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Abstract

Systems in thermodynamic equilibrium are not only characterized by time-independent 

macroscopic properties, but also satisfy the principle of detailed balance in the transitions between 

microscopic configurations. Living systems function out of equilibrium and are characterized by 

directed fluxes through chemical states, which violate detailed balance at the molecular scale. 

Here we introduce a method to probe for broken detailed balance and demonstrate how such 

nonequilibrium dynamics are manifest at the mesosopic scale. The periodic beating of an isolated 

flagellum from Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes. 

With a model, we show how the breaking of detailed balance can also be quantified in stationary, 

nonequilibrium stochastic systems in the absence of periodic motion. We further demonstrate such 

broken detailed balance in the nonperiodic fluctuations of primary cilia of epithelial cells. Our 

analysis provides a general tool to identify nonequilibrium dynamics in cells and tissues.

When a system reaches thermodynamic equilibrium, its properties become stationary in 

time, which requires a net balance between rates of transitions into and out of any particular 

microstate of the system. Systems in thermodynamic equilibrium, however, are known to be 

balanced in an even stronger way. They obey detailed balance, in which transition rates 

between any two microstates are pairwise balanced (Fig. 1A). This means there can be no 

net flux of transitions anywhere in the phase space of system states. This principle was 

identified and used by Ludwig Boltzmann in his pioneering development of statistical 

mechanics, the microscopic basis for thermodynamics (1). In contrast, living systems 
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operate far from equilibrium, and molecular-scale violations of detailed balance lie at the 

heart of their dynamics. For instance, metabolic and enzymatic processes drive closed-loop 

fluxes through the system’s chemical states (Fig. 1B) (2).

Nonequilibrium driving can boost intracellular transport (3–5), the fidelity of transcription 

(6), chemotaxis (7, 8), and the accuracy of sensory perception (9, 10). To understand cell 

function, it is thus important to determine whether particular cellular processes result from 

nonequilibrium activity, but this can be challenging. For instance, the stochastic 

nonequilibrium motion of tracer particles or fluorescently labeled proteins in cells is often 

deceptively similar to that of thermally agitated Brownian particles (3–5, 11). It is unclear, 

however, to what extent the dynamics at such mesoscopic scales violate detailed balance, 

even if the system is out of equilibrium. Theoretically, detailed balance can reemerge at large 

scales for nonequilibrium systems, which break detailed balance at small scales (12). To test 

for detailed balance and diagnose nonequilibrium dynamics at mesoscopic scales, we 

introduce a noninvasive approach based on quantifying flux loops (13) in configurational 

phase spaces of strongly fluctuating stochastic steady-state systems. This should be 

contrasted with the deterministic dynamics of active swimmers, for which broken detailed 

balance is evident in the nonreciprocal nature of their motion (14). Moreover, our method is 

not limited to measuring conformational degrees of freedom, but can also include chemical 

variables, such as pH or ion concentrations.

We first illustrate this approach on a system displaying unmistakable nonequilibrium 

motion: a beating flagellum of Chlamydomonas reinhardtii. The main mechanical 

component of eukaryotic flagella is a conserved microtubule structure, the axoneme. Dynein 

motors drive relative axial sliding of the microtubules composing the axoneme, resulting in 

periodic beating (15, 16). We isolated and demembranated flagella from C. reinhardtii (17, 

18) and reactivated the axonemes by addition of adenosine triphosphate (ATP). Figure 1C 

shows snapshots of the beat cycle acquired by high-speed phase contrast microscopy (movie 

S1). We decomposed the axoneme shapes into the dynamic normal modes of a finite elastic 

filament freely suspended in a liquid (19), obtaining amplitudes a1(t), a2(t), a3(t) for the first 

three modes (Fig. 1D). From the time series of these amplitudes, we constructed a trajectory 

in the phase space spanned by the three modes. We discretized this space into a coarse-

grained phase space (CGPS) (fig. S1) and determined the probabilities pα to be in box α by 

temporal averaging (18). The steady-state dynamics are described by net transition rates 

wα, β = Nα, β − Nβ, α /ttotal determined by counting the number of transitions between 

adjacent states α and β in the time window ttotal. These rates wα, β determine the vector 

components of the flux j  from α to β (Fig. 1, F and G). In thermodynamic equilibrium, all 

these fluxes must vanish. By contrast, flux in closed loops is possible in a nonequilibrium 

steady state. The results of such a probability flux analysis (PFA) for the beating cilium are 

shown in Fig. 1E, with vector fields indicating the fluxes for the first three modes. Figure 1, 

F and G, shows the a1 × a2 and a1 × a3 projections of CGPS probability and flux map. The 

clearly visible flux loops in phase space reflect the nonequilibrium, steady-state dynamics of 

the beating flagellum, and these fluxes are absent in the equilibrium dynamics of a 

microtubule (figs. S17 and S18).
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The beating flagellum is an obvious nonequilibrium system, driven through its 

configurations at a defined frequency with relatively little stochasticity (20), resulting in a 

narrow band of populated states in phase space through which the trajectory cycles 

unidirectionally. To test our approach on a purely stochastic system, we numerically studied 

two overdamped, tethered beads at positions x1(t) and x2(t) coupled by a spring (Fig. 2A). 

