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Abstract

FoxO3/SPHK1 axis in ischemia/reperfusion (I/R).

to verify the binding of miR-19a/b-3p with SIRTT mRNA.

Background: Stroke affects 3-4% of adults and kills numerous people each year. Recovering blood flow with
minimal reperfusion-induced injury is crucial. However, the mechanisms underlying reperfusion-induced injury,
particularly inflammation, are not well understood. Here, we investigated the function of miR-19a/b-3p/SIRT1/

Methods: MCAO (middle cerebral artery occlusion) reperfusion rat model was used as the in vivo model of I/R.
Cultured neuronal cells subjected to OGD/R (oxygen glucose deprivation/reperfusion) were used as the in vitro
model of I/R. MTT assay was used to assess cell viability and TUNEL staining was used to measure cell apoptosis.
H&E staining was employed to examine cell morphology. gRT-PCR and western blot were performed to determine
levels of miR-19a/b-3p, SIRT1, FoxO3, SPHK1, NF-kB p65, and cytokines like TNF-q, IL-6, and IL-13. EMSA and ChIP
were performed to validate the interaction of FoxO3 with SPHKT promoter. Dual luciferase assay and RIP were used

Results: miR-19a/b-3p, FoxO3, SPHK1, NF-kB p65, and cytokines were elevated while SIRTT was reduced in brain
tissues following MCAO/reperfusion or in cells upon OGD/R. Knockdown of SPHK1 or FoxO3 suppressed I/R-induced
inflammation and cell death. Furthermore, knockdown of FoxO3 reversed the effects of SIRT1 knockdown. Inhibition
of the miR-19a/b-3p suppressed inflammation and this suppression was blocked by SIRT1 knockdown. FoxO3
bound SPHKT promoter and activated its transcription. miR-19a/b-3p directly targeted SIRTT mRNA.

Conclusion: miR-19a/b-3p promotes inflammatory responses during I/R via targeting SIRT1/FoxO3/SPHK1 axis.
Keywords: Ischemia, miR-19a/b-3p, SIRT1, FoxO3, SPHK1, Inflammation

Background

Stroke is the primary cause of morbidity and mortality
worldwide and occurs when blood vessels in the brain
get clogged, leading to insufficient oxygen and nutrient
supply to brain tissues and subsequent cell death and
brain injury [1]. Recovering the blood flow through
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drugs or mechanical interventions is key to recovery [2].
However, many studies have shown that the reperfusion
will induce severe secondary injuries in that a large
amount of cellular free oxygen radicals and inflamma-
tory cytokines will be produced [3, 4]. Emerging evi-
dence suggests that suppression of the inflammatory
responses is beneficial for ischemic stroke [5]. Neverthe-
less, the underlying mechanisms of the reperfusion-
induced inflammation are not well understood.
MicroRNAs (miRNAs) are a widely studied class of
endogenous RNAs that are not translated into proteins
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but have crucial roles in many cellular processes includ-
ing normal physiological and abnormal pathological pro-
cesses [6, 7]. Many miRNAs have been implicated in the
inflammatory responses during ischemic stroke [8, 9].
For instance, miR-22 has been shown to suppress the in-
flammation via targeting MAPK signaling [10]. miR-19a-
3p/miR-19b-3p (miR-19a/b-3p) are important miRNAs
that function as oncogenes to promote tumorigenesis
and metastasis [11, 12]. Recent studies have reported
that miR-19a/b-3p levels were elevated following ische-
mia/reperfusion (I/R) [13], suggesting that they might be
involved in I/R. Nevertheless, the exact functions of
miR-19a/b-3p in ischemic stroke are not clear. Sirtuinl
(SIRT1) is an NDA-dependent protein/histone deacety-
lase that play key roles in oxidative stress and inflamma-
tion via regulating various substrates [14]. Previous
studies have indicated that SIRT1 alleviated the brain
injury induced by I/R [15]. Further, SIRT1 could directly
deacetylate FoxO3, a transcription factor, and negatively
regulate FoxO3-induced transcription [16]. Through our
preliminary bioinformatic analysis, we identified poten-
tial binding sites between miR-19a/b-3p and SIRTI
mRNA. We thus hypothesized that miR-19a/b-3p func-
tion through targeting SIRT1/FoxO3 axis in ischemic
stroke.

