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Abstract

Background: Computational approaches are often used to predict regulatory RNAs in bacteria, but their success is
limited to RNAs that are highly conserved across phyla, in sequence and structure. The ANTAR regulatory system
consists of a family of RNAs (the ANTAR-target RNAs) that selectively recruit ANTAR proteins. This protein-RNA
complex together regulates genes at the level of translation or transcriptional elongation. Despite the widespread
distribution of ANTAR proteins in bacteria, their target RNAs haven’t been identified in certain bacterial phyla such
as actinobacteria.

Results: Here, by using a computational search model that is tuned to actinobacterial genomes, we comprehensively
identify ANTAR-target RNAs in actinobacteria. These RNA motifs lie in select transcripts, often overlapping with the
ribosome binding site or start codon, to regulate translation. Transcripts harboring ANTAR-target RNAs majorly encode
proteins involved in the transport and metabolism of cellular metabolites like sugars, amino acids and ions; or encode
transcription factors that in turn regulate diverse genes.

Conclusion: In this report, we substantially diversify and expand the family of ANTAR RNAs across bacteria. These
findings now provide a starting point to investigate the actinobacterial processes that are regulated by ANTAR.
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Background
Actinobacteria is a ubiquitous bacterial phylum, widely
distributed across terrestrial and aquatic ecosystems [1].
The phylum consists of very diverse bacteria, ranging
from defensive mutualists dwelling in varied habitats to
gastrointestinal commensals that provide beneficial
properties to their host. They are also the largest source
of novel natural antibiotics, enzymes and secondary me-
tabolites. In addition to their immense environmental
and industrial impact, this phylum also consists of path-
ogens such as species from Corynebacterium, Nocardia,
Mycobacterium and Rhodococcus, which cause disease in
humans, animals and plants [2].

The diversity of environmental niches seen within the
actinobacteria phylum argues for diverse mechanisms of
gene regulation that would allow an efficient response to
environmental changes. While a body of literature now
places non-coding RNAs and RNA-protein based mech-
anisms as a major mode of gene-regulation in several
model bacteria (reviewed in [3–9]), our knowledge of
RNA-based regulatory mechanisms in actinobacteria re-
mains limited ([10–14], and reviewed in [15, 16]).
One approach to identifying regulatory RNAs in actino-

bacteria, has been using deep sequencing of the transcrip-
tome coupled with 5′-RACE mapping, to identify
potential RNAs that map to the untranslated regions
(UTRs). These RNAs are then subjected to structure pre-
diction tools [17–19] and compared against known RNA
families to confirm the presence of regulatory RNAs. This
approach in Corynebacterium and Streptomyces under ex-
ponential growth conditions has led to the identification

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: arati@ncbs.res.in
1National Centre for Biological Sciences, Tata Institute of Fundamental
Research, GKVK Campus, Bellary Road, Bangalore 560065, India
Full list of author information is available at the end of the article

Mehta and Ramesh BMC Microbiology          (2021) 21:159 
https://doi.org/10.1186/s12866-021-02234-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12866-021-02234-x&domain=pdf
http://orcid.org/0000-0001-8655-0051
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:arati@ncbs.res.in


of new regulatory RNAs such as the 6C RNA family, 6S
RNA family, T-box leader element, novel sRNAs and
trans-encoded RNAs [11, 20]. In addition this approach
has helped to identify several known metabolite-
responsive RNAs such as Mn2+ sensing riboswitches
(yybP-ykoY), thiamine pyrophosphate (TPP) riboswitches,
flavin mononucleotide (FMN) riboswitches, S-adenosyl
methionine (SAM)-dependent riboswitches and cobala-
min riboswitches (binds to adenosylcobalamin) [11, 20]. A
similar approach led to the discovery of 75 novel small
RNAs in Rhodococcus sp. when grown in glucose and pyr-
ene as sole carbon sources, a small fraction of which have
now been assigned functions [12]. Such an approach re-
quires cells to be grown under specific conditions of inter-
est, and do not identify the repertoire of RNAs that the
cell can produce in response to unknown signals and cues.
Computational methods have also been successfully

employed, to identify regulatory RNAs in actinobacteria.
In one study, homologs of genes were first identified and
their upstream intergenic regions were aligned and
searched for patterns/ motifs using RNA secondary
structure prediction tools such as RNA-pattern [18] and
PAT (A.V.Seliverstov, unpublished). This led to the
identification of LEU element [10], T-box [10] and B12
[21] riboswitches in several actinobacteria. More gener-
ally, the RNA family database (Rfam) employs covariance
analysis, wherein bacterial genome sequences are
scanned for conserved base-pairing patterns, to identify
structurally conserved RNA families in the genome.
Based on this, the Rfam database suggests the presence
of ~ 90 cis-regulatory RNA families in one or more acti-
nobacteria (Rfam v14.2). While these approaches have
identified RNAs in actinobacteria, they are mostly lim-
ited to RNA families that are highly conserved in se-
quence and structure, where homologs from different
bacterial phyla closely resemble each other.
For some RNA families, the highly GC rich actinobac-