This model system can be driven out of equilibrium by connecting the two beads to different 

heat baths at temperatures T1 and T2, respectively, leading to heat flux from hot to cold. This 

minimal model is similar to a class of thermal ratchet models that have been studied, perhaps 

most famously by Feynman (21, 22). With T2 = 1:5T1 (Fig. 2B), the two simulated time 

series of random displacements were individually still indistinguishable from equilibrium 

dynamics. In particular, displacements maintained a Gaussian distribution, even in this 

nonequilibrium situation (fig. S6) (18). When we applied PFA, however, we found 

significant probability fluxes in the x1 × x2 plane of CGPS (Fig. 2C). These flux loops 

demonstrate broken detailed balance, revealing the nonequilibrium nature of the system’s 

dynamics. At equilibrium (T2 = T1), flux loops vanished (Fig. 2D).

The finite length of time trajectories creates a noise floor in the measured transition rates. To 

assess the statistical significance of the fluxes determined by PFA, we used trajectory 

bootstrapping (18, 23). Error estimates are shown as disks centered on flux arrowheads (fig. 

S2). The comparison with noise demonstrates the statistical significance of fluxes for the 

nonequilibrium system (T2 = 1.5T1, Fig. 2C), and their statistical insignificance in 

equilibrium (T2 = T1, Fig. 2D). The simulations thus demonstrate that even a purely 

stochastically driven system can be probed for nonequilibrium behavior by detecting broken 

detailed balance (figs. S4 and S5).

We next turned to a biological system that exhibits a stochastic steady state (18) (figs. S7 to 

S13). We imaged primary cilia of Madin-Darby canine kidney II (MDCK-II) epithelial cells 

grown in culture to a confluent layer (Fig. 3A). Primary cilia are hairlike organelles that 

project from many eukaryotic cells and can transduce mechanical and chemical stimuli into 

intracellular signals (24). Using invasive biochemical treatments, prior work (25) provided 

indirect evidence for nonequilibrium dynamics of these cilia. Flagella and primary cilia are 

structurally related, but the latter often lack the dynein machinery necessary for flagellar 

beating (26). Indeed, in marked contrast to the flagellum, we found that primary cilia of 

MDCK cells fluctuate in a way that appears random (Fig. 3B, movie S2, and figs. S14 and 

S15).

To analyze cilia dynamics, we characterized their state by the average deflection angle θ(t) 
from the normal and the average curvature κ(t) (Fig. 3A) and calculated the probability flux 

map in the θ × κ phase space (Fig. 3, C to E). From the time series θ(t) and κ(t) in Fig. 3B 

(left), we found a clockwise circulation pattern (white box, Fig. 3C), indicative of broken 

detailed balance. To quantify the statistical robustness of this pattern, we calculated the 

contour integral along the flux loop (fig. S3) enclosed by the white box (Fig. 3C), 

Ω=∮ j ⋅ d ℓ . We found μΩ/σΩ = 2.1, where μΩ and σΩ are the bootstrapped mean and 

standard deviation of Ω (Fig. 3F) (18), indicating a statistically significant flux loop (P = 

0.018, z-test). Long trajectories sometimes exhibited multimodal behavior in the angle 
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distribution originating from a slow drift in the steady-state angle (Fig. 3G). In such cases, 

high-pass filtering resulted in a statistically significant clockwise circulation pattern (Fig. 

3D) (18). Actin-myosin dynamics underlie many types of cellular dynamics (4, 5, 27, 28), 

and the cilium basal body is embedded in the actin cortex (Fig. 3A, inset), providing a 

mechanism for the nonequilibrium motion of the cilium (25, 29, 30). To test whether 

detailed balance was restored when the main driving force was turned off, we treated 

MDCK-II cells with blebbistatin, a drug that inhibits nonmuscle myosin II (Fig. 3E). This 

treatment suppressed the amplitude of angle and curvature fluctuations (Fig. 3B, right), as 

seen previously (25). The analysis of phase-space trajectories revealed that blebbistatin 

treatment (Fig. 3E) decreased phase space flux and rendered the residual fluxes statistically 

insignificant (P = 0.16) (Fig. 3F). As a further control, we observed that ATP depletion also 

suppressed, albeit not completely, cilia fluctuations and strongly decreased the flux pattern 

in phase space (P = 0.16) (fig. S16) (18). Finally, we verified the steady-state nature of cilia 

dynamics by the vanishing divergence of the fluxes in phase space (fig. S13). Taken 

together, these results demonstrate that the stochastic dynamics of the cilium can be clearly 

identified to be of nonequilibrium origin.