The sphingosine kinase 1 (SPHK1) is an enzyme that
functions to phosphorylate sphingosine into sphingo-
sinel phosphate [17]. It is greatly involved in regulating
cell proliferation, migration, and apoptosis [17]. Emer-
ging evidence suggests that the SPHK1 has critical roles
in mediating inflammatory responses under various con-
ditions including I/R [18]. For example, the SPHK1 has
been shown to activate NF-kB signaling to induce secre-
tion of cytokines during I/R [19]. Our preliminary
analysis through JASPAR revealed that FoxO3 might dir-
ectly bind SPHKI promoter to regulate its transcription.
Based on aforementioned literature and our initial ana-
lysis, we made a hypothesis that miR-19a/b-3p might be
involved in I/R via SIRT1/FoxO3 which could regulate
SPHK1-mediated neuroinflammation.

In the current study, we sought to test our above hy-
pothesis and investigate the molecular mechanisms
underlying the inflammatory responses during I/R, with
a focus on miR-19a/b-3p/SIRT1/FoxO3/SPHKI1 axis.

Methods

Middle cerebral artery occlusion (MCAO) rat model

All animal experiments and protocol have been reviewed
and approved by the Animal Care and Use Committee
of Southern Medical University. MCAO surgery was
carried out as previously described [20]. Briefly, adult
male Sprague Dawley (SD) rats (2—3 months old, 250 ~
300 g b.w., n = 16) were anesthetized by intraperitoneally
injecting ketamine and xylazine (250 and 10 mg/kg,
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respectively). The right common carotid artery (CCA)
and external carotid artery (ECA) were dissected free
and exposed. A surgical silica gel monofilament was
introduced into the ECA until it passed the carotid bi-
furcation when a resistance was felt. The wound was
closed after the monofilament was inserted. After 2 h of
occlusion, the monofilament was withdrawn for reperfu-
sion. In sham-surgery group, mice underwent similar
procedures and the arteries were exposed for same dur-
ation without insertion of monofilament.

Oxygen and glucose deprivation/reperfusion (OGD/R) cell
model

To mimic neuronal injury during cerebral ischemia,
human neuroblastoma cells (SK-N-SH, SH-SY5Y), pur-
chased from Cell Bank of Type Culture Collection,
Chinese Academy of Science (Shanghai, China), were
subjected to oxygen and glucose deprivation followed by
reperfusion (OGD/R). The cells were cultured in culture
medium composed of Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco, CA, USA), 10% (vol/vol) fetal
bovine serum (Gibco, CA, USA) and 1% penicillin-
streptomycin. Cells were grown at 37 °C in the cell incu-
bator with a humidified atmosphere (95%) containing
5% CO,. For OGD/R model, briefly, full culture medium
was replaced with glucose-free DMEM, and the cells
were placed in an anaerobic chamber (95% N, and 5%
CO,) at 37°C for various periods (2, 4, 8, 12 h). Subse-
quently, full culture medium was added back and the
cells were maintained in the normal culture condition.

TTC staining

The infarct size was determined by TTC staining.
Briefly, rats were anesthetized and the brains were
immediately removed followed by coronally sectioning
at 2mm. Two percent 2,3,5-triphenyltetrazolium chlor-
ide (TTC) was added to incubate with the sections for
10 min at 37 °C to stain the infarct areas. Images were
analyzed with Image] (National Institute of Health, USA,
https://imagej.nih.gov/ij/) to quantify the infarct size by
calculating the integration of infarct areas from all slices
of the brain.

H&E staining and TUNEL staining

Brain tissues were fixed in 10% formalin overnight at
4°C, washed by PBS, and then embedded in paraffin.
The tissues were cut into 5-pm-thick slices and then in-
cubated with hematoxulin and eosin (H&E) or terminal
deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining reagents (Roche Applied Science,
USA) for H&E staining or TUNEL staining, respectively,
based on the manufacturer’s guidance. The stained brain
sections were washed with PBS and then mounted with
the mounting medium containing 4',6-diamidino-2-
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phenylindole (DAPI). The percentage of apoptotic cells
were calculated by dividing TUNEL-positive cells by
DAPI-positive cells.

