
Image-Based Biophysical Modeling Predicts Cortical Potentials 
Evoked with Subthalamic Deep Brain Stimulation

Bryan Howella, Faical Isbaineb, Jon T. Willieb, Enrico Opric, Robert E. Grossb, Coralie De 
Hemptinned, Philip A. Starre, Cameron C. McIntyrea, Svjetlana Miocinovicc

aDepartment of Biomedical Engineering, Case Western Reserve University

bDepartment of Neurosurgery, Emory University

cDepartment of Neurology, Emory University

dDepartment of Neurology, University of Florida

eDepartment of Neurological Surgery, University of California San Francisco

Corresponding Author: Svjetlana Miocinovic, svjetlana.miocinovic@emory.edu.
Author contributions
Bryan Howell: Conceptualization; Formal analysis; Investigation; Methodology; Software; Visualization; Roles/Writing - original 
draft; Writing - review & editing. Cameron C. McIntyre: Conceptualization; Funding acquisition; Methodology; Resources; Writing 
- review & editing. Philip A: Starr: Conceptualization; Funding acquisition; Resources; Writing - review & editing. Svjetlana 
Miocinovic: Conceptualization; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; 
Supervision; Visualization; Roles/Writing - original draft; Writing - review & editing. All other authors: Conceptualization, Writing - 
review & editing.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Appendix A. Supplementary material
Supplementary material is provided and will be available online.

AUTHOR DECLARATION
We wish to draw the attention of the Editor to the following facts which may be considered as potential conflicts of interest and to 
significant financial contributions to this work.
Bryan Howell is a paid consultant for Abbott Laboratories. Robert E. Gross has research supported by Medtronic, PLC, Boston 
Scientific Corp., Neuropace, SanBio, Voyager Therapeutics and Abbott Laboratories; is a paid consultant for Medtronic, PLC, 
Voyager Therapeutics, SanBio, Zimmer Biomet and Abbott Laboratories; and is a shareholder in Nia Therapeutics. Philip A. Starr 
has research supported by Medtronic, PLC and Boston Scientific, Co. Jon T. Willie is a paid consultant for Medtronic, PLC and 
Neuropace, Inc. Cameron C. McIntyre is a paid consultant for Boston Scientific, Co., receives royalties from Hologram Consultants, 
Neuros Medical, and Qr8 Health, and is a shareholder in the following companies: Hologram Consultants, Surgical Information 
Sciences, CereGate, Autonomic Technologies, Cardionomic, Enspire DBS. All other authors have no competing interests.
We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the 
criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all 
of us.
We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are 
no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that 
we have followed the regulations of our institutions concerning intellectual property.
We further confirm that any aspect of the work covered in this manuscript that has involved either experimental animals or human 
patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the 
manuscript.
We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct 
communications with the office). She is responsible for communicating with the other authors about progress, submissions of 
revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the 
Corresponding Author and which has been configured to accept email from svjetlana.miocinovic@emory.edu.
Signed by all authors as follows:

HHS Public Access
Author manuscript
Brain Stimul. Author manuscript; available in PMC 2022 May 01.

Published in final edited form as:
Brain Stimul. 2021 ; 14(3): 549–563. doi:10.1016/j.brs.2021.03.009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abstract

Background: Subthalamic deep brain stimulation (DBS) is an effective surgical treatment for 

Parkinson’s disease and continues to advance technologically with an enormous parameter space. 

As such, in-silico DBS modeling systems have become common tools for research and 

development, but their underlying methods have yet to be standardized and validated.

Objective: Evaluate the accuracy of patient-specific estimates of neural pathway activations in 

the subthalamic region against intracranial, cortical evoked potential (EP) recordings.

Methods: Pathway activations were modeled in eleven patients using the latest advances in 

connectomic modeling of subthalamic DBS, focusing on the hyperdirect pathway (HDP) and 

corticospinal/bulbar tract (CSBT) for their relevance in human research studies. Correlations 

between pathway activations and respective EP amplitudes were quantified.

