01

WOA [105] AVG − 5.080E+03 0.000E+00 7.400E+00 2.890E−04 3.400E−01 1.890E+00
SD 6.960E+02 0.000E+00 9.900E+00 1.590E−03 2.150E−01 2.660E−01

CSMA AVG − 12,569.1 0 8.88E−16 0 0.003937 0.00664
SD 0.319584 0 0 0 0.006237 0.00989
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Fig. 9   Trial runs of M-Modal functions

Table 14   Simulation results for 
fixed dimension test function 
using CSMA

Functions AVG SD Best value Worst value Median value p value

F14 0.998004 9.26E−13 0.998004 0.998004 0.998004 1.7344E−06
F15 0.00055 0.000244 0.00031 0.001223 0.000469 1.7344E−06
F16 − 1.03163 1.51E−09 − 1.03163 − 1.03163 − 1.03163 1.7344E−06
F17 0.397887 6.82E−08 0.397887 0.397888 0.397887 1.7344E−06
F18 3 8.43E−12 3 3 3 1.7344E−06
F19 − 3.86278 4.21E−07 − 3.86278 − 3.86278 − 3.86278 1.7344E−06
F20 − 3.25824 0.060654 − 3.32199 − 3.20008 − 3.20309 1.7344E−06
F21 − 10.1528 0.000274 − 10.1532 − 10.1519 − 10.1529 1.7344E−06
F22 − 10.4026 0.000208 − 10.4029 − 10.4021 − 10.4027 1.7344E−06
F23 − 10.536 0.000299 − 10.5364 − 10.5354 − 10.5361 1.7344E−06

Table 15   Simulation time for fixed dimension using CSMA

Functions Best time Mean time Worst time

F14 1.140625 1.215104 1.921875
F15 0.671875 0.788021 1.34375
F16 0.53125 0.623438 1.171875
F17 0.5 0.582813 1.21875
F18 0.5 0.595313 1.125
F19 0.59375 0.680729 1.265625
F20 0.859375 0.971354 1.46875
F21 0.8125 0.941146 1.4375
F22 0.859375 0.972917 1.40625
F23 0.9375 1.065104 1.59375
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6.5 � Cantilever beam design

This is civil engineering problem in which main focus is 
minimization of beam weight as shown in Fig. 16. In beam 
design, there are five elements l1, l2, l3, l4 and l5 [114]. The 
main aim is minimization of the weight of the beam shown 
in Eq. (9.5). Taking care that displacement of vertical con-
straint not to disturb during finishing process of the beam 
for final optimal solution shown by Eq. (9.5a) to Eq. (9.5b). 
The results shown in Table 24 validate that CSMA algorithm 
efficiently reduces the weight of the beam. The formulation 
of design is given below:

Consider

Minimize

Subject to

6.6 � Gear train design

In this method, the four variables g1, g2, g3, and g4 are 
reformed to diminish the scalar value and teeth ratio as 
shown in Fig. 17 [113]. Teeth on each gear are the decision 
variables in designing process. The gear train design prob-
lem is formulated through Eq. (9.6a) to Eq. (9.6b). The sim-
ulation results shown in Table 25 reveal that CSMA method 
gives comparison of results with other methods. From the 
assessment of test results, it is seen that proposed method 
effectively evaluates the gear train ratio.

Let us consider:

Minimizing
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Subject to: 12 ≤ g1, g2, g3, g4 ≤ 60.

6.7 � Speed reducer engineering design problem

The fundamental problem is to limit the heaviness of the 
speed reducer. This type of design problem consist of seven 
variables as shown in Fig. 18 [113]. The seven variables are 
face width (x1) , teeth module (x2) , pinion teeth (x3) , first shaft 
length (x4) , second shaft length (x5) , the first shaft diameter 
(x6) and second shaft diameter (x7) . The results shown in 
Table 26 shows that optimum fitness has been improved to 
some extend from previous evaluation. The equations are 
formulated as given below:

Minimizing

(9.6b)f (g⃗) =

(
1

6.931
−

g3g4

g1g4

)2

.

Subject to:

f (x⃗) = 0.7854x
1
x
2
(3.3333x2

3
+ 14.9334x

3
− 43.0934)

− 1.508x
1
(x2

6
+ x2

7
) + 7.4777(x3

6
+ x3

7
)

+ 0.7854(x
4
x2
6
+ x

5
x2
7
)

(9.7a)g1(�⃗x) =
27

x1x
2
2
x3

− 1 ≤ 0

(9.7b)g2(�⃗x) =
397.5

x1x
2
2
x2
3

− 1 ≤ 0

(9.7c)g3(�⃗x) =
1.93x3

4

x2x3x
4
6

− 1 ≤ 0
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Fig. 10   Convergence curve for FD test function showing comparison of CSMA with other algorithms
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(9.7d)g4(�⃗x) =
1.93x3

5

x2x3x
4
7

− 1 ≤ 0

(9.7e)g5(�⃗x) =
1

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9 × 106 − 1 ≤ 0
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x2x3
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3
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≤ x
4
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5
≤ 8.3, 2.9 ≤ x

6
≤ 3.9 and 5 ≤ x

7
≤ 5.5.

6.8 � Belleville spring design

This type of design problem is shown in Fig. 19 [113]. In 
this method, one of the design parameter is selected accord-
ing to variable ratio. The focus of this method is to minimize 
weight within certain constraints. The designed variables are 
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Fig. 10   (continued)
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internal diameter of the spring (DIMI), external diameter of 
the spring (DIME), spring height (SH) and spring thickness 
(ST). The results are compared with other methods as shown 
in Table 27. The assessment of CHHO with other methods 
reveals that present method is effective in solving spring 
design problem more precisely. The mathematical formula-
tion for spring design are given below:

Minimizing

Subject to:

(9.8a)f (x) = 0.07075�(DIM2
E
− DIM2

I
)t

(9.8b)

b1(x) = G −
4P�max

(1 − �2)�DIME

[
�(SH −

�max

2
) + �t

]
≥ 0

(9.8c)

b2(x) =

(
4P�max

(1 − �2)�DIME

[(
SH −

�

2

)
(SH − �)t + t3

])

�max

− PMAX ≥ 0

(9.8d)b3(x) = �1 − �max ≥ 0

(9.8e)b4(x) = H − SH − t ≥ 0

Fig. 11   Trial run of FD benchmark functions
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where � =
6

� ln J

(
J−1

J

)2

(9.8f)b5(x) = DIMMAX − DIME ≥ 0

(9.8g)b6(x) = DIME − DIMI ≥ 0

(9.8h)b7(x) = 0.3 −
SH

DIME − DIMI

≥ 0

� =
6

� ln J

(
J − 1

ln J
− 1

) 6.9 � Rolling element bearing design

The major aspect of this kind of design is to improve the 
dynamic load carrying capacity of rolling bearing element 
as illustrated in Fig. 20 [89]. There are ten parameters which 

� =
6

� ln J

(
J − 1

2

)

PMAX = 5400lb

P = 30e6 psi, �max = 0.2 in, � = 0.3,G = 200 Kpsi,

H = 2 in, DIMMAX = 12.01 in, J =
DIME

DIMI

, �1 = f (a)a, a =
SH

t
.