Steady-state fluctuations are common in living systems. It has, however, proved challenging 

to determine whether such stochastic dynamics result from nonequilibrium activity in given 

cases (3, 11). The PFA approach described here uses commonly observable conformational 

degrees of freedom to identify nonequilibrium dynamics in steady-state systems. This 

approach is broadly applicable to active biological systems, ranging from bacteria and the 

cell nucleus (11), all the way to tissues. Our method is intrinsically noninvasive, being based 

on imaging alone without requiring biochemical or mechanical manipulation. This is in 

contrast to other methods, where nonequilibrium fluctuations can be identified by the 

fluctuation-dissipation theorem or its nonequilibrium generalizations (27, 31). Furthermore, 

our method does not focus on rare events (32) or transitions between equilibrium states (33–

35), nor does it rely on Markovian dynamics (33). It is interesting to consider possible 

extensions of our method to quantify energy dissipation or entropy production (36).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank J. Lippincott-Schwartz, U. Seifert, G. Berman, A. El-Hady, B. Machta, and J. Gore for discussions. This 
research was supported by a Lewis-Sigler fellowship (C.P.B.), the German Excellence Initiative via the program 
“NanoSystems Initiative Munich” (C.P.B.), and the Cluster of Excellence and Deutsche Forschungsgemeinschaft 
(DFG) Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) (C.F.S.), a 
Human Frontier Science Program Fellowship (N.F.), the European Research Council Advanced Grant PF7 
ERC-2013-AdG, Project 340528 (C.F.S), the DFG Collaborative Research Center SFB 937 (Project A2), and a 
research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands 
Organization for Scientific Research (NWO). This work was initiated at the Aspen Center for Physics, which is 
supported by NSF grant PHY-1066293, and was further supported in part by the NSF under grant NSF 
PHY11-25915. Experiments with Chlamydomonas flagella were performed during the 2011 Physiology Course at 
the Marine Biological Laboratory, Woods Hole, MA, supported in part by NIH grants R13GM085967 and 
P50GM068763.

Battle et al. Page 4

Science. Author manuscript; available in PMC 2021 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES AND NOTES

1. Boltzmann L, Sitzungsberichte Akad. Wiss., Vienna, part II 66, 275–370 (1872).

2. Alberts B et al., Molecular Biology of the Cell (Garland Science, New York, ed. 5 2007).

3. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA, J. Cell Biol. 183, 583–587 (2008). 
[PubMed: 19001127] 