terial genomes may result in RNA sequences that are di-
verged from their firmicute or proteobacterial homologs,
and hence not easily identified through routine sequence
based or structure based searches. One such example is
the 6S RNA family, which could only be identified in
actinobacteria using a clustering method wherein the
sub-optimal RNA structures were used to find function-
ally relevant motifs [13]. Known 6S RNAs from related
bacterial species of proteobacteria, firmicutes and cyano-
bacteria were analyzed for similarity based on sequence
and minimum free energy (MFE) structures. Despite a
common function, these RNAs lack sequence and struc-
ture similarity. Instead of MFE structure when sub-
optimal structures were analyzed, these RNAs fell into
different clusters, 3 of which represented most of the 6S
RNAs. Information from these 3 clusters was used to
identify 6S RNAs across genomes. Through this

clustering method, several 6S RNAs were obtained in
Mycobacteria and Streptomyces species, representative of
actinobacteria.
We observed a similar discrepancy in an important

family of RNAs known to be targets of the ANTAR
RNA-binding protein. RNAs bound by ANTAR proteins
are conserved in structure and are widespread among
firmicutes and proteobacteria [22–27]. In actinobacteria,
however, despite the widespread presence of ANTAR
protein domains (Pfam: PF03861), their target RNAs
remained unidentified. Only recently, in a study focusing
on Mycobacteria, these RNAs were identified using a
genome-wide covariance search approach combined
with clustering [28]. A search model (structure based se-
quence alignment) enriched in firmicute and proteobac-
terial RNAs showed very high sequence and structure
similarity and as a consequence failed to predict RNAs
in actinobacteria. When diverse RNAs from different fir-
micutes and proteobacteria were added to the search
model, they separated into several clusters based on se-
quence and structure similarity. This clustering resulted
in a search model that successfully identified RNAs in
Mycobacteria by removing the bias imposed by highly
similar or highly dissimilar RNAs. Notably, neither the
firmicute [27] nor the mycobacterial search models [28]
were effective in finding ANTAR RNAs across the acti-
nobacterial phylum.
Here, we identify the repertoire of ANTAR-target

RNAs across actinobacteria. To identify these RNAs we
first developed an actinobacteria-centric search model
which when used to search against all actinobacterial ge-
nomes, successfully identified ANTAR-target RNAs. We
find that the family of ANTAR-target RNAs is present
across all actinobacteria and co-occurs with ANTAR
proteins. There are only a few examples of bacteria
where despite the presence of ANTAR proteins, we are
unable to identify RNA targets. These RNAs resemble
‘cis’ regulatory RNAs in their genomic locations, typic-
ally residing in the untranslated region (UTR) or near
the start of a coding region. COG (Cluster of Ortholo-
gous Genes) database is a tool to functionally annotate
protein sequences based on homology to known protein
sequences. COG analysis of the genes distal to ANTAR-
target RNAs reveals that these RNAs are associated with
transport and metabolism of small molecule metabolites,
ranging from amino acids to metal ions to diverse sugar
substrates. Additionally, ANTAR-target RNAs also ap-
pear linked to genes encoding transcription factors that
are known to modulate the expression of several trans-
porters. Our study underlines the presence of the ANTA
R protein-RNA regulatory system in actinobacteria, and
its importance in governing the uptake and metabolism
of a variety of nutrients. This approach of scanning an
existing RNA family for sequence diversity and using
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that to find homologs in distant phyla may be broadly
applicable to other RNA families.

Results
Identifying ANTAR-target RNAs across phylum
actinobacteria
Analysis of the previously reported ANTAR RNAs re-
vealed that ~ 400 ANTAR-target RNAs are known in fir-
micutes and proteobacteria [27], and they are conserved
in secondary structure with dual stem loops separated
by a linker (Fig. 1A). Each stem possesses a hexanucleo-
tide loop where the first and fourth positions are con-
served in sequence as an adenine (A1) and guanine (G4)
respectively (Fig. 1A). More recently, in a study focusing
on ANTAR RNAs in Mycobacteria, a covariance-based

computational approach was used to search for ANTAR
RNAs. Here it was shown that a focused search model (a
set of RNAs aligned based on similar secondary struc-
ture and sequence) consisting of highly similar firmi-
cute/proteobacterial RNAs was unable to predict RNAs
in Mycobacteria. This is likely due to a divergence of
mycobacterial ANTAR RNAs from their firmicute/pro-
teobacterial homologs. Only when the search model was
modified to include more diversity that expands the se-
quence space (partially focused search model), was the
search capable of finding RNAs in Mycobacteria. This
resulted in ~ 90 ANTAR-target RNAs identified across
all mycobacterial species [28].
To further identify ANTAR-target RNAs in actinobac-