Table 17   Abbreviations for 10 types of design problems

Engineering function (EF) Type of problem

EF1 3-bar truss problem
EF2 Pressure vessel
EF3 Compression design
EF4 Welded beam
EF5 Cantilever beam design
EF6 Gear train
EF7 Speed reducer problem
EF8 Belleville spring
EF9 Rolling element bearing
EF10 Multiple disk clutch 

brake (discrete vari-
ables)

Table 18   Engineering design 
problems by CSMA

Engineering 
function (EF)

Mean STD value Best value Worst value Median value p value

EF1 270.7824 1.791805 265.4599 273.3948 271.2534 1.7344E−06
EF2 2994.48 0.005837 2994.474 2994.495 2994.479 1.7344E−06
EF3 6427.41 531.9222 5885.341 7318.996 6195.263 1.7344E−06
EF4 0.014245 0.001415 0.012715 0.017524 0.013955 1.7344E−06
EF5 1.740409 0.052373 1.724899 2.00749 1.726646 1.7344E−06
EF6 − 85,534.4 10.61208 − 85,539.2 − 85,498.2 − 85,538.7 1.7344E−06
EF7 0.392818 0.005457 0.389654 0.404654 0.389664 1.7344E−06
EF8 3.34E−11 6.46E−11 4.82E−14 2.91E−10 7.56E−12 1.7344E−06
EF9 5.24E+22 5.87E+22 1.57E+21 1.79E+23 1.21E+22 1.7344E−06
EF10 1.303713 0.000368 1.303281 1.30519 1.303612 1.7344E−06

Table 19   Computation time for engineering function (EF) using 
CSMA

Functions Best time Mean time Worst time

EF1 0.5 0.584896 1.390625
EF2 0.984375 1.063021 1.453125
EF3 0.671875 0.814063 1.359375
EF4 0.578125 0.663542 1.3125
EF5 0.671875 0.829167 1.515625
EF6 1.21875 1.301042 1.796875
EF7 0.734375 0.829688 1.28125
EF8 0.6875 0.784375 1.5
EF9 0.671875 0.782813 1.359375
EF10 0.75 0.833333 1.359375
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Fig. 12   Truss engineering 
design

Table 20   Comparative analysis 
of CSMA results with other 
methods for 3-bar truss problem

Algorithm CSMA HHO [115] MVO [6] CS [116] Ray and Sain 
[117]

TSA [118]

Variables
 y1 0.763 0.78866 0.78860 0.7886 0.795 0.788
 y2 0.494 0.40828 0.40845 0.409 0.395 0.408

Optimal weight 263.45 263.895 263.895 263.972 264.3 263.68

Fig. 13   Pressure vessel engineering design

decides the optimum design of bearing for improving the 
load bearing power. Out of these ten variables only five vari-
ables are of much consideration. These major variables are 
(1) diameter of the ball (DIMB), (2) diameter pitch (DIMP), 
(3) ball numbers (Nb), (4) outer curvature coefficient and (5) 

inner curvature coefficient. Rest of five variables only affect 
indirectly to the internal portion of the geometry. The pro-
posed algorithm is applied to solve rolling design problem 
and outputs are compared with other methods as illustrated 
in Table 28. From the result assessment, it can be seen that 
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CSMA gives analogous outcomes. The design equations are 
formulated through the following equations:

Maximizing

Subjected to:

where

(9.9a)CD = fcN
2∕3DIM1.8

B

if DIM ≤ 25.4 mm

(9.9b)CD = 3.647fcN
2∕3DIM1.4

B

if DIM ≥ 25.4 mm

(9.9c)r1(x) =
�0

2 sin−1
(

DIMB

DIMMAX

) − N + 1 ≥ 0

(9.9d)r2(x) = 2DIMB − KDIMMIN
(DIM − dim) ≥ 0

(9.9e)r3(x) = KDIMMAX
(DIM − dim) ≥ 0

(9.9f)r4(x) = �BW − DIMB ≤ 0

(9.9g)r4(x) = DIMMAX − 0.5(DIM + dim) ≥ 0

(9.9h)r5(x) = DIMMAX − 0.5(DIM + dim) ≥ 0
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�0 = 2� − 2 cos−1

⎛⎜⎜⎜⎝

�
{(DIM − dim)∕2 − 3(t∕4)}2 +

�
DIM∕2 − t∕4 − DIMB

�2
− {dim ∕2 + t∕4}2

�

2{(DIM − dim)∕2 − 3(t∕4)}
�
D∕2 − t∕4 − DIMB

�
⎞⎟⎟⎟⎠

0.5(DIM + dim) ≤ DIM
MAX

≤ 0.6(DIM + dim),

0.15(DIM − dim) ≤ DIM
B
≤ 0.45(DIM − dim), 4 ≤ N ≤ 50

0.515 ≤ f
I

and f
0
≤ 0.6

0.4 ≤ K
DIMMIN

≤ 0.5, 0.6 ≤ K
DIMMIN

≤ 0.7,

0.3 ≤ re ≤ 0.1, 0.02 ≤ re ≤ 0.1, 0.6 ≤ � ≤ 0.85.

� =
DIM

B

DIM
MAX

, f
I
=

R
I

DIM
B

,

f
0
=

R
0

DIM
B

, t = DIM − dim−2DIM
B

DIM = 160, dim = 90, BW = 30, RI = R0 = 11.033

Fig. 14   Compression spring 
engineering design

Table 22   Comparison of CSMA with other methods

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Method CSMA GWO [15] GSA [94] CPSO [126] ES [127] GA [128] HS [18] DE [1] MO [129] CC [130]

Optimized value for variables
‘d’ 0.05 0.0516 0.0503 0.0517 0.052 0.0515 0.0512 0.0516 0.0534 0.05
‘D’ 0.3174 0.3567 0.3237 0.3576 0.364 0.3517 0.3499 0.3547 0.3992 0.3159
‘N’ 14.0278 11.2889 13.5254 11.2445 10.8905 11.6322 12.0764 11.4108 9.1854 14.25
Optimum weight 0.012715 0.01267 0.0127 0.01267 0.01268 0.0127 0.01267 0.01267 0.01273 0.01283

Fig. 15   Welded beam engineering design

Table 23   Comparative analysis of welded beam design with other methods

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Method CSMA GSA [105] GA1 [128] GA2 [131] HS [132] Random [133] Simplex [133] David [133] APPROX [133]

Optimum variables
 h 0.2057 0.1821 0.24890 0.2088 0.2442 0.4575 0.2792 0.2434 0.2444
 l 3.4710 3.857 6.17300 3.4205 6.2231 4.7313 5.6256 6.2552 6.2189
 t 9.0366 10 8.1789 8.9975 8.2915 5.0853 7.7512 8.2915 8.2915
 b 0.2057 0.2024 0.2533 0.2100 0.2443 0.66 0.2796 0.2444 0.2444

Optimal cost 1.7248 1.88 2.4334 1.7583 2.3807 4.1185 2.5307 2.3841 2.3815
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6.10 � Multidisc‑clutch design

Brake design is one of the most crucial problem in engi-
neering and is shown in Fig. 21 [143]. The clutch-design 
problem is mainly fabricated to minimize the overall weight. 
The five design variables are inner surface radius (Rin), outer 
surface radius (Ro), thickness of disc’s (Th), actuating force 
(Fac) and count of friction surface (Sf). In Table 29, results 
are compared and observed that optimum fitness is found to 
better than other methods. The equations for Multidisc brake 
problem are given below:

Minimizing

(9.10a)f
(
Rin,Ro, Sf, Th

)
= �Th�

(
R2
0
− R2

in

)(
Sf + 1

)

Fig. 16   Cantilever beam engi-
neering design

Table 24   Comparative analysis of beam problem with other methods

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Method CSMA ALO [134] SOS [28] CS [135] MMA [136] GCA_I [136] GCA_II [136]

Optimal values for variables
 l1 5.9700 6.0181 6.0188 6.0089 6.01 6.01 6.01
 l2 4.8841 5.3114 5.3034 5.3049 5.3 5.304 5.3
 l3 4.4544 4.4884 4.4959 4.5023 4.49 4.49 4.49
 l4 3.4738 3.4975 3.499 3.5077 3.49 3.498 3.49
 l5 2.1571 2.1583 2.1556 2.1504 2.15 2.15 2.15

Optimum weight 1.30328 1.3399 1.33996 1.33999 1.34 1.34 1.34

Fig. 17   Gear train problem

Table 25   Comparison of 
gear train problem with other 
methods

Method CSMA Gene AS [121] Kannan and Kramer 
[121]

Sandgren [121]

Optimal values for variables
 x1 41 50 41 60
 x2 33 33 33 45
 x3 15 14 15 22
 x4 13 17 13 18

Optimum fitness 0.144124 0.144124 0.144124 0.146667
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where R
in
∈ 60, 61, 62… 80; R

o
∈ 90, 91,… 110; Th ∈ 1, 1.5,

2, 2.5, 3; F
ac
∈ 600, 610, 620, 1000; S

f
∈ 2, 3, 4, 5, 6, 7, 8, 9.