Results: Good model performance required accurate lead localization and image fusions, as well 

as appropriate selection of fiber diameter in the biophysical model. While optimal model 

parameters varied across patients, good performance could be achieved using a global set of 

parameters that explained 60% and 73% of electrophysiologic activations of CSBT and HDP, 

respectively. Moreover, restricted models fit to only EP amplitudes of eight standard (monopolar 

and bipolar) electrode configurations were able to extrapolate variation in EP amplitudes across 
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other directional electrode configurations and stimulation parameters, with no significant reduction 

in model performance across the cohort.

Conclusions: Our findings demonstrate that connectomic models of DBS with sufficient 

anatomical and electrical details can predict recruitment dynamics of white matter. These results 

will help to define connectomic modeling standards for preoperative surgical targeting and 

postoperative patient programming applications.

Keywords

deep brain stimulation; subthalamic nucleus; Parkinson’s disease; electrocorticography; evoked 
potentials; biophysical modeling

Introduction

Deep brain stimulation (DBS) is an effective adjunctive treatment for Parkinson’s disease 

(PD) and other movement disorders [1], and continues to evolve technologically [2] with 

new applications [3]. When successful, the effects of DBS are dramatic, reducing symptoms 

in PD by 50% or more off medication [4]. However, DBS outcomes are variable due to 

heterogeneity in patient selection [5], electrode placement [6], and device programming [7]. 

It is infeasible to explore empirically the enormous parameter space of modern DBS systems 

[8], so in-silico models of DBS [9,10] are natural solutions to study advanced concepts 

before they proceed to clinical studies.

A recent trend in DBS research is the use of connectomic modeling [11]. This research sits 

at the intersection of brain connectomics and bioelectromagnetism, and is an evolving 

strategy that is driving innovation in both motor and psychiatric indications for DBS. Core to 

this concept is the tenet that DBS outcomes are influenced by the specific neuronal pathways 

activated by the extracellular stimulus [12–14]. These kinds of model-based analyses have 

provided useful insights for DBS, primarily in revealing hot spots of critical white matter 

activation not observable with neuroimaging alone [15,16]. As such, connectomic modeling 

is defining a new era of DBS research, with model-based strategies that rival [17] and, in 

some cases, outperform best clinical judgement [18,19]. However, caution remains in 

adopting model-based design for prospective DBS research due, primarily, to an absence of 

quality standards for their implementation [20].

Current standards for connectomic modeling are lacking, and models are typically assessed 

based on their capacity to estimate complex and temporally evolving clinical behaviors, 

which we find problematic for two reasons. First, it is premature to evaluate a model’s 

merits when we are only beginning to pinpoint the specific pathway modulations that 

ameliorate PD symptoms [21–24]. And second, the degree of anatomical and electrical 

realism that is adequate for modeling axonal responses to DBS stimuli remains 

undetermined. For simplicity, many connectomic DBS research studies derive their 

connectomic estimates using volumetric algorithms of current spread, whose methodologies 

are varied and unvalidated [25–27], and suffer from issues of generalizability and accuracy 

[13,28]. Nonetheless, application of these unvalidated methods to clinical outcomes analyses 

has become common in DBS research [29] and, unfortunately, preceded any demonstration 
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of utility in generating prospective predictions with any degree of accuracy [30]. Extant gaps 

between accuracy and realism can be bridged by more modern connectomic frameworks that 

integrate scientifically rigorous biophysical principles and patient-specific brain anatomy 

[31–33], but there is still a need to assess first if these detailed in silico systems actually 

provide a reliable proxy for activation of known pathways.

An important next step in the field of connectomic DBS modeling is validation of its 

underlying methods and strategies. This study employs the latest advances in connectomic 

DBS modeling [34,35], with the objective of testing model predictions against 

electrophysiological biomarkers of pathway activation in the subthalamic region [36]. We 

use the hyperdirect pathway (HDP) and corticospinal/bulbar tract (CSBT) as testbeds, as we 

previously demonstrated that their degree of activation could be estimated using potentials 

recorded with electrocorticography (ECoG) during subthalamic DBS in PD patients [37,38]. 

While the HDP [22,23,39–41] and CSBT [42] are of considerable interest in subthalamic 

DBS, this study was not designed to ascertain which white matter pathways are critical to 

best therapeutic outcomes. That said, this study is the first to test rigorously connectomic 

modeling predictions against well-designed experimental measurements across varied 

patients, lead designs, and stimulation settings.