teria, we used the partially focused search model

Fig. 1 Improvised search model to predict ANTAR-target RNAs in actinobacteria. A Cartoon showing the ANTAR protein-RNA regulatory system. Specific
signals activate the ANTAR protein (grey), which upon activation binds the dual stem loop ANTAR-target RNA (blue). This results in regulation of the
downstream gene (gene linked to ANTAR-target RNA, shown in purple). B Schematic shows the steps performed to identify ANTAR-target RNAs using a
covariance-based computational search. Previously reported search models with too little diversity (focused) did not yield any results in actinobacteria, while a
search model with only moderate diversity (partially focused) identified ~ 243 RNAs in actinobacteria, with a bit score threshold≥14. 30 actinobacterial
representative RNAs from this set were used to enrich the search model further and this actionbacteria centric search model (diffused search model) resulted in
a comprehensive list of ANTAR-target RNAs in actinobacteria. The probability of finding RNAs in actinobacteria is represented as a bar (red indicates high
probability). C Bar plot (left) shows the total number of actinobacterial genomes where RNAs are predicted using three different search models (purple, gray
and green). Bar plot (right) shows the total number of RNAs predicted using three different search models. The diffused search model is able to predict RNAs in
more than 60% of actinobacterial genomes as compared to the focused and partially focused search model. D RNA sets from firmicutes/ proteobacteria and
actinobacteria were clustered using cmbuild. Bar plot shows the number of clusters obtained with varying sequence identity cut-offs imposed using cmbuild.
Clusters obtained using 51–54% sequence identity cut-off are shown as an inset. E Consensus structure obtained for the actinobacterial ANTAR-target RNA
sequences from the largest cluster with 55% sequence identity is visualized using Forna (Left). Stems (green) while the internal loops (blue) and the unpaired
nucleotides (pink) are shown. Parameters obtained from RNAz for the largest cluster with 55% sequence identity are shown (Right)
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developed in the mycobacterial study (Fig. 1B) and per-
formed a covariance-based RNA search against all se-
quenced (~ 720) actinobacterial genomes. This search
could identify ~ 243 ANTAR-target RNAs with high
confidence. However, these newly found RNAs were re-
stricted to less than 30% (197 of 720) sequenced actino-
bacterial genomes (Fig. 1B-C).
In order to improve the search and predict RNAs more

comprehensively across actinobacteria, we picked 30 rep-
resentative RNAs from the initial 243 hits and created a
new and fully actinobacterial search model (Add-
itional file 1: Table S1). This model was then used as input
in a covariance search against the 720 genomes. The RNA
hits obtained from this search were filtered through a bit
score ≥ 15. The bit score reports on the similarity of each
RNA hit to the consensus derived from the search model
as compared to a null model of non-homologous se-
quences. We have also manually examined each individual
RNA hit to ensure that the reported RNAs do possess the
known ANTAR target RNA features. This includes the
dual stem-loop structured motif with hexanucleotide
loops and a linker region that lies between 2 to 25 nucleo-
tides. After manual curation, ~ 1228 RNAs were predicted
with high confidence (Additional file 1: Table S2, S3), and
importantly- RNAs were found in nearly 74.5% of se-
quenced actinobacteria (Fig. 1B-C). Additionally, we took
the 30 actinobacterial RNA sequences from the diffused
search model and shuffled each sequence to result in 15,
000 new sequences (500 sequences from each RNA).
Shuffling was performed using fasta-shuffle-letters from
the MEME-suite with all positions shuffled or maintaining
the dinucleotide frequencies (https://meme-suite.org/
meme/doc/fasta-shuffle-letters.html). These shuffled se-
quences serve as negative control data sets (Additional file
1: Fig. S1A). Notably, our search identified only two RNA
hits with a bit score ≥ 15 from these sets suggesting that
our false positive rates are extremely low. Comparing the
performance statistics of the searches from the 3 search
models (focused/ partially focused/ diffused) reveals a sig-
nificant advantage gained by the diffused model over the
other two models (Fig. 1C, Additional file 1: Fig. S1B).
Hence the RNAs identified through the diffused search
model were considered for further analyses.
Removal of identical RNAs from different strains of a

species resulted in ~ 611 unique ANTAR-target RNAs.
Moreover, the 243 RNAs predicted initially, were also re-
covered in this search. This includes ANTAR-target RNAs
predicted in mycobacterial species, which have been ex-
perimentally validated as binders of ANTAR proteins [28].
We additionally analyzed this search model using the

cmbuild program [29], which creates a statistical profile
of alignments and thus reports on the extent of se-
quence conservation and base-pairing potential (co-vari-
ation) within the aligned RNAs. Based on sequence (42%

sequence identity) and structure (Covariance Model,
CM score = 0.48), the actinobacterial seed alignment
shows significantly higher variation than the partially fo-
cused firmicute/proteobacteria seed (51% sequence iden-
tity and a CM score of 0.61). These results indicate that
an actinobacteria-enriched search model that allows
higher sequence/structural diversity while maintaining
the core defining features of the RNA family is ideal for
identifying new RNAs in actinobacteria.
In order to understand the characteristics of ANTAR-

target RNAs in actinobacteria, we compared the 611
predicted actinobacterial RNAs with the previously re-
ported 306 ANTAR-target RNAs from firmicutes and
proteobacteria [27]. Using cmbuild the RNAs from each
set (actinobacterial versus firmicute-proteobacteria) were
clustered at increasing sequence identity thresholds (Fig.
1D). We find a stark difference between the two sets of
RNAs. The actinobacterial RNAs start to separate out as
clusters at a much lower sequence identity threshold
(50%) when compared to firmicutes and proteobacteria
(55%). This shows inherent diversity within the actino-
bacterial RNAs, possessing less than 50% sequence iden-
tity. We further analyzed the largest cluster of RNAs
from each set for the extent of structural conservation.
Even here, RNAs that are similar in sequence and hence
clustered together showed a low CM (Covariance
Model) score of ~ 0.44 when compared to the firmicutes
and proteobacterial set (CM score: ~ 0.60). This con-
firms that actinobacterial RNAs allow for significantly
higher sequence and structure variations (Additional file
1: Fig. S1C).
Next we subjected all the RNA hits to analysis using

RNAz [17, 30] which computes a consensus secondary
structure. We find that these RNAs, as expected fold into
a dual stem-loop motif maintaining the core ANTAR-tar-
get RNA structural features. The consensus secondary
structure for these RNAs shows more than 50% conserva-
tion of adenine and guanine in loop positions 1 and 4 re-
spectively, and ~ 50% conservation within the stems
(Additional file 1: Fig. S2A). The largest cluster of RNAs
(~ 75% of all the predicted RNAs) shows a minimum free
energy of − 7.90 and a structure conservation index (SCI)
of 0.48 (Fig. 1E). The mean z-score of − 1.09 obtained for
these RNAs indicates that the structure motif observed is
a stable true motif and does not occur by chance. The test
for functionality based on SCI and z-score indicates that
these RNAs belong to ‘functional RNA’ class (P > 0.5). A
similar RNAz analysis for all actinobacterial RNA hits is
summarized in Additional file 1: Fig. S2B.