Subject to:

(9.10b)m1 = R0 − Rin − ΔR ≥ 0

Fig. 18   Speed reducer engineering design problem

Table 26   Comparison of speed 
reducer problem with other 
methods

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Method CSMA HEAA [137] MDE [138] PSO-DE [139] MBA [113]

Optimal values for variables
 x1 3.5 3.500022 3.50001 3.50 3.5
 x2 0.7 0.70000039 0.7 0.7 0.7
 x3 17 17.000012 17 17 17
 x4 7.3 7.300427 7.300156 7.3 7.300033
 x5 7.715418 7.715377 7.800027 7.8 7.715772
 x6 3.350215 3.35023 3.350221 3.350214 3.350218
 x7 5.286655 5.286663 5.286685 5.286683 5.286654

Optimum fitness 2994.4737 2994.49911 2996.35669 2996.3481 2994.4824

Fig. 19   Belleville spring engineering design
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(9.10c)m2 = LMAX − (Sf + 1)(Th + �) ≥ 0

(9.10d)m3 = PMMAX − PM� ≥ 0

(9.10e)m4 = PMMAXYMAX + PM�YSR ≥ 0

(9.10f)m5 = YSRMAX
− YSR ≥ 0

where
PM� =

Fac

Π(R2
0
−R2

in)

To check the effectiveness of chaotic SMA, algorithm is 
tested for 30 trial runs. The algorithm is tested with respect 
for best value, worst value, p value and standard deviation 
along with the trial runs. Furthermore, a comparative analy-
sis with recent optimization methods is provided for justi-
fying the validity of tested results for each of the standard 
function’s and design problems. Figure 22a and b shows 30 

(9.10g)m6 = tMAX − t ≥ 0

(9.10h)m7 = DCh − DCf ≥ 0

(9.10i)m8 = t ≥ 0

YSR =
2�n

(
R3
0
− R3

in

)

90
(
R2
0
− R2

in

)

t =
ix�n

30
(
DCh + DCf

)

Table 27   Comparative analysis of Belleville spring design variables 
with other methods

Bold values indicate the results of the Chaoticvariant of the Slime 
Mould Algorithm

Method CSMA TLBO [9] MBA [113]

Values for variables
 x1 8.83686 12.01 12.01
 x2 4.81595 10.0304 10.0304
 x3 0.2 0.20414 0.20414
 x4 0.2 0.2 0.2

Optimum fitness 0.0572 0.19896 0.19896

Fig. 20   Rolling element bearing 
problem

Table 28   Comparative analysis 
of rolling element design 
variables

Bold values indicate the results of the Chaoticvariant of the Slime Mould Algorithm

Method CSMA WCA [140] SCA [141] MFO [16] MVO [142]

Values for variables
 r1 125.7227 125.72 125 125 125.6002
 r2 21.4233 21.42300 21.03287 21.03287 21.32250
 r3 11.00116 10.01030 10.96571 10.96571 10.97338
 r4 0.515 0.515000 0.515 0.515 0.515
 r5 0.515 0.515000 0.515 0.515000 0.515000
 r6 0.4944 0.401514 0.5 0.5 0.5
 r7 0.6986 0.659047 0.7 0.67584 0.68782
 r8 0.3 0.300032 0.3 0.300214 0.301348
 r9 0.03346 0.040045 0.027780 0.02397 0.03617
 r10 0.60049 0.600000 0.62912 0.61001 0.61061

Optimum fitness − 85,534.166 85,538.48 83,431.11 84,002.524 84,491.266
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trial runs and for 10 multidisciplinary engineering problems 
to check the optimality of the algorithm.

7 � Conclusion

In the proposed research, the exploitation phase of the clas-
sical SMA has been enhanced by incorporating sinusoi-
dal chaotic function. The resultant chaotic SMA has been 
applied to 23 standard benchmark problems. In the set of 
experiments, CSMA was compared with basic SMA. The 
test results of benchmark functions are also compared with 
other algorithms in terms of mean and standard deviation. 
To check the soundness of the proposed algorithm, results 
of CSMA has been compared with others recently developed 
and well-known classical optimizers such as PSO, DE, SSA, 
MVO, GWO, DE, MFO, SCA, CS, TSA, PSO-DE, GA, HS, 
Ray and Sain, MBA, ACO, and MMA. Experimental results 

suggest that chaotic strategy enables SMA to improve the 
exploitation phase with better convergence. Simulation 
results shows that the developed chaotic SMA algorithm out-
performs on almost all benchmark functions. Furthermore, 
the CSMA is applied to solve 10 real-world engineering 
design problems. Each design problem with a specific objec-
tive function has been simulated by implementing CSMA. 
Engineering design problems are mostly analyzed in terms 
of weight minimization and reduced manufacturing cost. 
The comparative analysis reveals that the proposed method 
effectively explores the search space to optimize objective 
fitness and proofs that CSMA can demonstrate good results 
not only on unrestricted issues but also on restricted issues. 
It is seen that the resultant chaotic slime mold algorithm is 
capable of giving more optimistic and convergent results. 
Thus, the proposed CSMA may be a good choice for solving 
numerical optimization problems.

8 � Limitation and future scope

The proposed optimizer is giving a powerful and optimal 
solution depending on the type of chaotic strategy opted, 
if chaotic strategies are not properly decided, it may lead 
to insignificant results also. Therefore, it is recommended 
that proper selection of chaotic strategy is required for sig-
nificant results, so that the exploitation phase of the exist-
ing algorithm can be explored in a most significant way. In 
the future, the proposed chaotic variant may be significantly 
used to solve the various engineering and design optimiza-
tion problems including power system optimization prob-
lems such as Economic Load Dispatch, Generation Sched-
uling problem, Unit commitment problem, and Automatic 

Fig. 21   Multidisc clutch break 
design

Table 29   Comparative analysis of multiple-disc clutch brake problem 
with other methods

Bold values indicate the results of the Chaoticvariant of the Slime 
Mould Algorithm

Method CSMA NSGA-II TLBO [9] AM-DE [138]

Best values for variables
 x1 69.99 70 70 70.00
 x2 90 90 90 90
 x3 2.312 3 3 3
 x4 1.5 1.5 1 1
 x5 1000 1000 810 810

Optimum fitness 0.38965 0.4704 0.31365 0.3136566
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generation control and load frequency issues of realistic 
power system and in more deeper sense, it may be applied to 
solve power system dispatch and unit commitment problems 
considering electric and hybrid electric vehicles including 
uncertainty of wind and solar power.

References

	 1.	 Storn R, Price K (1997) Differential evolution-a simple and effi-
cient heuristic for global optimization over continuous spaces. J 
Glob Optim 11:341–359

	 2.	 Koza JR, Poli R (2005) Genetic programming. Search method-
ologies. Springer, Boston, MA, pp 127–164

	 3.	 Qin AK, Huang VL, Suganthan PN (2009) Differential evolution 
algorithm with strategy adaptation for global numerical optimi-
zation. IEEE Trans Evol Comput 13:398–417. https://​doi.​org/​10.​
1109/​TEVC.​2008.​927706

	 4.	 Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravi-
tational search algorithm. Inf Sci 179:2232

	 5.	 Kaveh Ali (2014) Advances in metaheuristic algorithms for 
optimal design of structures. Springer International Publishing, 
Switzerland

	 6.	 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization. 