Cell transfection

Lipofectamine 3000 (Invitrogen, USA) was used as the
reagent for cell transfection as the manufacturer’s in-
struction describes. Briefly, cultured cells were cultured
to ~ 80% confluence. The short hairpin RNAs (shRNAs)
targeting SPHK1, SIRT1 and FoxO3, miR-19a/b-3p
mimics, miR-19a/b-3p inhibitor, and corresponding
negative controls were obtained from GenePharma
(Shanghai, China). Corresponding constructs above to-
gether with Lipofectamine 3000 (m/v 1:1) were directly
added into the culture media for 48h followed by
harvest.

MTT cell proliferation assay

In total, 5000 transfected SK-N-SH or SH-SY5Y cells (as
indicated in figure legends Figs. 2, 3, and 5) were plated
into the single well of 96-well plates 24 h prior to 8 h of
OGD/R and were followed by MTT (3-(4,5-dimethyltjia-
zol-2-yl)-2,5-diphenltetrazolium bromide) incubation
(Abcam, USA). Fifty micrograms MTT was put into
each well to incubate with cells for 3 h at 37 °C. After-
wards, 100 pl detergent reagent was used to stop the re-
action. The absorbance in each condition was analyzed
by a 490-nm wavelength.

RNA immunoprecipitation (RIP) assay

MS2-binding sequences (MS2bs) were infused with
binding sequences of FoxO3 in WT-SIRT1 promoter or
the mutant sequences. Cells were transfected with
MS2bs-SIRT1-WT, MS2bs-SIRT1-MUT, or control
vector MS2bs-Rluc together with MS2bp-GFP using li-
pofectamine 3000. After 2 days, transfected cells were
lysed in lysis buffer (50 mM Tris-HCl, 180 mM NaCl, 2
mM EDTA, 1.5% NP-40, 1% sodium deoxycholate)
containing RNase inhibitors and protease inhibitors
(Sigma-Aldrich, MO, USA). Extracted proteins were in-
cubated with relevant antibodies (anti-GFP1 or IgG as
control) (Millipore, USA) overnight at 4°C and then
pulled down with protein G Sepharose beads (Millipore,
USA). The beads were washed with lysis buffer first and
then eluted with proteinase K (Sigma-Aldrich, MO,
USA). The elution was proceeded for RNA purification
with Trizol reagent (Invitrogen, MO, USA). Quantitative
RT-PCR was performed to examine the RNA vyield of
target mRNAs. The primers are listed in the qRT-PCR
section.

Chromatin immunoprecipitation (ChIP) assay
ChIP was carried out with the commercial ChIP kit
(Abcam, USA) as the manufacturer’s protocol described.
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Briefly, formaldehyde was used to cross-link proteins/
DNA and cells were washed with PBS followed by har-
vest via micrococcal nuclease. Cell debris was removed
through centrifugation, and the supernatant was
collected. To pull down chromatin fragments, 10 pg of
anti-FoxO3 or rabbit IgG antibody was added to incu-
bate with the lysate for 1 h at 4 °C. Protein G beads were
added to all samples for overnight incubation at 4°C.
The next day, the beads were washed by wash buffer and
eluted by elution buffer. The elution was proceeded for
DNA purification, and PCR was performed to detect
SPHK1I promoter region. The primers used for analysis
were as follows: forward: 5'- CCT GGC GGC TTC TTT
TTG TCC-3’; reverse: 5'- GGG GCT CTC ATC GGG
ATT GG-3'.

Electrophoretic mobility shift assay (EMSA)

FITC-labeled oligonucleotide probe corresponding to
the FoxO3-binding site sequence in Sphkl promoter and
the mutant probe were synthesized and purchased from
Genema (Shanghai, China). EMSA was performed by
using the commercial EMSA kit (Thermo Fisher, USA).
Native nuclear extracts were isolated from cells, and
5ug protein extracts were incubated with relevant
probes together with or without FoxO3 antibody in the
binding buffer for 30 min at room temperature. EMSA
loading dye was added to the reaction followed by elec-
trophoresis in Tris-Glycine buffer. The signals of the
FITC-labeled probes were detected using the ChemiDoc
XRS+ system (Bio-Rad, USA).