Distribution of ANTAR proteins and target-RNAs in
actinobacteria
With a comprehensive list of ~ 611 ANTAR-target
RNAs identified, we looked at their distribution in the
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128 known genera of actinobacteria and found that
RNAs were predicted in genomes representing 87 genera
which include 219 species (Fig. 2A, inset). The majority
of actinobacterial species possess 1 to 3 RNAs per gen-
ome (Fig. 2A), while some species of Actinomyces,
Microbacterium, Bifidobacterium, Trupurella and
Arthrobacter appear to possess nearly 10 or even up to
36 different RNAs in the same genome (Fig. 2A-B).
The ANTAR domain is an RNA-binding domain and

proteins containing this domain are known to selectively
recognize and bind RNAs of this family. Hence we asked
if the distribution of RNAs reflected the distribution of
the ANTAR proteins. To this end, we performed an
HMMsearch using the ANTAR domain HMM model
from the protein family database (Pfam: PF03861). With
an e-value threshold set to 1e-4, we identified ~ 1459
ANTAR-domain containing proteins in 245 species of
actinobacteria. As seen for the RNAs, the distribution of
ANTAR proteins too shows high variation, ranging from
1 to greater than 10 ANTAR proteins in a genome (Fig.
2B, Additional file 1: Fig. S3). Interestingly, within the
same genome, we do not always see a one to one correl-
ation between the number of RNAs predicted and the
number of ANTAR proteins present (Fig. 2B). For ex-
ample, in Xylanimonas there are 3 distinct ANTAR do-
main proteins with unique domain architectures.
However, we predict only one ANTAR target RNA here,
suggesting that the same RNA may act as a hub through
which many different ANTAR proteins may act, towards
different cellular outcomes. In contrast, Trueperella ap-
pears to possess a single ANTAR domain protein but 12
predicted RNAs, suggesting that many convergent pro-
cesses may be controlled by ANTAR in Trueperella.
We found examples (< 30% of species) where no RNAs

were predicted despite the presence of one or more
ANTAR proteins in the genome. Similarly, in a few ex-
amples no ANTAR proteins are present in a genome
even though ANTAR-target RNAs are predicted with
high confidence. Whether or not ANTAR proteins and
RNAs have an active role in these organisms, or if alter-
nate approaches are required to find RNAs and proteins
in these organisms remains to be seen (Fig. 2B, Add-
itional file 1: Fig. S3). Regardless, these analyses imply
that within phylum actinobacteria there is diversity of
ANTAR function and mechanism. While the presence
of RNAs is not sufficient to indicate active association
with the ANTAR protein, we note examples from previ-
ous studies where an RNA-binding activity for actino-
bacterial ANTAR proteins has been reported [28, 31].

ANTAR-target RNAs are located in untranslated and
coding regions of mRNAs
Previous studies have shown that ANTAR proteins,
upon activation (through phosphorylation) bind to their

target-RNAs and regulate downstream gene expression
in cis [22, 24, 27, 28, 31–33]. Hence we analyzed the
genomic locations and contexts of the predicted RNAs.
Based on genomic location, RNAs were categorized as:

1) intergenic (RNA lies 15 nt–500 nt upstream to an
ORF), 2) sequester RBS or AUG (RNA harbors the
ribosome-binding site (RBS) or the start codon or 3) in-
side ORF (RNA resides after the ORF start-site and lies
within ≤100 nt of the ORF start-site) (Fig. 3A-B).
We find that from a total of 611 RNAs analyzed, ~

39% RNAs are intergenic with a majority lying immedi-
ately upstream of an ORF, possibly in the 5’UTR of the
corresponding mRNA (Fig. 3C, Additional file 2: Table
S4). These RNAs were subjected to rho-independent ter-
minator prediction using TransTermHP v2.08 [34] but
only few of the RNAs appear to reside upstream of a ter-
minator, with the second stem loop showing alternate
base-pairing with the terminator (Additional file 1: Fig.
S4). These few examples are reminiscent of ANTAR-tar-
get RNAs in firmicutes and proteobacteria, where bind-
ing by the ANTAR protein stabilizes the two-stem loop
anti-terminator structure, allowing transcription of the
downstream gene. With high GC genomes, it is possible
that terminator predictions are inaccurate for these bac-
teria and hence other approaches may be required to as-
certain the mode of transcriptional regulation.
Nearly ~ 37% of the actinobacterial target-RNAs over-

lap directly with the RBS or start codon (Fig. 3C, Add-
itional file 2: Table S4). In a recent report it was shown
that in M. tuberculosis and M. smegmatis, binding of ac-
tivated ANTAR protein to such target RNAs, represses
translation of the downstream mRNA, possibly by oc-
cluding the ribosome from binding the RBS [28]. We see
similar features in these RNAs. For example, in Arthro-
bacter alpinus and Bifidobacterium longum, the RBS is
sequestered within the second stem-loop, whereas in
Propionimicrobium species both the RBS and the ORF
start site lie within the ANTAR-target RNA (Fig. 3D).
The ‘inside ORF’ category consists of ~ 24% ANTAR-

target RNAs (Fig. 3C, representatives shown in Fig. 3E).
Several studies on non-coding RNAs [35–42] have
shown that structured motifs within the mRNA tran-
script may influence mRNA stability or regulate transla-
tion. It is possible that these ANTAR-target RNAs also
control gene expression, though the detailed mechanism
needs to be uncovered.