(a)

(b)

Fig. 22   Trial run test for engineering design problems

https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1109/TEVC.2008.927706


S2774	 Engineering with Computers (2022) 38 (Suppl 4):S2739–S2777

1 3

Neural Comput Appl 27:495–513. https://​doi.​org/​10.​1007/​
s00521-​015-​1870-7

	 7.	 Moghdani R, Salimifard K (2018) Volleyball premier league 
algorithm. Appl Soft Comput J 64:161–185. https://​doi.​org/​10.​
1016/j.​asoc.​2017.​11.​043

	 8.	 Glover F (1989) Tabu search—part I.ORSA. J Comput 
1(3):190–206

	 9.	 Satapathy SC, Naik A, Parvathi K (2013) A teaching learning 
based optimization based on orthogonal design for solving global 
optimization problems. Springerplus 2:1–12. https://​doi.​org/​10.​
1186/​2193-​1801-2-​130

	 10.	 Eberhart R, Kennedy J (1995) Particle swarm optimization. In: 
Proceedings of the IEEE international conference on neural net-
works, vol. 4

	 11.	 Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. 
IEEE Comput Intell Mag 1:28–39. https://​doi.​org/​10.​1109/​MCI.​
2006.​329691

	 12.	 Brajevic I, Tuba M (2013) An upgraded artificial bee colony 
(ABC) algorithm for constrained optimization problems. J Intell 
Manuf 24:729–740. https://​doi.​org/​10.​1007/​s10845-​011-​0621-6

	 13.	 Verma C, Stoffova V, Illes Z, Tanwar S, Kumar N (2020) 
Machine learning-based student’s native place identification for 
real-time. IEEE Access 8:130840–130854. https://​doi.​org/​10.​
1109/​ACCESS.​2020.​30088​30

	 14.	 Yang XS (2011) Bat algorithm for multi-objective optimisation. 
Int J Bioinspired Comput 3:267–274. https://​doi.​org/​10.​1504/​
IJBIC.​2011.​042259

	 15.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. 
Adv Eng Softw 69:46–61. https://​doi.​org/​10.​1016/j.​adven​gsoft.​
2013.​12.​007

	 16.	 Mirjalili S (2015) Moth-flame optimization algorithm: a novel 
nature-inspired heuristic paradigm. Knowl Based Syst 89:228–
249. https://​doi.​org/​10.​1016/j.​knosys.​2015.​07.​006

	 17.	 Verma C, Stoffová V, Illés Z (2019) Prediction of students’ 
awareness level towards ICT and mobile technology in Indian 
and Hungarian University for the real-time: preliminary results. 
Heliyon. https://​doi.​org/​10.​1016/j.​heliy​on.​2019.​e01806

	 18.	 Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H 
(2019) Harris hawks optimization: algorithm and applications. 
Future Gener Comput Syst. https://​doi.​org/​10.​1016/j.​future.​2019.​
02.​028

	 19.	 Verma C, Stoffová V, Illés Z (2018) An Ensemble approach to 
identifying the student gender towards information and com-
munication technology awareness in European schools using 
machine learning. Int J Eng Technol 7:3392–3396. https://​doi.​
org/​10.​14419/​ijet.​v7i4.​14045

	 20.	 Fleszar K, Osman IH, Hindi KS (2009) A variable neighbour-
hood search algorithm for the open vehicle routing problem. Eur 
J Oper Res 195:803–809. https://​doi.​org/​10.​1016/j.​ejor.​2007.​06.​
064

	 21.	 Simon D (2008) Biogeography-based optimization. IEEE Trans 
Evol Comput 12:702–713

	 22.	 Tan Y,  Zhu Y (2010) Fireworks algorithm for optimization. In: 
International conference in swarm intelligence. Springer, Berlin, 
Heidelberg

	 23.	 Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired 
optimization algorithm. Commun Nonlinear Sci Numer Simul 
17:4831–4845. https://​doi.​org/​10.​1016/j.​cnsns.​2012.​05.​010

	 24.	 Martí R, Resende MGC, Ribeiro CC (2013) Multi-start methods 
for combinatorial optimization. Eur J Oper Res 226:1–8. https://​
doi.​org/​10.​1016/j.​ejor.​2012.​10.​012

	 25.	 Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) 
Water cycle algorithm—a novel metaheuristic optimization 
method for solving constrained engineering optimization prob-
lems. Comput Struct 110–111:151–166. https://​doi.​org/​10.​
1016/j.​comps​truc.​2012.​07.​010

	 26.	 Li X, Zhang J, Yin M (2014) Animal migration optimization: An 
optimization algorithm inspired by animal migration behavior. 
Neural Comput Appl 24:1867–1877. https://​doi.​org/​10.​1007/​
s00521-​013-​1433-8

	 27.	 Kuo HC, Lin CH (2013) Cultural evolution algorithm for global 
optimizations and its applications. J Appl Res Technol 11:510–
522. https://​doi.​org/​10.​1016/​S1665-​6423(13)​71558-X

	 28.	 Cheng MY, Prayogo D (2014) Symbiotic organisms search: 
a new metaheuristic optimization algorithm. Comput Struct 
139:98–112. https://​doi.​org/​10.​1016/j.​comps​truc.​2014.​03.​007

	 29.	 Gandomi AH (2014) Interior search algorithm (ISA): a novel 
approach for global optimization. ISA Trans 53:1168–1183. 
https://​doi.​org/​10.​1016/j.​isatra.​2014.​03.​018

	 30.	 Mirjalili S, Wang GG, Coelho LS (2014) Binary optimization 
using hybrid particle swarm optimization and gravitational 
search algorithm. Neural Comput Appl 25:1423–1435. https://​
doi.​org/​10.​1007/​s00521-​014-​1629-6

	 31.	 Mohseni S, et al. (2014) Competition over resources: a new 
optimization algorithm based on animals behavioral ecology. 
In: 2014 International Conference on Intelligent Networking and 
Collaborative Systems. IEEE

	 32.	 Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Cha-
otic Krill Herd algorithm. Inf Sci (Ny) 274:17–34. https://​doi.​
org/​10.​1016/j.​ins.​2014.​02.​123

	 33.	 Salimi H (2015) Stochastic fractal search: a powerful metaheuris-
tic algorithm. Knowl Based Syst 75:1–18. https://​doi.​org/​10.​
1016/j.​knosys.​2014.​07.​025

	 34.	 Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl 
Soft Comput J 19:177–187. https://​doi.​org/​10.​1016/j.​asoc.​2014.​
02.​006

	 35.	 Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algo-
rithm. Expert Syst Appl 41:6676–6687. https://​doi.​org/​10.​1016/j.​
eswa.​2014.​05.​009

	 36.	 Gray B, Optimization W (2015) Author’s accepted manuscript 
binary gray wolf optimization approaches for feature selection. 
Neurocomputing. https://​doi.​org/​10.​1016/j.​neucom.​2015.​06.​083

	 37.	 Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-
inspired optimisation algorithm: Bird Swarm Algorithm. J Exp 
Theor Artif Intell 28:673–687. https://​doi.​org/​10.​1080/​09528​
13X.​2015.​10425​30

	 38.	 Wang GG, Suash D, Coelho LDS (2015) Elephant herding opti-
mization. In: 2015 3rd International Symposium on Computa-
tional and Business Intelligence (ISCBI). IEEE

	 39.	 Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti 
Z, Jawawi DNA (2016) Electromagnetic field optimization: a 
physics-inspired metaheuristic optimization algorithm. Swarm 
Evol Comput 26:8–22. https://​doi.​org/​10.​1016/j.​swevo.​2015.​07.​
002

	 40.	 Shahriar MS, Rana J, Asif MA, Hasan M, Hawlader M (2015) 
Optimization of Unit Commitment Problem for wind-thermal 
generation using Fuzzy optimization technique. In: 2015 Interna-
tional conference on advances in electrical engineering (ICAEE), 
pp. 88–92. IEEE

	 41.	 Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search 
algorithm. Appl Soft Comput J 36:315–333. https://​doi.​org/​10.​
1016/j.​asoc.​2015.​07.​028

	 42.	 Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation 
algorithm: theory and application. Adv Eng Softw 105:30–47. 
https://​doi.​org/​10.​1016/j.​adven​gsoft.​2017.​01.​004

	 43.	 Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach 
for optimization problems. Eng Sci Technol Int J 20:1586–1601. 
https://​doi.​org/​10.​1016/j.​jestch.​2017.​11.​001