Dual-luciferase reporter assay

The Phusion Mutagenesis kit (Thermo Fisher, MA,
USA) was used to mutate the binding sites as the manu-
facturer’s protocol described. cDNAs that included the
wild-type sequences (WT-SIRTI) or mutated binding
sequences (MUT-SIRTI) with miR-19a/b-3p in SIRT1 3’
UTR were cloned into the pGL4 luciferase reporter
vector (Promega, WI, USA). Neuroblastoma cells were
co-transfected with the recombinant plasmid together
with miR-19a/b-3p mimics or mimics negative control
(NC) (synthesized from Genepharma, Shanghai, China).
Then, 24 h after, the co-transfected cells were harvested
in the Reporter Lysis Buffer. The luciferase activity of
each sample was measured using the Dual-Luciferase
Reporter Assay System (Promega, WI, USA).

RNA extraction and qRT-PCR

Trizol reagent (Invitrogen, Missouri, USA) was used to
isolate total RNAs from cortex infarct tissues or cultured
cells as the manufacturer’s instructions described. DNa-
sel was included into the lysis buffer to avoid the con-
tamination of DNA. Then, 1-2 ug total RNA of each
sample was used for reverse transcription and then
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amplified by PCR with standard kits (TaqPath RT-PCR
Master mixes, Invitrogen, Missouri, USA). Relative ex-
pression levels of miRNA, TNF-a, IL-1f3, and IL-6
mRNAs were normalized U6 or GAPDH mRNA as in-
ternal controls, respectively. The primers used for the
study were as follows:

miR-19a-3p forward primer:
ATCTATGCAAA-3’;

miR-19a-3p reverse primer: 5'-CAGTGTGCAAATCT
ATGCAA-3;

5'-CGCTGTGCAA

miR-19b-3p forward primer: 5'-TGTGCAAATC
CATGCAAAACTGA-3;

miR-19b-3p  reverse primer: 5'-CAGTGCGTGT
CGTGGAGT-3;

TNF-a forward primer: 5'-AGGCGCTCCCCAAGAA
GACA-3';

TNF-a reverse primer: 5-TCCTTGGCAAAACTGC
ACCT-3;

IL-18 forward primer: 5'-GCAGTCTACACAGCTT
CGGG-3;

IL-1f reverse primer: 5'-CCGCCTCAGCCTCCCAAA
G-35

IL-6 forward primer: 5'-GCCTTCGGTCCAGTTGCC
TT-3;

IL-6 reverse primer: 5'-GCAGAATGAGATGAGTTG
TC-37

U6 forward primer: 5'-CTCGCTTCGGCAGCACA-3;

U6 reverse primer: 5-AACGCTTCACGAATTTGC
GT-37;

GAPDH  forward
ATTTGGTCGTT-3;

GAPDH reverse primer:
ATCTCG-3".

primer:  5'-GAGTCAACGG

5-TTGATTTTGGAGGG

Western blot analysis

RIPA lysis buffer (Thermo Fisher, MI, USA) was utilized
to extract proteins from rat brain cortex or cultured cells
as previously described [20]. Protein concentration of
each sample was measured by using Pierce™ BCA
Protein Assay Kit (Thermo Fisher, MI, USA). Equal
amounts of protein were loaded into SDS-
polyacrylamide gels and separated via electrophoresis.
Subsequently, the proteins in the gels were transferred
to PVDF membranes (Sigma-Aldrich, USA). The mem-
branes were first blocked with 3% BSA for half an hour
at room temperature and then incubated with primary
antibodies overnight at 4 °C. On the next day, the mem-
branes were washed with TBST 3 times before incuba-
tion with specific secondary antibodies (Anti-Rabbit) for
1h at room temperature. Signals were detected by using
the standard ECL kit (Pierce ECL Kit, Thermo Fisher,
USA). Primary antibodies used in the study were as fol-
lows: Rabbit polyclonal anti-SPHK1 antibody (1:1000,
Abcam, USA); Rabbit polyclonal anti-NF-kB p65
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antibody (1:1000, Abcam, USA); Rabbit monoclonal
anti-FoxO3 antibody (1:1000, Cell Signaling, USA);
Rabbit polyclonal anti-SIRT1 (1:1000, Abcam, USA);
Rabbit polyclonal anti-B-actin (1:5000, Abcam, USA).