Cellular pathways and genes associated with
actinobacterial ANTAR-target RNAs
We next asked what cellular processes are linked to
ANTAR in actinobacteria. Studies in Enterococcus,
Pseudomonas, Klebsiella, Acinetobacter and Geobacter
reveal that ANTAR-target RNAs are linked to nitrogen
utilization [22, 23, 27, 33]. Only few studies in
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Fig. 2 (See legend on next page.)
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actinobacteria have investigated the role of ANTAR. In
Mycobacteria, ANTAR mediated gene regulation might
influence lipid and related redox processes [28] while a
recent study in Streptomyces, show that the deletion of
ANTAR-protein (SSDG_04087) impairs the develop-
mental process and antibiotic production [43].
For this analysis, we considered all 3 categories of

RNAs (UTR, sequestering RBS or AUG, inside ORF).
Specifically, where the RNA hit resides in the UTR or
overlaps with the RBS/AUG, we consider the gene im-
mediately distal to the dual stem loop as the gene linked
to ANTAR-target RNAs. For inside ORF category, the
gene inside which the RNA lies is considered to be
linked to ANTAR. Taking these genes as input, we per-
formed COG analyses using the eggNOGmapper server.
eggNOGmapper is a tool that performs a protein se-
quence homology search against precomputed eggNOG
protein database to identify orthologs using a BLAST-
like approach, and assigns the COG functional categor-
ies, KEGG pathways and gene ontology terms from
orthologs to the query [44, 45].
Our analysis showed that ~ 85% of genes linked to

ANTAR-target RNAs belong to 17 different COG cat-
egories, while 15% are genes of yet unknown function
(Fig. 4A-B, Additional file 1: Fig. S5A-B, Additional file
2: Table S4). The majority of genes encode proteins in-
volved in transport and metabolism of compounds, with
a smaller subset restricted to enzymes involved in energy
production. Core cellular processes including transcrip-
tion, translation, replication and DNA repair also appear
to be linked to ANTAR-target RNAs, and make up the
next largest categories of COGs (Fig. 4A, Additional file
1: Fig. S5A). Additionally, we find a diversity of metabo-
lites whose transport and metabolism would be linked to
ANTAR (Fig. 4B, Additional file 1: Fig. S5B), with carbo-
hydrate, amino-acid and lipids standing out as preferred
metabolites.
We next asked if a cellular process or function linked

to ANTAR was restricted to any particular branch
within the actinobacterial phylogenetic tree (Additional
file 1: Fig. S6). Some processes such as replication, re-
combination and repair and transcription, are ubiqui-
tously seen linked to ANTAR, in most genera. In
contrast, intracellular trafficking, secretion and vesicular
transport process appear restricted to Gordonia species
while translation related processes and lipid transport
and metabolism are largely restricted to non-pathogenic
Mycobacterium and Nocardia species respectively.

Energy production and conversion is found to be con-
served in species of Pseudarthrobacter, Renibacterium,
Sinomonas, Rhodococcus, Gordonia and Mycobacterium.
We checked if closely related genera have co-opted

ANTAR for similar processes. Indeed, several species
from Bifidobacterium and Gardnerella, have processes
such as carbohydrate transport and metabolism, tran-
scription, translation related processes and cell-
membrane biogenesis linked to ANTAR. Similarly, six
processes including cell energy production and conver-
sion process, transcription and translation related pro-
cesses, signal transduction mechanisms and amino-acid
and carbohydrate transport and metabolism are linked
to ANTAR in closely related Arthrobacter and Pseudoar-
throbacter species (Additional file 1: Fig. S6).
KEGG pathway and KEGG BRITE analysis of trans-

porters whose genes are linked to ANTAR, show that
they belong to the ABC transporter, MFS sugar trans-
porter and Aquaporin families (Additional file 3: Table
S5). The ABC transporter complex consists of multiple
components: a periplasmic substrate-binding protein,
one or more trans-membrane permeases, an ATP-
binding protein and occasionally a substrate-specific en-
zyme [46]. Interestingly, we find that different compo-
nents of the transporters, especially the substrate
recognizing proteins harbor the ANTAR-target RNA in
their mRNA (Fig. 4C). This makes intuitive sense since
transporters are often under tight regulation and the dif-
ferent components are made only upon sensing the pres-
ence of the cognate sugar/metabolite.
The second highest COG category is that of transcrip-

tion with over 19 different transcription factor families
linked to ANTAR-target RNAs (Additional file 1: Fig.
S7A). Remarkably, the majority of these transcription
factors are known to regulate the expression of trans-
porter proteins, once again tying back ANTAR-target
RNAs to the transport of small molecule metabolites. ~
29% of transcription factor encoding genes linked to an
ANTAR-target RNA belong to the LacI type transcrip-
tion factor that are major regulators of sugar catabolic
genes (Additional file 1: Fig. S7A). For example, in Strep-
tomyces lydicus, a LacI transcription factor (TF) carrying
an ANTAR-target RNA is present upstream of trans-
porter components involved in ribose uptake (Additional
file 1: Fig. S7B). In Corynebacterium glutamicum, the
homologous TF (cg1410) is reported to regulate the
downstream rbsDACBK operon in response to ribose
availability [47]. Similarly, even in Bifidobacterium