	 44.	 Gohil NB, Dwivedi VV (2017) A review on lion optimization. 
Nat Inspired Evol Algorithm 7:340–352

	 45.	 Reddy SK, Panwar L, Panigrahi BK, Kumar R (2018) Binary 
whale optimization algorithm: a new metaheuristic approach for 

https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.asoc.2017.11.043
https://doi.org/10.1016/j.asoc.2017.11.043
https://doi.org/10.1186/2193-1801-2-130
https://doi.org/10.1186/2193-1801-2-130
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1007/s10845-011-0621-6
https://doi.org/10.1109/ACCESS.2020.3008830
https://doi.org/10.1109/ACCESS.2020.3008830
https://doi.org/10.1504/IJBIC.2011.042259
https://doi.org/10.1504/IJBIC.2011.042259
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.heliyon.2019.e01806
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.14419/ijet.v7i4.14045
https://doi.org/10.14419/ijet.v7i4.14045
https://doi.org/10.1016/j.ejor.2007.06.064
https://doi.org/10.1016/j.ejor.2007.06.064
https://doi.org/10.1016/j.cnsns.2012.05.010
https://doi.org/10.1016/j.ejor.2012.10.012
https://doi.org/10.1016/j.ejor.2012.10.012
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1007/s00521-013-1433-8
https://doi.org/10.1007/s00521-013-1433-8
https://doi.org/10.1016/S1665-6423(13)71558-X
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1016/j.isatra.2014.03.018
https://doi.org/10.1007/s00521-014-1629-6
https://doi.org/10.1007/s00521-014-1629-6
https://doi.org/10.1016/j.ins.2014.02.123
https://doi.org/10.1016/j.ins.2014.02.123
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.asoc.2014.02.006
https://doi.org/10.1016/j.asoc.2014.02.006
https://doi.org/10.1016/j.eswa.2014.05.009
https://doi.org/10.1016/j.eswa.2014.05.009
https://doi.org/10.1016/j.neucom.2015.06.083
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1080/0952813X.2015.1042530
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.1016/j.asoc.2015.07.028
https://doi.org/10.1016/j.asoc.2015.07.028
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.jestch.2017.11.001


S2775Engineering with Computers (2022) 38 (Suppl 4):S2739–S2777	

1 3

profit-based unit commitment problems in competitive electric-
ity markets. Eng Optim. https://​doi.​org/​10.​1080/​03052​15X.​2018.​
14635​27

	 46.	 Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: 
a new metaheuristic for global optimization problems. In: 
2018IEEE congress on evolutionary computation (CEC). IEEE

	 47.	 Chen X, Tianfield H, Li K (2019) BASE DATA. Swarm Evol 
Comput. https://​doi.​org/​10.​1016/j.​swevo.​2019.​01.​003

	 48.	 Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Opti-
mizer: a novel nature-inspired metaheuristic algorithm for solv-
ing constrained engineering optimization problems. Eng Appl 
Artif Intell 80:20–34. https://​doi.​org/​10.​1016/j.​engap​pai.​2019.​
01.​001

	 49.	 Verma C, Illes Z, Stoffova V (2019) Age group predictive mod-
els for the real time prediction of the university students using 
machine learning: Preliminary results. In: 2019 IEEE Interna-
tional Conference on Electrical, Computer and Communication 
Technologies (ICECCT). IEEE

	 50.	 Adamatzky A (2012) Slime mold solves maze in one pass, 
assisted by gradient of chemo-attractants. IEEE Trans Nanobi-
osci 11:131–134. https://​doi.​org/​10.​1109/​TNB.​2011.​21819​78

	 51.	 Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004) Obtaining 
multiple separate food sources: behavioural intelligence in the 
Physarum plasmodium. Proc R Soc B Biol Sci 271:2305–2310. 
https://​doi.​org/​10.​1098/​rspb.​2004.​2856

	 52.	 Adamatzky A, Jones J (2010) Road planning with slime mould: 
if Physarum built motorways it would route M6/M74 through 
Newcastle. Int J Bifurc Chaos 20:3065–3084. https://​doi.​org/​10.​
1142/​S0218​12741​00275​68

	 53.	 Beekman M, Latty T (2015) Brainless but multi-headed: decision 
making by the acellular slime mould Physarum polycephalum. 
J Mol Biol 427:3734–3743. https://​doi.​org/​10.​1016/j.​jmb.​2015.​
07.​007

	 54.	 Burgin M, Adamatzky A (2017) Structural machines and slime 
mould computation. Int J Gen Syst 46:201–224. https://​doi.​org/​
10.​1080/​03081​079.​2017.​13005​85

	 55.	 Cuevas E, González M, Zaldivar D, Pérez-Cisneros M, García 
G (2012) An algorithm for global optimization inspired by col-
lective animal behavior. Discret Dyn Nat Soc. https://​doi.​org/​10.​
1155/​2012/​638275

	 56.	 Houbraken M, Demeyer S, Staessens D, Audenaert P, Colle D, 
Pickavet M (2013) Fault tolerant network design inspired by 
Physarum polycephalum. Nat Comput 12:277–289. https://​doi.​
org/​10.​1007/​s11047-​012-​9344-7

	 57.	 Kropat E, Meyer-Nieberg S (2014) Slime mold inspired evolv-
ing networks under uncertainty (SLIMO). In: 2014 47th Hawaii 
International Conference on System Sciences (HICSS), pp. 
1153–1161. IEEE Computer Society

	 58.	 Abdel-basset M, Chang V, Mohamed R (2020) HSMA_WOA: 
A hybrid novel Slime mould algorithm with whale optimization 
algorithm fortackling the image segmentation problem of chest 
X-ray images. Applied Soft Computing 95:

	 59.	 Zhao J, Gao ZM, Sun W (2020) The improved slime mould algo-
rithm with Levy flight. J Phys Conf Ser. https://​doi.​org/​10.​1088/​
1742-​6596/​1617/1/​012033

	 60.	 Patino-Ramirez F, Boussard A, Arson C, Dussutour A (2019) 
Substrate composition directs slime molds behavior. Sci Rep 
9:1–14. https://​doi.​org/​10.​1038/​s41598-​019-​50872-z

	 61.	 Kouadri R, Slimani L, Bouktir T (2020) Slime mould algorithm 
for practical optimal power flow solutions incorporating stochas-
tic wind power and static var compensator device. Electr Eng 
Electromech. https://​doi.​org/​10.​20998/​2074-​272x.​2020.6.​07

	 62.	 Gao ZM, Zhao J, Yang Y, Tian XJ (2020) The hybrid grey wolf 
optimization-slime mould algorithm. J Phys Conf Ser. https://​
doi.​org/​10.​1088/​1742-​6596/​1617/1/​012034

	 63.	 Nguyen TT, Wang HJ, Dao TK, Pan JS, Liu JH, Weng S (2020) 
An improved slime mold algorithm and its application for opti-
mal operation of cascade hydropower stations. IEEE Access 
8:226754–226772. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30459​
75

	 64.	 İzci D, Ekinci S (2021) Comparative performance analysis of 
slime mould algorithm for efficient design of proportional–inte-
gral–derivative controller. Electrica 21:151–159. https://​doi.​org/​
10.​5152/​ELECT​RICA.​2021.​20077

	 65.	 Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime 
mould algorithm: a new method for stochastic optimization. 
Futur Gener Comput Syst. https://​doi.​org/​10.​1016/j.​future.​2020.​
03.​055

	 66.	 Ji Y, Tu J, Zhou H, Gui W, Liang G, Chen H, Wang M (2020) 
An adaptive chaotic sine cosine algorithm for constrained and 
unconstrained optimization. Complexity. https://​doi.​org/​10.​1155/​
2020/​60849​17

	 67.	 Paul C, Roy PK, Mukherjee V (2020) Chaotic whale optimiza-
tion algorithm for optimal solution of combined heat and power 
economic dispatch problem incorporating wind. Renew Energy 
Focus. https://​doi.​org/​10.​1016/j.​ref.​2020.​06.​008

	 68.	 Chuang LY, Hsiao CJ, Yang CH (2011) Chaotic particle swarm 
optimization for data clustering. Expert Syst Appl 38:14555–
14563. https://​doi.​org/​10.​1016/j.​eswa.​2011.​05.​027