Statistical analysis

All experiments were carried out with at least three bio-
logical replicates. All statistical analyses were analyzed in
GraphPad Prism 7 (GraphPad, CA, USA). Unpaired
Student’s t test (two groups) and one-way ANOVA
(more than two groups) were used to determine the stat-
istical significance (P < 0.05). The data were presented
as mean * SD (standard deviation).

Results

MCAO upregulated miR-19a/b-3p, Fox03, and SPHK1,
while it downregulated SIRT1

To study the functions of miR-19a/b-3p, SPHK1, FoxO3,
and SIRT1 in cerebral ischemia, we firstly measured their
expression levels during ischemia/ reperfusion (I/R).
MCAO surgery was performed in adult rats followed by
reperfusion. As shown in Fig. 1a,b, I/R caused remarkable
brain injury with obvious infarct area in the right hemi-
sphere. H&E staining indicated robust neuronal degener-
ation following I/R compared to sham group (Fig. 1c).
These results demonstrate the success of MCAO model.
In infarct tissues, we observed an elevation of miR-19a/b-
3p level compared to sham group (Fig. 1d). FoxO3,
SPHK1, and NF-kB p65 protein levels were greatly upreg-
ulated, while SIRT1 downregulated (Fig. 1e). Besides, we
found that MCAO also increased the levels of inflamma-
tory cytokines including TNF-a, IL-6, and IL-1f (Fig. 1f).
Taken together, these data show that I/R induced inflam-
mation and neuronal injury, accompanied by an increase
in expressions of miR-19a/b-3p, FoxO3, and SPHK1 and a
decrease in SIRT1.

Knockdown of SPHK1 suppressed OGD/R-induced cell
death

To further investigate the function of SPHK1, we used the
cell model of ischemia by subjecting cultured neuronal cells
to oxygen and glucose deprivation/reperfusion (OGD/R).
With MTT assay, as expected, OGD/R treatment greatly
decreased the viability of cells in a time-dependent manner
with bigger effect following longer period of treatment (Fig.
2a). We chose 8 h of OGD as the condition for subsequent
studies. Transfection of cells with sh-SPHK1 robustly di-
minished the protein level (Fig. 2b). Notably, knockdown of
SPHK1 in cells recovered the viability of cells upon OGD/R
(Fig. 2c). Consistently, with TUNEL staining, we found
OGD/R treatment drastically increased the number of
apoptotic cells while knockdown of SPHK1 suppressed that
increase (Fig. 2d). At the molecular level, we showed that
OGD/R upregulated SPHK1 and NF-kB p65 protein levels,
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Fig. 1 MCAO upregulated miR-19a/b-3p, FoxO3, and SPHK1, while downregulated SIRT1. a Representative images of TCC staining of brain
sections from sham group or I/R group. b Quantifications of infarct volume in sham group and I/R group. ¢ Representative images of H&E
staining of brain sections from sham group or I/R group. d Relative miR-19a/b-3p levels in infarct tissues from sham group and I/R group. e
Relative protein levels of SIRT1, FoxO3, SPHK1, and NF-kB p65 in infarct tissues from the sham group and I/R group. f Relative levels of
inflammatory cytokines including TNF-q, IL-6, and IL-18 from sham group and I/R group. All the results were shown as mean + SD (n = 3), which

were three different experiments performed in triplicate. *P < 0.05, **P < 0.01, ***P < 0.01

as well as inflammatory cytokines like TNF-a, IL-6, and IL-
1B (Fig. 2e,f). However, transfection of cells with sh-SPHK1
partially restrained those increases (Fig. 2e,f). Altogether,
these results suggest that knockdown of SPHK1 decreases
OGD/R-induced cell injury and death.