(See figure on previous page.)
Fig. 2 Distribution of ANTAR-target RNAs identified in Actinobacteria. a Distribution of ANTAR-target RNAs (yellow) or ANTAR proteins (blue) in
actinobacterial species. Inset pie-chart shows the number of actinobacterial genera where ANTAR-target RNAs are predicted. b Distribution of
ANTAR-target RNAs (left) and ANTAR proteins (right) in actinobacterial genera are shown as box-whisker plots. Median (vertical line), interquartile
range (box) and 1.5 times the inter-quartile range (whiskers) are shown
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Fig. 3 (See legend on next page.)
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dentium, Gardnerella vaginalis and Microbacterium sp.
and Cryobacterium arcticum, ANTAR-target RNAs are
also linked to LacI transcription factors that regulate
other sugar transporters and sugar related genes (Add-
itional file 1: Table S2, Additional file 2: Table S4).
These results suggest that in several actinobacteria sugar
transporters, as well as the proteins regulating sugar
transport and metabolism are under the influence of
ANTAR regulation.
TetR family TFs are also linked to ANTAR-target

RNAs in several actinobacterial species (Additional file
1: Fig. S7A). Transcription factors belonging to this fam-
ily typically regulate the expression of enzymes from dif-
ferent catabolic pathways or proteins involved in multi-
drug resistance (Additional file 1: Table S2 and Add-
itional file 2: Table S4) [48, 49]. An ANTAR-target RNA
in Mycobacterium marinum is found upstream to the
MMAR_RS11360 gene encoding a TetR family transcrip-
tion factor (Additional file 1: Fig. S6B). Its M. tubercu-
losis homolog, Rv1474c is found to cotranscribe with the
upstream aconitase gene and regulates aconitase expres-
sion in response to iron [50]. A conserved operon in
Streptomyces species is predicted with an ANTAR-target
RNA upstream to a SufR encoding gene, SACTE_
RS06635 (Additional file 1: Fig. S7A-B). SufR is an ArsR
family transcription factor and a repressor of the down-
stream sufBCDS operon, the primary Fe-S assembly clus-
ter system, that responds to the availability of Fe-S
cluster required as protein cofactors in many cellular
processes [51]. Both these examples underline that an
additional layer of post-transcription gene regulation is
likely imposed by virtue of ANTAR-target RNAs.

Discussion
In this study, we identify the repertoire of ANTAR-tar-
get RNAs in phylum actinobacteria. Key to our findings
was the development of a novel computational search
model that was effective in identifying these structured
dual stem loop RNA motifs. Covariance search programs
rely on both the sequence and the base-pairing informa-
tion within a search model, to find similar RNA motifs
in a genome. Previously reported ANTAR RNA search
models [27, 28] either failed or were only partially

successful in predicting RNAs in actinobacterial ge-
nomes due to a lack of diversity in sequence and base-
pairing potential. Removing the bias from highly similar
or dissimilar sequences, the new search model developed
in this study shows more sequence and structure diver-
sity as compared to the previous models and this was
key in identifying ANTAR-target RNA motifs in
actinobacteria.
Analysis of the genomic locations of ANTAR-target

RNAs from actinobacteria reveals many examples where
the RNA is next to the ORF start site, either sequester-
ing the RBS or start codon within the dual stem motif of
the ANTAR RNA. A similar genomic arrangement of
ANTAR RNAs was seen previously in Mycobacteria
[28], was shown to function via translational repression.
Here, RNAs bound by activated ANTAR protein were
shown to repress translation, possibly by preventing ri-
bosomes from accessing the RBS. Our analysis indicates
that translational control via ANTAR-target RNAs may
be a prominent mode of regulation in actinobacteria.
Analysis of cellular processes likely to be controlled by

ANTAR-target RNAs revealed a link between these RNAs
and the transport and metabolism of small molecule com-
pounds, especially carbohydrates, amino acids and lipids.
Certain species of Bifidiobacterium, Gardnerella and Scar-
dovia show conservation of ANTAR-target RNAs in tran-
scripts encoding carbohydrate transport and metabolism
proteins. For these genera, sugar utilization is intricately
linked to physiology. For example, Bifidobacteria are sac-
chrolytic intestinal bacteria detected in human and ani-
mals [52], while Scardovia is detected in human dental
caries and adeptly use carbohydrate fermentation path-
ways to lower the pH of the oral biofilm and likely induce
caries progression in the host [53, 54]. Pathogenic Gard-
nerella vaginalis have the ability to degrade glycans in the
host mucosal epithelial layers to invade and colonize in
the host [55]. Species belonging to genus Nocardia shows
that ANTAR-target RNAs might regulate lipid transport
and metabolism similar to to that seen in Mycobacteria.
Our results link ANTAR-target RNAs to metabolite trans-
port and utilization in these organisms, possibly indicating
that ANTAR regulation may contribute to their growth
and survival within their host.