	 69.	 Mane SU, Narsingrao MR (2021) A chaotic-based improved 
many-objective jaya algorithm for many-objective optimization 
problems. Int J Ind Eng Comput 12:49–62. https://​doi.​org/​10.​
5267/j.​ijiec.​2020.​10.​001

	 70.	 Dong N, Fang X, Wu AG (2016) A novel chaotic particle swarm 
optimization algorithm for parking space guidance. Math Probl 
Eng. https://​doi.​org/​10.​1155/​2016/​51268​08

	 71.	 Kohli M, Arora S (2018) Chaotic grey wolf optimization algo-
rithm for constrained optimization problems. J Comput Des Eng 
5:458–472. https://​doi.​org/​10.​1016/j.​jcde.​2017.​02.​005

	 72.	 Chen Z, Liu W (2020) An efficient parameter adaptive support 
vector regression using K-Means clustering and chaotic slime 
mould algorithm. IEEE Access 8:156851–156862. https://​doi.​
org/​10.​1109/​ACCESS.​2020.​30188​66

	 73.	 Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, 
Chen H (2021) MOSMA: multi-objective slime mould algorithm 
based on elitist non-dominated sorting. IEEE Access 9:3229–
3248. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30479​36

	 74.	 Zhao J, Gao ZM (2020) The chaotic slime mould algorithm with 
Chebyshev. Map J Phys Conf Ser. https://​doi.​org/​10.​1088/​1742-​
6596/​1631/1/​012071

	 75.	 Majhi SK, Mishra A, Pradhan R (2019) A chaotic salp swarm 
algorithm based on quadratic integrate and fire neural model for 
function optimization. Prog Artif Intell 8:343–358. https://​doi.​
org/​10.​1007/​s13748-​019-​00184-0

	 76.	 Li Y, Han M, Guo Q (2020) Modified whale optimization algo-
rithm based on tent chaotic mapping and its application in struc-
tural optimization. KSCE J Civ Eng 24:3703–3713. https://​doi.​
org/​10.​1007/​s12205-​020-​0504-5

	 77.	 Zhu T, Zheng H, Ma Z (2019) A chaotic particle swarm optimi-
zation algorithm for solving optimal power system problem of 
electric vehicle. Adv Mech Eng 11:1–9. https://​doi.​org/​10.​1177/​
16878​14019​833500

	 78.	 Rezaie H, Kazemi-Rahbar MH, Vahidi B, Rastegar H (2019) 
Solution of combined economic and emission dispatch problem 
using a novel chaotic improved harmony search algorithm. J 
Comput Des Eng 6:447–467. https://​doi.​org/​10.​1016/j.​jcde.​2018.​
08.​001

	 79.	 Hichem H, Elkamel M, Rafik M, Mesaaoud MT, Ouahiba C 
(2019) A new binary grasshopper optimization algorithm for 
feature selection problem. J King Saud Univ Comput Inf Sci. 
https://​doi.​org/​10.​1016/j.​jksuci.​2019.​11.​007

https://doi.org/10.1080/0305215X.2018.1463527
https://doi.org/10.1080/0305215X.2018.1463527
https://doi.org/10.1016/j.swevo.2019.01.003
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1109/TNB.2011.2181978
https://doi.org/10.1098/rspb.2004.2856
https://doi.org/10.1142/S0218127410027568
https://doi.org/10.1142/S0218127410027568
https://doi.org/10.1016/j.jmb.2015.07.007
https://doi.org/10.1016/j.jmb.2015.07.007
https://doi.org/10.1080/03081079.2017.1300585
https://doi.org/10.1080/03081079.2017.1300585
https://doi.org/10.1155/2012/638275
https://doi.org/10.1155/2012/638275
https://doi.org/10.1007/s11047-012-9344-7
https://doi.org/10.1007/s11047-012-9344-7
https://doi.org/10.1088/1742-6596/1617/1/012033
https://doi.org/10.1088/1742-6596/1617/1/012033
https://doi.org/10.1038/s41598-019-50872-z
https://doi.org/10.20998/2074-272x.2020.6.07
https://doi.org/10.1088/1742-6596/1617/1/012034
https://doi.org/10.1088/1742-6596/1617/1/012034
https://doi.org/10.1109/ACCESS.2020.3045975
https://doi.org/10.1109/ACCESS.2020.3045975
https://doi.org/10.5152/ELECTRICA.2021.20077
https://doi.org/10.5152/ELECTRICA.2021.20077
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1155/2020/6084917
https://doi.org/10.1155/2020/6084917
https://doi.org/10.1016/j.ref.2020.06.008
https://doi.org/10.1016/j.eswa.2011.05.027
https://doi.org/10.5267/j.ijiec.2020.10.001
https://doi.org/10.5267/j.ijiec.2020.10.001
https://doi.org/10.1155/2016/5126808
https://doi.org/10.1016/j.jcde.2017.02.005
https://doi.org/10.1109/ACCESS.2020.3018866
https://doi.org/10.1109/ACCESS.2020.3018866
https://doi.org/10.1109/ACCESS.2020.3047936
https://doi.org/10.1088/1742-6596/1631/1/012071
https://doi.org/10.1088/1742-6596/1631/1/012071
https://doi.org/10.1007/s13748-019-00184-0
https://doi.org/10.1007/s13748-019-00184-0
https://doi.org/10.1007/s12205-020-0504-5
https://doi.org/10.1007/s12205-020-0504-5
https://doi.org/10.1177/1687814019833500
https://doi.org/10.1177/1687814019833500
https://doi.org/10.1016/j.jcde.2018.08.001
https://doi.org/10.1016/j.jcde.2018.08.001
https://doi.org/10.1016/j.jksuci.2019.11.007


S2776	 Engineering with Computers (2022) 38 (Suppl 4):S2739–S2777

1 3

	 80.	 Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragon-
fly algorithm: an improved metaheuristic algorithm for feature 
selection. Appl Intell 49:188–205. https://​doi.​org/​10.​1007/​
s10489-​018-​1261-8

	 81.	 Qiao W, Yang Z (2019) Modified dolphin swarm algorithm based 
on chaotic maps for solving high-dimensional function optimiza-
tion problems. IEEE Access 7:110472–110486. https://​doi.​org/​
10.​1109/​ACCESS.​2019.​29319​10

	 82.	 Fuertes G, Vargas M, Alfaro M, Soto-Garrido R, Sabattin J, 
Peralta MA (2019) Chaotic genetic algorithm and the effects of 
entropy in performance optimization. Chaos. https://​doi.​org/​10.​
1063/1.​50482​99

	 83.	 Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J 
Comput Des Eng 5:275–284. https://​doi.​org/​10.​1016/j.​jcde.​2017.​
12.​006

	 84.	 Saxena A, Shekhawat S, Kumar R (2018) Application and devel-
opment of enhanced chaotic grasshopper optimization algo-
rithms. Model Simul Eng. https://​doi.​org/​10.​1155/​2018/​49451​57

	 85.	 Nie X, Wang W, Nie H (2017) Chaos quantum-behaved cat 
swarm optimization algorithm and its application in the PV 
MPPT. Comput Intell Neurosci. https://​doi.​org/​10.​1155/​2017/​
15838​47

	 86.	 Ye F, Lou XY, Sun LF (2017) An improved chaotic fruit fly opti-
mization based on a mutation strategy for simultaneous feature 
selection and parameter optimization for SVM and its applica-
tions. PLoS ONE. https://​doi.​org/​10.​1371/​journ​al.​pone.​01735​16

	 87.	 Xu X, Rong H, Trovati M, Liptrott M, Bessis N (2018) CS-PSO: 
chaotic particle swarm optimization algorithm for solving com-
binatorial optimization problems. Soft Comput 22:783–795. 
https://​doi.​org/​10.​1007/​s00500-​016-​2383-8

	 88.	 Ge F, Hong L, Wu Q, Shi L (2015) A cooperative optimization 
algorithm inspired by chaos-order transition. Math Probl Eng. 
https://​doi.​org/​10.​1155/​2015/​984047