Materials and methods

Patient selection

Patients analyzed in this study were individuals with idiopathic Parkinson’s disease 

scheduled to undergo STN DBS surgery at University of California San Francisco or Emory 

University. Informed consent was obtained before surgery under protocols approved by the 

Institutional Review Boards at both these universities. All patients were aware that the 

temporary subdural ECoG recording electrode was used strictly for research purposes. 

Evoked potential (EP) data has been previously published for Patients 1 and 7–11 [37]. Two 

patients whose DBS leads were repositioned for clinical reasons after EP recordings were 

excluded from our analyses.

Surgery and electrocorticography

A subdural ECoG recording electrode array (Ad-Tech) was placed on the surface of the 

brain through the same burr hole used for DBS implantation [43–45]. The 28-contact 

electrode array had two rows of fourteen, 2-mm diameter platinum contacts separated by 4 

mm. The target location for the center of the array was the arm area of M1, 3 cm from the 

midline. Recordings were conducted at least 12 h after stopping anti-parkinsonian 

medications and at least 30 min after stopping propofol sedation. DBS electrodes were 

placed in the STN using microelectrode guidance. ECoG electrode location was determined 

using intraoperative CT registered to the preoperative MRI in surgical planning software 

(Framelink 5.1, Medtronic).

ECoG potentials were recorded using the Neuro Omega (Alpha Omega Engineering) or 

TDT PZ5 (Tucker Davis Technologies; Patients 9, 11) acquisition systems. An ipsilateral 

scalp needle (UCSF) or ear electrode (Emory) was used as a recording reference while the 
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corresponding contralateral electrode served as the ground. Signals were amplified and 

acquired at a 22 kHz sampling rate with a built-in hardware bandpass filter between 0.075 

and 3500 Hz for Neuro Omega, and a 24,414 Hz sampling rate and 1–10,000 Hz bandpass 

filter for TDT.

DBS leads

Both standard (Medtronic 3387 and 3389, and Boston Scientific 2201) leads and current-

steerable (Boston Scientific 2202 and Abbott Laboratory 6172) leads were implanted in 

patients. Lead 3387 has four cylindrical / ring contacts 1.5 mm in height, 0.635 mm in radius 

and spaced 1.5 mm apart from edge-to-edge. Lead 3389 is similar to 3387 except with 0.5 

mm electrode spacings. Lead 2201 has eight contacts with the same geometry as 3389. Note, 

contact 0 is the most ventral (deepest) contact for Leads 3387 and 3389; otherwise, contact 1 

is the most ventral contact. Lead 6172 has two outer ring contacts (1 and 4) and two sets of 

inner pseudo-ring contacts (2A/B/C and 3A/B/C). Segmented contacts for Lead 6172 are 

104° arcs, equally spaced, and counted clockwise, with Contacts 2A and 3A pointing 

anterior and confirmed with intraoperative fluoroscopy. Lead 2202 has a similar design to 

6172 but with some differences: the lead radius is 0.65 mm, the two sets of segmented 

contacts (2–4 and 5–7) are 90° arcs and counted counterclockwise, and contact 1 is a 0.85 

mm height cylinder combined with the hemispherical cap. A detailed summary of lead 

geometries is found in [46].

Subthalamic DBS

Stimulation of the subthalamic region was conducted while patients were at rest using the 

NeuroOmega stimulator (Patients 1–6, 8, and 10), Medtronic digital stimulator (Model 8840; 

Patients 9, 11), or Medtronic analog stimulator (Model 3625; Patient 7). The NeuroOmega 

system used in eight patients was programmed to mimic the Medtronic clinical stimulators 

used in the remaining three patients [47,48]. Clinical DBS systems utilize asymmetric 

biphasic pulses consisting of a short “active” phase followed by a long, charge-balanced 

“recovery” phase. The NeuroOmega system was configured with the following instructions: 

the interphase delay was set to 70 μs; and the recovery phase was set eight times lower in 

amplitude and eight times longer in duration than the active phase, with a maximum phase 

duration of 500 μs allowable by the system. While clinical stimulators generally have a 

longer recharge phase (up to several milliseconds), the active phase primarily drives neural 

activation, so a longer recovery phase is expected to have minimal or no difference on 

activation thresholds [49].