Knockdown of FoxO3 ameliorated OGD/R-induced cell
death

We next examined the role of FoxO3 in ischemia and re-
perfusion. Knockdown of FoxO3 greatly decreased the
level of FoxO3 in cells (Fig. 3a). With MTT assay, we
found that knockdown of FoxO3 recovered the reduced
viability of neuronal cells caused by OGD/R (Fig. 3b).
Similarly, sh-FoxO3 suppressed the increased number of
apoptotic cells upon OGD/R (Fig. 3c). Western blot re-
sults showed that OGD/R increased FoxO3 protein level
while knockdown of FoxO3 repressed the elevated levels
of FoxO3, SPHK1, and NF-kB p65 induced by OGD/R
(Fig. 3d). In addition, the upregulation of cytokines such
as TNF-q, IL-6, and during OGD/R were suppressed by
sh-FoxO3 (Fig. 3e). We, therefore, conclude that knock-
down of FoxO3 reduces OGD/R-induced cell death.

FoxO3 transcriptionally activated SPHK1 expression
FoxO3 is a transcription factor that regulates expression
of multiple genes. We wondered whether FoxO3

modulated expression of SPHKI1 since knockdown of
both had similar effects on OGD/R-induced cell death.
First, we found knockdown of FoxO3 in cells signifi-
cantly decreased SPHK1 protein level (Fig. 4a). Through
JASPAR analysis, we found a potential binding site of
FoxO3 in the promoter region of SPHK1 (Fig. 4b). To
test whether FoxO3 directly bound SPHKI promoter, we
employed the EMSA assay. As shown in Fig. 4c, we ob-
served a DNA/protein complex when FoxO3 protein
was incubated with the probe corresponding to the pre-
dicted FoxO3 binding region of SPHKI promoter, but
not with the mutant probe wherein the binding sites
were mutated. Furthermore, FoxO3 antibody further up-
shifted the DNA/protein complex (Fig. 4c). Moreover,
with ChIP, we found that immunoprecipitation with spe-
cific FoxO3 antibody significantly pulled down more
SPHKI1 promoter compared to control IgG antibody
(Fig. 4d). Knockdown of FoxO3 disrupted that inter-
action (Fig. 4d). These results provide evidence that
FoxO3 directly binds the promoter of SPHK1I.

Knockdown of SIRT1 enhanced OGD/R-induced cell death
via FoxO3

To study the role of SIRT1 in ischemia, we manipulated
its level via shRNA and tested ensuing effects on cell
death following OGD/R. Transfection of cells with sh-
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Fig. 2 Knockdown of SPHK1 suppressed OGD/R-induced cell death. a MTT assay to analyze cell viability following various periods of OGD/R. b
Relative SPHK1 protein level in cells transfected with sh-NC or sh-SPHK1. ¢ MTT assay to analyze cell viability following OGD 8h/R in transfected
cells. d TUNEL staining to measure the number of apoptotic cells in transfected cells upon OGD 8h/R. e Relative protein levels of SPHK1 and NF-
kB p65 in transfected cells following OGD 8h/R. f Relative levels of TNF-q, IL-6, and IL-18 in transfected cells following OGD 8h/R. All the results
were shown as mean + SD (n = 3), which were three different experiments performed in triplicate. *P < 0.05, **P < 0.01, ***P < 0.01

SIRT1 remarkably diminished the protein level of SIRT1
(Fig. 5a). With MTT assay, we showed that OGD/R de-
ceased cell viability while knockdown of SIRT1 further
reduced the viability (Fig. 5b). However, co-transfection
of cells with sh-FoxO3 blocked the effects of sh-SIRT1
(Fig. 5b). We saw similar results in TUNEL staining.
OGD/R greatly increased the number of apoptotic cells

while knockdown of SIRT1 significantly further upregu-
lated the number (Fig. 5c). Knockdown of FoxO3
suppressed the increase induced by SIRT1 knockdown
(Fig. 5c). At the molecular level, we found that OGD/R
decreased SIRT1 protein level (Fig. 5d). Knockdown of
SIRT1 further decreased SIRT1 expression but increased
the levels of FoxO3, SPHK1, and NF-xB p65 (Fig. 5d).
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Co-expression of sh-FoxO3 with sh-SIRT1 partially re-
versed those changes caused by sh-SIRT1 alone (Fig.
5d). Consistently, RT-qPCR results showed that knock-
down of SIRT1 further upregulated levels of cytokines
including TNF-a, IL-6, and IL-1p while sh-FoxO3 sup-
pressed those increases caused by sh-SIRT1 (Fig. 5e).
These data demonstrate that knockdown of SIRT1 pro-
motes OGD/R-induced cell death via increasing FoxO3.