	 89.	 Zhang Y, Ji G, Dong Z, Wang S, Phillips P (2015) Comment on 
“an investigation into the performance of particle swarm optimi-
zation with various chaotic Maps.” Math Probl Eng 2015:11–14. 
https://​doi.​org/​10.​1155/​2015/​815370

	 90.	 Ghasemi M, Ghavidel S, Akbari E, Vahed AA (2014) Solving 
non-linear, non-smooth and non-convex optimal power flow 
problems using chaotic invasive weed optimization algorithms 
based on chaos. Energy 73:340–353. https://​doi.​org/​10.​1016/j.​
energy.​2014.​06.​026

	 91.	 Yao X, Liu Y, Lin G (1999) Evolutionary programming made 
faster. IEEE Trans Evol Comput 3:82

	 92.	 Digalakis JG, Margaritis KG (2007) On benchmarking functions 
for genetic algorithms. Int J Comput Math 77:481–506. https://​
doi.​org/​10.​1080/​00207​16010​88050​80

	 93.	 Wang J, Wang D (2008) Particle swarm optimization with a 
leader and followers. Prog Nat Sci 18:1437–1443. https://​doi.​
org/​10.​1016/j.​pnsc.​2008.​03.​029

	 94.	 Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravi-
tational search algorithm. Inf Sci (Ny) 179:2232–2248. https://​
doi.​org/​10.​1016/j.​ins.​2009.​03.​004

	 95.	 Xie J, Zhou YQ, Chen H (2013) A bat algorithm based on Lévy 
flights trajectory. Moshi Shibie Yu Rengong Zhineng Pattern 
Recognit Artif Intell 26:829–837

	 96.	 Yang XS (2010) Firefly algorithm. Eng Optim 221
	 97.	 Kazarlis SA (1996) A genetic algorithm solution to the unit com-

mitment problem. IEEE Trans Power Syst 11:83–92
	 98.	 Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic 

optimization technique for solving single-objective, discrete, and 
multi-objective problems. Neural Comput Appl 27:1053–1073. 
https://​doi.​org/​10.​1007/​s00521-​015-​1920-1

	 99.	 Nezamabadi-pour H, Rostami-sharbabaki M, Maghfoori-Far-
sangi M (2008) Binary particle swarm optimization: challenges 
andnew solutions. CSI J Comput Sci Eng 6:21–32

	100.	 Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: 
binary gravitational search algorithm. Nat Comput 9:727–745. 
https://​doi.​org/​10.​1007/​s11047-​009-​9175-3

	101.	 Cuevas E, Echavarría A, Ramírez-Ortegón MA (2014) An opti-
mization algorithm inspired by the States of Matter that improves 
the balance between exploration and exploitation. Appl Intell 
40:256–272. https://​doi.​org/​10.​1007/​s10489-​013-​0458-0

	102.	 Ang X-S, Karamanoglu M, He X (2014) Flower pollination 
algorithm: a novel approach for multiobjective optimization. 
Eng Optim 46:12

	103.	 Jagodziński D, Jarosław A (2017) A differential evolution strat-
egy. In: 2017 IEEE Congress on Evolutionary Computation 
(CEC). IEEE

	104.	 Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–
98. https://​doi.​org/​10.​1016/j.​adven​gsoft.​2015.​01.​010

	105.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. 
Adv Eng Softw 95:51–67. https://​doi.​org/​10.​1016/j.​adven​gsoft.​
2016.​01.​008

	106.	 Jafari S, Bozorg-Haddad O, Chu X (2018) Cuckoo optimization 
algorithm (COA). Stud Comput Intell 720:39–49. https://​doi.​org/​
10.​1007/​978-​981-​10-​5221-7_5

	107.	 Kennedy J, Eberhart RC (1997) A discrete binary version of the 
particle swarm algorithm. IEEE Int Conf Syst Man Cybern Com-
put Cybern Simul 5:4104–4108. https://​doi.​org/​10.​1109/​ICSMC.​
1997.​637339

	108.	 Mirjalili S (2016) SCA: a sine cosine algorithm for solving opti-
mization problems. Knowl Based Syst 96:120–133. https://​doi.​
org/​10.​1016/j.​knosys.​2015.​12.​022

	109.	 Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-
jalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer 
for engineering design problems. Adv Eng Softw 114:163–191. 
https://​doi.​org/​10.​1016/j.​adven​gsoft.​2017.​07.​002

	110.	 John H (1992) Holland, adaptation in natural and artificial sys-
tems. MIT Press, Cambridge

	111.	 Chopard B, Tomassini M (2018) Particle swarm optimization. 
Nat Comput Ser. https://​doi.​org/​10.​1007/​978-3-​319-​93073-2_6

	112.	 Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify 
Harris Hawks optimizer for numerical and engineering optimiza-
tion problems. Appl Soft Comput J 89:106018. https://​doi.​org/​
10.​1016/j.​asoc.​2019.​106018

	113.	 Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine 
blast algorithm: a new population based algorithm for solving 
constrained engineering optimization problems. Appl Soft Com-
put J 13:2592–2612. https://​doi.​org/​10.​1016/j.​asoc.​2012.​11.​026

	114.	 Bhadoria A, Kamboj VK (2018) Optimal generation schedul-
ing and dispatch of thermal generating units considering impact 
of wind penetration using hGWO-RES algorithm. Appl Intell. 
https://​doi.​org/​10.​1007/​s10489-​018-​1325-9

	115.	 Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen 
H (2019) Harris hawks optimization: algorithm and applica-
tions. Future Gener Comput Syst 97:849–872. https://​doi.​org/​
10.​1016/j.​future.​2019.​02.​028

	116.	 Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algo-
rithm: a metaheuristic approach to solve structural optimiza-
tion problems. Eng Comput 29:17–35. https://​doi.​org/​10.​1007/​
s00366-​011-​0241-y

	117.	 Ray T, Saini P (2001) Engineering design optimization using a 
swarm with an intelligent information sharing among individu-
als. Eng Optim 33:735–748. https://​doi.​org/​10.​1080/​03052​15010​
89409​41

	118.	 Tsai JFA (2005) Global optimization of nonlinear fractional pro-
gramming problems in engineering design. Eng Optim 37:399–
409. https://​doi.​org/​10.​1080/​03052​15050​00667​37

	119.	 Hameed IA, Bye RT, Osen OL (2016) Grey wolf optimizer 
(GWO) for automated offshore crane design. In: 2016 IEEE 
symposium series on computational intelligence (SSCI). IEEE

https://doi.org/10.1007/s10489-018-1261-8
https://doi.org/10.1007/s10489-018-1261-8
https://doi.org/10.1109/ACCESS.2019.2931910
https://doi.org/10.1109/ACCESS.2019.2931910
https://doi.org/10.1063/1.5048299
https://doi.org/10.1063/1.5048299
https://doi.org/10.1016/j.jcde.2017.12.006
https://doi.org/10.1016/j.jcde.2017.12.006
https://doi.org/10.1155/2018/4945157
https://doi.org/10.1155/2017/1583847
https://doi.org/10.1155/2017/1583847
https://doi.org/10.1371/journal.pone.0173516
https://doi.org/10.1007/s00500-016-2383-8
https://doi.org/10.1155/2015/984047
https://doi.org/10.1155/2015/815370
https://doi.org/10.1016/j.energy.2014.06.026
https://doi.org/10.1016/j.energy.2014.06.026
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1016/j.pnsc.2008.03.029
https://doi.org/10.1016/j.pnsc.2008.03.029
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/s11047-009-9175-3
https://doi.org/10.1007/s10489-013-0458-0
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/978-981-10-5221-7_5
https://doi.org/10.1007/978-981-10-5221-7_5
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1007/978-3-319-93073-2_6
https://doi.org/10.1016/j.asoc.2019.106018
https://doi.org/10.1016/j.asoc.2019.106018
https://doi.org/10.1016/j.asoc.2012.11.026
https://doi.org/10.1007/s10489-018-1325-9
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1007/s00366-011-0241-y
https://doi.org/10.1080/03052150108940941
https://doi.org/10.1080/03052150108940941
https://doi.org/10.1080/03052150500066737