(See figure on previous page.)
Fig. 3 Locations of ANTAR-target RNAs within their genomic context. a Schematic shows the location of ANTAR-target RNAs. RNAs are grouped
in three categories- intergenic’ for RNAs that lie at a distance> 15 nt from start of ORF, ‘sequester RBS or AUG’ for RNAs which overlap with the
ribosome binding site or start codon and ‘inside ORF’ for RNAs which lie after the start codon. 10-nucleotide flanking regions on either side of
the dual stem loop structure are included in the distance calculations. b Histogram shows distribution of RNAs versus their distance from the
respective ORF. Several RNAs are found near the ORF start site, sequestering either RBS or AUG (yellow). c Plot shows total number of predicted
RNAs in three categories as described in panel A. 47 RNAs (dashed brown box) in the ‘sequester RBS or AUG’ category and 15 RNAs (dashed red
box) in the ‘inside ORF category were assigned based on alternate ORF predictions. d Representative RNAs from ‘sequester RBS or AUG’ category
are shown with the ANTAR-target RNA structure marked. Potential RBS (red) and start codon (yellow) are shown. Genomic context of these RNAs
(blue) are shown with ORFs (purple) with their NCBI gene annotations. E Representative RNAs from the ‘inside ORF’ category are shown. The dual
stems of the ANTAR-target RNA are highlighted in pink and blue. Start codon is marked in yellow
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Fig. 4 COG analysis of genes linked to ANTAR-target RNAs in actinobacteria. a Genes linked to ANTAR-target RNAs, analysed using EggNOG-mapper,
get assigned to 11 COG categories. Bar plot shows distribution of genes linked to ANTAR-target RNAs, in each COG category. b Bar plot shows
distribution of genes linked to ANTAR-target RNAs, within the ‘transport and metabolism’ COG category. Carbohydrate and amino-acid transport and
metabolism are the major processes represented by the targets. c ABC transporters with the substrate binding protein, membrane bound permease
and ATP-binding components (boxes) are shown. Components of the transporter whose functions are not known are marked (?). Transporter
components whose transcripts harbor an ANTAR-target RNA are marked in orange. Genes linked to ANTAR-target RNAs, encoding MFS transporters
(purple) and other transporters (blue) are shown
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An important finding from our study is the association
of ANTAR-target RNAs with mRNAs encoding tran-
scription factors. Transcription factors themselves are
regulators of gene-expression, often regulating multiple
target genes. By controlling the expression of a tran-
scription factor, even a single ANTAR-target RNA in
the genome could indirectly control the expression of
multiple genes. We also observed that many of the tran-
scription factors whose mRNAs harbor ANTAR-target
RNAs, in fact regulate sugar and other metabolite trans-
port. This implies that the scope of ANTAR-based con-
trol of metabolite transport is much broader.
In a recent study in Streptomyces pristinaespiralis,

deletion of the ANTAR protein SSDG_04087 led to a
bald phenotype (loss of hyphae formation) and re-
duced production of the antibiotic pristinamycin [43].
In our study, we identify four ANTAR-target RNAs
in S. pristinaespiralis, one of which lies in the tran-
script of a sugar (fructose) transporter protein (SPRI_
RS32325). The uptake of complex sugars by Strepto-
myces favors development (sporulation) and produc-
tion of antibiotics [56–58]. In fact, perturbation of
glycolysis/ gluconeogenesis pathways is a standard
method by which to increase the production of anti-
biotics by Streptomyces, for industrial applications
[59–62]. Another ANTAR-target RNA is found in the
mRNA for the enzyme agmatinase (SPRI_RS23705),
that converts arginine to putrescine. Putrescine is a
precursor of succinate [63, 64] that can feed into the
TCA cycle and the synthesis of various amino acids,
which are directly involved in the production of the
antibiotic pristinamycin [65, 66]. The discovery of
these ANTAR-target RNAs in Streptomyces thus im-
plicates gene SPRI_RS32325 and SPRI_RS23705 as
possible candidates that might be investigated to
understand the observed phenotype. Our comprehen-
sive description of ANTAR-target RNAs and ANTAR
proteins in actinobacteria now provides a resource for
microbiologists to mine.

Conclusion
Our work shows that sequence and structural diversity
when introduced in search models, aids in predicting
high confidence dual stemloop motifs across phylum
actinobacteria. This expands the RNA family that can
bind to ANTAR proteins. Actinobacterial ANTAR-target
RNAs are distant from the firmicutes and proteobacter-
ial RNAs, yet the core features of ANTAR-target RNAs
are conserved across bacteria, highlighting the diversity
that can exist within the RNA family. Extensive analyses
of the repertoire of ANTAR-target RNAs show that
these RNAs can regulate translation of genes involved in
metabolite transport, thus underlining the importance of
ANTAR in actinobacteria.

Methods
Actinobacterial genomes used in this study
720 actinobacterial genomes, with their corresponding
gene annotations and proteomes are listed as “Complete
genomes” in NCBI (RefSeq v92). These were considered
in this study. Corresponding taxon IDs for these organ-
isms were taken from NCBI and a taxonomy tree was re-
trieved in Phylip format from NCBI Batch Entrez
(https://www.ncbi.nlm.nih.gov/sites/batchentrez). The
phylogenetic tree visualization was carried out using
iTOL [67].