Cathodes were denoted with a minus (−), anodes with a plus (+), and return electrodes for 

monopolar were a large surface electrode on the contralateral shoulder to emulate the 

stimulator case (C). Stimulation was primarily conducted at 10 Hz to ease the identification 

of the cortical evoked potentials, and because prior work showed that EP amplitudes at low 

frequencies were comparable to clinical high frequencies at 130 Hz [37]. Stimulation 

settings were tested for 10–15 s with a 3–5 s pause between the settings. The number of 

settings tested in each patient ranged from 18–45 and varied between patients depending on 

the amount of intraoperative time available. The order of stimulation settings was 

randomized in 8 of the 11 patients. Constant current stimulation was used whenever 
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available to control the amount of charge injected. In cases where voltage was regulated 

(Patients 7, 9, 11), the contact impedance was measured using a Medtronic digital stimulator 

(bipolar montage, 100 Hz), and the estimated applied current was calculated per Ohm’s law 

using the average impedance of the DBS electrode before and after stimulation.

376 settings were tested across the cohort. Electrode configurations were either monopolar 

with one source /anode (9 settings) or sink /cathode (148 settings) on the lead, pseudo-

monopolar with multiple contiguous anodes (2 settings) or cathodes (20 settings), or bipolar 

with an anode-cathode pair on the lead (197 settings). Pulse widths were primarily 60 μs 

(356 settings), but also 30 μs (10 settings) or 120 μs (10 settings). Amplitudes were either 1 

mA, 3 mA, or 5 mA; and frequencies were either 10 Hz (368 settings) or 130 Hz (8 

settings). Omnidirectional settings referred to either ring electrodes in a monopolar 

configuration or co-activation of the three directional electrodes in a pseudo-ring 

configuration. For pseudo-ring configurations with all three segmented contact activated, the 

total applied current was divided evenly between the segments (e.g. for 5 mA, 1.33 mA was 

applied to each segment). Directional settings referred to any electrode configuration that 

directionally steered current around or along the lead axis; therefore, directional settings 

included bipolar ring configurations but excluded pseudo-ring configurations.

Evoked potentials

Raw ECoG potentials were re-referenced in a bipolar electrode configuration using adjacent 

contacts, aligned by stimulus start times, and averaged to generate EPs (from 100–150 

pulses for each DBS setting). Peak latencies and peak amplitudes were visually determined 

for each stimulation setting. The EP amplitude was the voltage difference between a signal 

peak and its preceding trough, and the EP latency from the onset of the stimulus pulse was 

the time when the voltage peaked. Therefore, when present, EP0 and EP1 were distinct 

peaks: EP0 indicated CSBT activation and had peak latency of approximately 1.5 ms, and 

EP1 indicated HDP activation and had peak latencies of 2–4 ms [36,37]. Stimulation artifacts 

typically ended by 1 ms after the stimulus onset. In cases where EPs could not be separated 

from the large stimulation artifact, EP0 and EP1 were excluded from the analysis (2 DBS 

settings for Patient 7). Contact pairs overlying the precentral gyrus (M1) were used for 

analysis.

Activation of CSBT and HDP were quantified using EP0 and EP1, respectively. The concept 

of using short-latency cortical potentials to quantify antidromic activation of pathways with 

ECoG [50,51] or scalp EEG [52–54] is supported by prior DBS studies both in animals 

[55,56] and in humans [52–54]. Our previous experimental publication [37] demonstrated 

that CSBT activation 1) produces a shorter latency cortical EP compared to HDP due to the 

large diameter of pyramidal tract axons; 2) is associated with muscle activation; 3) is 

producible by both STN and pallidal stimulation, whereas HDP is only activated by STN 

DBS; and 4) has a different cortical topography from HDP activation because CSBT 

originates from primary motor cortex, while HDP’s origin is more widespread. Additionally, 

detailed biophysical analyses support the idea of differentiating CSBT and HDP based on 

their respective latencies [36].
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Neuroimaging

Preoperative T1-weighted (T1w) MRI scans were acquired with 1.5T or 3T scanners at slice 

thicknesses of 1–1.5 mm and in-plane resolutions of 0.89–1.35 mm. 1.5T scanners included 

the Philips Achieva or the Siemens Avanto, and 3T scanners included the Siemens Skyra or 

the Siemens Prisma. Postoperative T1w scans were scheduled the day after the DBS surgery 

and acquired with 1.5 T scanners, including Siemens Avanto, Siemens Espree, and GE Signa 

HDxt, with slices thicknesses of 1.—1.5 mm and in-plane resolutions of 0.5078–1.0156 mm. 