The miR-19a/b-3p inhibitor suppressed OGD/R-induced
cell injury via SIRT1

We then investigated the functional role of miR-19a/b-
3p in ischemia. As expected, transfection of cells with
miR-19a/b-3p inhibitor robustly decreased miR-19a/b-
3p level (Fig. 6a). Western blot results indicated that
miR-19a/b-3p  inhibitor reversed OGD/R-induced
changes of protein expression by increasing SIRT1 level
and decreasing the levels of FoxO3, SPHK1, and NF-«B
p65 (Fig. 6b). Nevertheless, knockdown of SIRT1 with
sh-SIRT1 reversed the effects of miR-19a/b-3p inhibitor,

resulting in elevations of FoxO3, SPHK1, and NF-«xB p65
(Fig. 6b). Similarly, the miR-19a/b-3p inhibitor sup-
pressed the increases of cytokine levels such as TNF-q,
IL-6, and IL-1B following OGD/R (Fig. 6¢). Again,
knockdown of SIRT1 blocked the effects of miR-19a/b-
3p inhibitor (Fig. 6¢). Together, these data indicate that
miR-19a/b-3p inhibitor ameliorates OGD/R-induced cell
injury via SIRT1.

miR-19a/b-3p directly targeted SIRT1

Our aforementioned results show that miR-19a/b-3p
negatively regulates SIRT1 expression, implying that
SIRT1 might be a downstream target of miR-19a/b-3p.
To test that, we first performed bioinformatic analysis
by TargetScan and found some complementary binding
sites between miR-19a/b-3p and SIRT1 mRNA (Fig. 7a).
To directly validate this interaction, we then used the
dual luciferase assay and found miR-19a/b-3p mimics
greatly decreased the luciferase activities of WT-SIRT1
3'UTR but not MUT-SIRT! 3'UTR wherein the
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Fig. 5 Knockdown of SIRT1 enhanced OGD/R-induced cell death via FoxO3. a Relative SIRT1 protein level in cells transfected with sh-NC or sh-
SIRTT. b MTT assay to analyze cell viability in transfected cells following OGD/R. ¢ TUNEL staining to measure the number of apoptotic cells in
transfected cells upon OGD/R. d Relative protein levels of SIRT1, FoxO3, SPHK1, and NF-kB p65 in transfected cells following OGD/R. e Relative
levels of TNF-q, IL-6, and IL-18 in transfected cells following OGD/R. All the results were shown as mean + SD (n = 3), which were three different
experiments performed in triplicate. *P < 0.05, **P < 0.01, ***P < 0.01
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predicted binding sites were mutated (Fig. 7b). Further,
we used RIP assay to confirm the interaction in neuronal
cells. Consistently, the result showed that immunopre-
cipitation of WT-SIRT1 3'UTR significantly enriched
more miR-19a/b-3p compared to control of MUT-SIRTI
3'UTR (Fig. 7c). Altogether, these results demonstrate
that miR-19a/b-3p directly binds SIRTI mRNA to nega-
tively regulate its expression.