S2777Engineering with Computers (2022) 38 (Suppl 4):S2739–S2777	

1 3

	120.	 Ariables V (2015) The butterfly particle swarm optimization 
(butterfly PSO/BF-PSO) technique and its variables. Int J Soft 
Comput Math Control (IJSCMC) 4:23–39

	121.	 Cagnina LC, Esquivel SC, Nacional U, Luis DS, Luis S, Coello 
CAC (2008) Solving engineering optimization problems with 
the simple constrained particle swarm optimizer. Informatica 
32:319–326

	122.	 Deb K (1996) A combined genetic adaptive search (GeneAS) for 
engineering design. Comput Sci Inform 26:30–45

	123.	 Wang L, Li LP (2010) An effective differential evolution with 
level comparison for constrained engineering design. Struct Mul-
tidisciplinary Optimization 41(6):947–963

	124.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. 
Adv Eng Soft 95:51–67

	125.	 Kamboj VK et al (2020) An intensify Harris Hawks optimizer 
for numerical and engineering optimization problems. Appl Soft-
Comput 89:106018

	126.	 He Q, Wang L (2007) An effective co-evolutionary particle 
swarm optimization for constrained engineering design prob-
lems. Eng Appl Artif Intell 20:89–99. https://​doi.​org/​10.​1016/j.​
engap​pai.​2006.​03.​003

	127.	 Mezura-Montes E, Coello Coello CA (2005) A simple multi-
membered evolution strategy to solve constrained optimization 
problems. IEEE Trans Evol Comput 9:1–17. https://​doi.​org/​10.​
1109/​TEVC.​2004.​836819

	128.	 Deb K (1990) Optimal design of a class of welded structures via 
genetic algorithms. In: 31st Structures, Structural Dynamics and 
MaterialsConference, p. 1179.

	129.	 Mahdavi M, Fesanghary M, Damangir E (2007) An improved 
harmony search algorithm for solving optimization problems. 
Appl Math Comput 188:1567–1579. https://​doi.​org/​10.​1016/j.​
amc.​2006.​11.​033

	130.	 Wu G, Pedrycz W, Suganthan PN, Mallipeddi R (2015) A vari-
able reduction strategy for evolutionary algorithms handling 
equality constraints. Appl Soft Comput J 37:774–786. https://​
doi.​org/​10.​1016/j.​asoc.​2015.​09.​007

	131.	 Coello Coello CA (2000) Use of a self-adaptive penalty approach 
for engineering optimization problems. Comput Ind 41:113–127. 
https://​doi.​org/​10.​1016/​S0166-​3615(99)​00046-9

	132.	 Lee KS, Geem ZW (2004) A new structural optimization method 
based on the harmony search algorithm. Comput Struct 82:781–
798. https://​doi.​org/​10.​1016/j.​comps​truc.​2004.​01.​002

	133.	 Ragsdell KM, Phillips DT (1976) Optimal design of a class of 
welded structures using geometric programming. J Manuf Sci 

Eng Trans ASME 98:1021–1025. https://​doi.​org/​10.​1115/1.​
34389​95

	134.	 Cuevas E, Echavarría A (2013) An optimization algorithm 
inspired by the States of Matter that improves the balance 
between exploration and exploitation. Appl Intell. https://​doi.​
org/​10.​1007/​s10489-​013-​0458-0

	135.	 Shankar K, Eswaran P (2016) RGB-based secure share creation 
in visual cryptography using optimal elliptic curve cryptography 
technique. J Circuits Syst Comput 25:1650138. https://​doi.​org/​
10.​1142/​S0218​12661​65013​83

	136.	 Chickermane H, Gea HC (2002) Structural optimization using 
a new local approximation method. Int J Numer Methods Eng 
39:829–846. https://​doi.​org/​10.​1002/​(sici)​1097-​0207(19960​315)​
39:5%​3c829::​aid-​nme884%​3e3.0.​co;2-u

	137.	 Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimiza-
tion: an effective bio-inspired optimizer for engineering applica-
tions. Eng Appl Artif Intell 87:103300. https://​doi.​org/​10.​1016/j.​
engap​pai.​2019.​103300

	138.	 Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces. J 
Glob Optim 11:341–359. https://​doi.​org/​10.​1023/A:​10082​02821​
328

	139.	 Niu B, Li L (2008) A novel PSO-DE-based hybrid algorithm for 
global optimization (including Subser. Lect. Notes Artif. Intell. 
Lect. Notes Bioinformatics). Lect Notes Comput Sci 5227:156–
163. https://​doi.​org/​10.​1007/​978-3-​540-​85984-0_​20

	140.	 Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) 
Water cycle algorithm for solving multi-objective optimization 
problems. Soft Comput 19:2587–2603. https://​doi.​org/​10.​1007/​
s00500-​014-​1424-4

	141.	 Hafez AI, Zawbaa HM, Emary E, Hassanien AE (2016) Sine 
cosine optimization algorithm for feature selection.In: 2016 
international symposium on innovations in intelligent systems 
and applications (INISTA). IEEE

	142.	 Sayed GI, Darwish A, Hassanien AE (2018) A new chaotic multi-
verse optimization algorithm for solving engineering optimiza-
tion problems. J Exp Theor Artif Intell 30:293–317. https://​doi.​
org/​10.​1080/​09528​13X.​2018.​14308​58

	143.	 Abderazek H, Ferhat D, Ivana A (2016) Adaptive mixed dif-
ferential evolution algorithm for bi-objective tooth profile spur 
gear optimization. Int J Adv Manuf Technol. https://​doi.​org/​10.​
1007/​s00170-​016-​9523-2

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1109/TEVC.2004.836819
https://doi.org/10.1109/TEVC.2004.836819
https://doi.org/10.1016/j.amc.2006.11.033
https://doi.org/10.1016/j.amc.2006.11.033
https://doi.org/10.1016/j.asoc.2015.09.007
https://doi.org/10.1016/j.asoc.2015.09.007
https://doi.org/10.1016/S0166-3615(99)00046-9
https://doi.org/10.1016/j.compstruc.2004.01.002
https://doi.org/10.1115/1.3438995
https://doi.org/10.1115/1.3438995
https://doi.org/10.1007/s10489-013-0458-0
https://doi.org/10.1007/s10489-013-0458-0
https://doi.org/10.1142/S0218126616501383
https://doi.org/10.1142/S0218126616501383
https://doi.org/10.1002/(sici)1097-0207(19960315)39:5%3c829::aid-nme884%3e3.0.co;2-u
https://doi.org/10.1002/(sici)1097-0207(19960315)39:5%3c829::aid-nme884%3e3.0.co;2-u
https://doi.org/10.1016/j.engappai.2019.103300
https://doi.org/10.1016/j.engappai.2019.103300
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/978-3-540-85984-0_20
https://doi.org/10.1007/s00500-014-1424-4
https://doi.org/10.1007/s00500-014-1424-4
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1080/0952813X.2018.1430858
https://doi.org/10.1007/s00170-016-9523-2
https://doi.org/10.1007/s00170-016-9523-2

	An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm
	Abstract
	1 Introduction
	2 Literature survey of some recent SMA and chaotic variants
	3 Chaotic slime mold algorithm
	3.1 Background of proposed research
	3.2 Basic slime mold algorithm
	3.3 Types of chaotic functions
	3.4 Algorithm of proposed work

	4 Test benchmark functions
	5 Results of proposed algorithm
	5.1 Testing of uni-modal functions (U-modal)
	5.2 Testing of multi-modal test functions (M-modal)
	5.3 Testing of fixed dimension function (F-modal)

	6 Multi-disciplinary engineering design problems
	6.1 Three-bar truss design problem
	6.2 Pressure vessel engineering problem
	6.3 Compression spring engineering design
	6.4 Welded beam design
	6.5 Cantilever beam design
	6.6 Gear train design
	6.7 Speed reducer engineering design problem
	6.8 Belleville spring design
	6.9 Rolling element bearing design
	6.10 Multidisc-clutch design

	7 Conclusion
	8 Limitation and future scope
	References