Predicting ANTAR-target RNAs in actinobacteria using
covariance
A search model previously reported for identifying
ANTAR-target RNAs in Mycobacteria (partially fo-
cused search model) [28], was taken and an initial co-
variance search with a bit score threshold of 10.0 was
carried out against actinobacterial genomes using Infer-
nal v1.0.2 [29]. High confidence RNAs with a bit
score ≥ 14.0 and showing a dual stem loop structure
(with at least 3 base-pairs in each stem and hexanucleo-
tide loops allowing a single point variation) were con-
sidered as putative ANTAR-target RNAs. 30 of these
predicted RNAs from actinobacteria were taken to form
an actinobacteria centric search model (diffused search
model). cmbuild analysis of the partially diffused and
diffused search models reports on the CM (Covariance
model) score where a higher CM score was taken as an
indication of highly similar sequences. To identify
ANTAR-target RNAs in actinobacteria, 720 genomes
representing 315 actinobacterial species were subjected
to covariance search using the diffused search model.
Hits with a bit score threshold≥15 and lying between
500 nt upstream to 100 nt downstream of the nearest
ORF were retained. RNAs that are identical to the
search model or are single-nucleotide point variants
were considered for further analyses. Redundant identi-
cal RNAs from strains were removed and unique RNAs
from each species were considered as a representative.
We used cmbuild [29] and RNAz [17, 30] to analyze
the predicted ANTAR-target RNAs for their sequence
and structure similarity. Using the cmaxid option of
cmbuild implemented in Infernal v1.0.2, we performed
a clustering analysis. Sequence identity cut-off ranging
from 30 to 60% was imposed during clustering such
that any two RNAs that have sequence identity more
than the cut-off, will form a cluster reported with a cor-
responding CM score. Any group with < 2 RNAs was
not considered. The -cdump option of cmbuild writes
the multiple sequence alignment for the clusters. The
multiple sequence alignment of the largest cluster
formed with 55% sequence identity cut-off, was further
checked for functionality using RNAz. RNAz calculates
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i) the structure similarity of the individual RNAs to the
consensus structure, reported as structure conservation
index (SCI) ii) z-score that describes the standard devi-
ation of the structures formed by the RNAs in a cluster
against the structures for a random set of RNAs with
same length and base composition, where the negative
z-score indicates a true stable structure and has not oc-
curred by chance. Based on these two measures, the
RNAs with conserved and stable structures (P > 0.5) are
considered as a ‘functional RNA’ class. Consensus RNA
structure for the largest cluster was visualized using
forna [68] and nucleotide-level resolution of the con-
sensus structure was obtained using R2R [69] and sta-
tistically significant covarying positions were identified
using R-scape [70].

Distribution of ANTAR domain containing proteins in
actinobacteria
An HMM model for the ANTAR domain was taken
from Pfam v33.0 (PF03861) and HMMsearch (hmmer
v3.2.1) was performed against all actinobacterial pro-
teomes with e-value threshold 1e-4. E-value threshold
was determined from previous studies [71–75]. This
identified proteins having ANTAR domains. Proteomes
where the HMMsearch failed to identify ANTAR pro-
teins, were further searched for sequences homologous
to the Rv1626 ANTAR domain using BLASTp with eva-
lue threshold 1e-3. E-value threshold was determined
from previous studies [76–79].

Categorizing ANTAR-target RNAs based on location
within the genomic context
ANTAR-target RNAs were grouped into 3 categories
based on their distance from ORFs. RNAs (including 10
nt flanking region) that are 15 nt upstream from start of
ORF, were assigned to ‘intergenic’ group. RNAs that
completely reside within the ORF were assigned to ‘in-
side ORF’ group. RNAs that harbor a potential RBS as
part of the RNA structure, are grouped as ‘sequester
RBS or AUG’. RNAs were also subjected to alternate
ORF (altORFs) prediction using standalone NCBI ORF-
finder (https://www.ncbi.nlm.nih.gov/orffinder/) with de-
fault parameters allowing for ATG or any alternate start
codons. Predicted ORFs which harbor a potential
ribosome-binding site (RBS) with a 4-6 nt AG-rich re-
gion and reside 0-15 nt upstream of the start codon are
considered as putative altORFs. RNAs from the ‘inter-
genic’ group were further subjected to Rho-independent
terminator prediction. Here, target-RNA sequences
along with 40 nt downstream sequences were given to
TransTermHP [34] with parameters uwin-require = 0
and min-conf = 50.

COG and KEGG pathway analyses for ANTAR targets
Protein sequences of genes linked to ANTAR-target
RNAs were subjected to COG analysis using EggNOG
mapper v4.5.1 (http://eggnogdb.embl.de/#/app/
emapper). A minimum 70% query coverage and e-value
default threshold 1e-3 was used to assign COG categor-
ies and KEGG orthologs (KO) based on sequence hom-
ology. E-value threshold was determined from previous
studies [80–82]. Independently, these protein sequences
were given as input to KofamKOALA (https://www.
genome.jp/tools/kofamkoala/) with e-value default
threshold 1e-2, which reports on top KEGG orthologs
using an HMMsearch. E-value threshold was determined
from previous studies [83, 84]. Orthologs for genes
linked to ANTAR-target RNAs, were mapped using Egg-
NOG and/or KofamKOALA (Additional file 2: Table
S4). These KOs were then given to KEGGmapper
(“KEGG reconstruct pathway” and “KEGG search and
color pathway”) for pathway analyses. Visualization of
data was carried out in iTOL and the pathway graphs
were obtained using KEGG and modified using Adobe
Illustrator. All plots were obtained using Graphpad
Prism v8.0.
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