4. Fakhri N et al., Science 344, 1031–1035 (2014). [PubMed: 24876498] 

5. Guo M et al., Cell 158, 822–832 (2014). [PubMed: 25126787] 

6. Hopfield JJ, Proc. Natl. Acad. Sci. U.S.A. 71, 4135–4139 (1974). [PubMed: 4530290] 

7. Berg HC, Purcell EM, Biophys. J. 20, 193–219 (1977). [PubMed: 911982] 

8. Cates ME, Rep. Prog. Phys. 75, 042601 (2012). [PubMed: 22790505] 

9. Lan G, Sartori P, Neumann S, Sourjik V, Tu Y, Nat. Phys. 8, 422–428 (2012). [PubMed: 22737175] 

10. Nadrowski B, Martin P, Jülicher F, Proc. Natl. Acad. Sci. U.S.A. 101, 12195–12200 (2004). 
[PubMed: 15302928] 

11. Weber SC, Spakowitz AJ, Theriot JA, Proc. Natl. Acad. Sci. U.S.A. 109, 7338–7343 (2012). 
[PubMed: 22517744] 

12. Egolf DA, Science 287, 101–104 (2000). [PubMed: 10615038] 

13. Zia R, Schmittmann B, J. Stat. Mech. 2007, P07012 (2007).

14. Purcell EM, Am. J. Phys. 45, 3–11 (1977).

15. Riedel-Kruse IH, Hilfinger A, Howard J, Jülicher F, HFSP J. 1, 192–208 (2007). [PubMed: 
19404446] 

16. Wan KY, Goldstein RE, Phys. Rev. Lett. 113, 238103 (2014). [PubMed: 25526162] 

17. Alper J, Geyer V, Mukundan V, Howard J, Methods Enzymol. 524, 343–369 (2013). [PubMed: 
23498749] 

18. Materials and methods are available as supplementary materials on Science Online.

19. Aragon SR, Pecora R, Macromolecules 18, 1868–1875 (1985).

20. Ma R, Klindt GS, Riedel-Kruse IH, Jülicher F, Friedrich BM, Phys. Rev. Lett. 113, 048101 (2014). 
[PubMed: 25105656] 

21. Feynman RP, Leighton RB, Sands M, The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley, 
Reading, MA, 1966).

22. Sekimoto K, J. Phys. Soc. Jpn. 66, 1234–1237 (1997).

23. Shannon CE, Weaver W, The Mathematical Theory of Communication (Univ. of Illinois Press, 
Urbana, 1949).

24. Singla V, Reiter JF, Science 313, 629–633 (2006). [PubMed: 16888132] 

25. Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF, Proc. Natl. Acad. Sci. U.S.A. 
112, 1410–1415 (2015). [PubMed: 25605896] 

26. Barnes BG, J. Ultrastruct. Res. 5, 453–467 (1961). [PubMed: 13865089] 

27. Mizuno D, Tardin C, Schmidt CF, Mackintosh FC, Science 315, 370–373 (2007). [PubMed: 
17234946] 

28. Brangwynne CP, Koenderink GH, Mackintosh FC, Weitz DA, Phys. Rev. Lett. 100, 118104 (2008). 
[PubMed: 18517833] 

29. Antoniades I, Stylianou P, Skourides PA, Dev. Cell 28, 70–80 (2014). [PubMed: 24434137] 

30. Marshall WF, Curr. Top. Dev. Biol. 85,1–22 (2008). [PubMed: 19147000] 

31. Prost J, Joanny JF, Parrondo JM, Phys. Rev. Lett. 103, 090601 (2009). [PubMed: 19792774] 

32. Bustamante C, Liphardt J, Ritort F, Phys. Today 58, 43–48 (2005).

33. Crooks GE, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, 2721–2726 
(1999). [PubMed: 11970075] 

34. Jarzynski C, Phys. Rev. Lett. 78, 2690–2693 (1997).

35. Liphardt J, Dumont S, Smith SB, Tinoco I Jr., Bustamante C, Science 296, 1832–1835 (2002). 
[PubMed: 12052949] 

36. Seifert U, Phys. Rev. Lett. 95, 040602(2005). [PubMed: 16090792] 

Battle et al. Page 5

Science. Author manuscript; available in PMC 2021 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Detailed balance and actively beating Chlamydomonas flagella.
(A) In thermodynamic equilibrium, transitions between microscopic states are pairwise-

balanced, precluding net flux among states. (B) Nonequilibrium steady states can break 

detailed balance and exhibit flux loops. (C) Snapshots separated by 24 (orange-yellow), 7, 

and 10 ms in an isolated Chlamydomonas flagellum’s beat cycle (movie S1). Arrows on the 

central circle indicate the direction of time. Color corresponds to position in (E). (D) The 

first three bending modes for a freely suspended flexible rod. (E) A three-dimensional (3D) 

probability flux map of flagellar dynamics in the CGPS spanned by the first three modes. (F 
and G) Probability distribution (color) and flux map (white arrows) of flagellar dynamics in 

CGPS spanned by first and second modes (F), and first and third modes (G). The white 

legend indicates the flux scale.
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Fig. 2. Brownian-dynamics simulation of 1D bead-spring model.
(A) Model schematic. (B) Time series of the bead positions for T2 = 1.5T1 and equal spring 

constants. See figs. S4 and S5 for the general case (18). (C and D) Probability distribution 

(color) and flux map (white arrows) in CGPS spanned by x1 and x2 for the simulation in 

panel B (C) and for a simulation with T2 = T1 (D). Translucent disks represent a 2σ 
confidence interval for fluxes.
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Fig. 3. Nonequilibrium fluctuations of MDCK-II primary cilia.
(A) Left: Schematic of primary cilium and anchoring of the basal body in the cell cortex 

with angle θ and curvature, κ, defined positive as shown. Right: Snapshots of cilium, from 

differential interference contrast microscopy, taken at time points marked in (B). Scale bar: 2 

μm. (B) Angle (top) and curvature time series (bottom) of an active cilium (left) and of a 

blebbistatin-treated cilium (right). Frame rate: 25 Hz; scale bar: 2 μm. (C to E)Phase-space 

probability distribution (color) and flux map (white arrows) of ciliary fluctuations in CGPS 

spanned by θ and κ for (C): the untreated time series from (B); (D) a high-pass filtered time 

series of an untreated cilium (window size = 200 s); (E) the fluctuations of the blebbistatin-

treated cilium from (B). The translucent disks represent a 2σ confidence interval for fluxes. 

(F) Distributions of flux contour integrals for untreated (purple) and blebbistatin-treated 

(pink) cilia. (G) Angle distribution for the high-pass filtered cilium data in (D).
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