Discussion
Stroke affects millions of people around the world and is
the leading cause of disability and death [1, 21]. Despite
numerous advances made, the mechanisms underlying
reperfusion injury remain largely unknown and thus ef-
fective treatments are limited [2, 22]. In this study, we
revealed that miR-19a/b-3p/SIRT1/FoxO3/SPHK1 axis
play a crucial role in the inflammatory responses during
I/R. miR-19a/b-3p, FoxO3, and SPHK1 were upregulated
while SIRT1 was downregulated in I/R. Inhibition of
miR-19a/b-3p or knockdown of FoxO3 and SPHK1
greatly suppressed the I/R-induced inflammation and
cell death while knockdown of SIRT1 promoted them.
Mechanistically, we showed that miR-19a/b-3p targeted
SIRT1 while FoxO3 transcriptionally activated SPHK1.
SPHK1 is an important enzyme mediating the synthesis
of sphingosine-1 phosphate [23]. SPHK1 has been shown
to play critical roles in lipid metabolism, endoplasm
reticulum stress, and mitochondrial function [24-26]. Fur-
ther, SPHK1 is implicated in regulating inflammatory

responses by activating NF-kB signaling or affecting re-
leases of inflammation factors [19, 27]. Here, following I/R
injury wherein inflammatory responses were initiated and
cytokines were released, we observed an elevation of
SPHK1 and induction of the NF-xB pathway. Moreover,
knockdown of SPHK1 suppressed the levels of NF-kB p65
and cytokines including TNF-q, IL-6, and IL-1p, resulting
in less cell death upon I/R. Our results demonstrate an es-
sential role of SPHK1 in inducing inflammatory responses
in I/R. Interestingly, we showed that I/R-induced elevation
of SPHK1 was mediated by FoxO3-dependent activation
of transcription. FoxO3 directly bound SPHK1 promoter
and activated its transcription. Knockdown of FoxO3 had
similar effects to SPHK1 knockdown. These results sug-
gest that FoxO3/SPHK1 could serve as a promising target
for suppression for ischemia treatment. FoxO3 is a very
important transcription factor that regulates expression of
many genes [28, 29]. Future studies are necessary to
examine whether other targets of FoxO3 are involved in I/
R. In addition, it remains to be explored whether the acti-
vation of FoxO3/SPHK1 signaling occurs during the is-
chemia phase or following reperfusion. Previous studies
have reported an elevation of FoxO3 level during hypoxia
[30, 31]. Therefore, it is possible that this pathway cascade
is activated during ischemia and gets exaggerated follow-
ing reperfusion.

As an NAD-dependent deacetylase, SIRT1 has various
substrates and thus plays roles in many processes, such as
cell proliferation/apoptosis, stress resistance, inflammation,
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and even autoimmunity [32—34]. Previous studies have
shown that SIRT1 negatively regulates FoxO3 expression to
modulate aging, skeletal muscle function, and cardiovascu-
lar homeostasis [35-38]. Consistently, SIRT1 level was
inversely correlated with FoxO3 level in cells upon I/R. The
upregulation of FoxO3 following I/R might be caused by re-
duced expression of SIRT1. Notably, we identified that
SIRT1 was a downstream target of miR-19a/b-3p. The de-
creased expression of SIRT1 following I/R was due to in-
creased levels of miR-19a/b-3p. miR-19a/b-3p inhibitors
suppressed the inflammation while knockdown of SIRT1
blocked that suppression. These data provide evidence that
the interaction of miR-19a/b-3p and SIRT1 greatly contrib-
utes to I/R injury.

Both FoxO3 and SPHKI1 have been implicated in myo-
cardial I/R [38]. For instance, FoxO3 and SPHKI1 were
observed elevated during myocardial I/R [38, 39]. Fur-
thermore, blockade of the activation ameliorated the car-
diac inflammation and injury [18, 38]. In addition to
that, reduced SIRT1 has been reported in cardiomyo-
cytes during I/R injury and increasing SIRT1 level could
confer protection against I/R injury in cardiomyocytes
[40, 41]. Our study, together with previous studies, indi-
cate that activation of FoxO3/SPHK1 is a conserved sig-
naling pathway during I/R injury. Therefore, therapeutic
strategies targeting FoxO3/SPHK1 could be widely used
to combat I/R injury.

Conclusions

In summary, in combination of both in vivo and in vitro
models of ischemia/reperfusion, we demonstrate that
miR-19a/b-3p/SIRT1 promotes neuroinflammation via
regulating FoxO3/SPHK1 signaling, thus leading to cell
death upon I/R. Suppression of the inflammation by tar-
geting miR-19a/b-3p/SIRT1/FoxO3/SPHK1 could be a
promising avenue to improve the outcome of ischemic
stroke.
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