Reference spaces for each patient were their preoperative T1w images, except for two 

patients (9, 11), whose images were unavailable, so their postoperative T1w images were 

used instead. Intraoperative CT scans were acquired using the Medtronic O-Arm (Models 

O1 and O2) with a slice thickness of 0.833 mm and in-plane resolutions of 0.415–0.7754 

mm. Postoperative CT scans were acquired using a GE Lightspeed VCT, GE Discovery 

CT750, or a Siemens Somatom go.Top with slice thicknesses of 0.6–1.25 mm and in-plane 

resolutions of 0.4609–0.5488 mm. Patient 10 did not have a postoperative T1w image, so 

their postoperative CT was used instead.

Neuroimages were processed using the FMRIB Software Library (FSL) [57]. T1w images 

were corrected for RF/B1 inhomogeneities using FMRIB’s Automated Segmentation Tool, 

FAST [58], and skull-stripped using FSL’s Brain Extraction Tool, BET [59]. CT images 

were thresholded (0–750), smoothed with a Gaussian kernel (sigma = 1 mm), and skull-

stripped using BET. Images were registered using FSL–s image registration tool, FLIRT 

[60,61]. Intra-patient images were co-registered (cost function = Normalized Mutual 

Information) using a rigid body affine transformation unless registrations were poor, in 

which case, a twelve-parameter affine transformation was used instead (Patients 1, 3, 6). 

Brain masks were used to co-register CT and T1 spaces. The standard CIT 168 [62] brain 

atlas was registered to the patient’s preoperative T1w space using FSL’s nonlinear 

registration tool, FNIRT [63], and all registrations were visually confirmed for good quality.

Lead artifacts were localized in MATLAB (R2019a, Natick, MA) with thresholding and 

orthogonal distance regression (ODR). White lead artifacts in intraoperative CT images were 

demarcated using the brightest 5 % of image intensities, and a rigid lead trajectory was fit to 

these voxels using ODR. Dark lead artifacts in postoperative T1w images were demarcated 

in the same manner, except images were thresholded between absolute intensities of 0 and 

500. In either case, the inferior end of the best fit line was considered the hemispherical lead 

tip, and contact centers were calculated based on their respective lead geometry.

Anatomical pathways

CSBT and HDP were modeled using an anatomical pathway atlas of the subthalamic region 

(Fig. 1) defined in the CIT168 space [35]. CSBT consisted of ten subdivisions based on the 

origins (termini) of corticofugal (corticopetal) projections defined in the atlas: that is, face 

and neck, upper extremities, and lower extremities of the primary motor cortex (M1, 1–3); 

the premotor cortex (4); the supplementary motor area (SMA, 5); the anterior cingulate 

cortex (ACC, 6); the dorsolateral and dorsomedial prefrontal cortices (dlPFC and dmPFC, 

7–8); and the ventrolateral and ventromedial PFC (9–10). CSBT was consolidated in motor 

(1–5) and limbic (6–10) subdivisions. HDP was organized in the same manner as CSBT 

Howell et al. Page 7

Brain Stimul. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



without Subdivisions 7 and 8. The main trunk of HDP axons projecting from the cortex also 

contained a single collateral branch terminating in the STN with a fiber diameter 1/3 of that 

of their parent body [64]. Pathways were individualized by nonlinearly warping the data 

from CIT168 space to the patient’s preoperative T1w space.

Biophysical modeling

Electric field models of DBS were built in COMSOL (v5.1). The volume conductors 

consisted of the DBS lead encapsulated within a uniform glial scar (σscar = 0.1 S/m [65], 

thickness = 0.5 mm) and surrounded by homogeneous brain tissue (σbrain = 0.2 S/m [66], 

dimensions = 60 mm x 60 mm x 60 mm). DBS leads were modeled using internal boundary 

layers. Active (anodic and cathodic) sources were modeled with Dirichlet Boundary 

conditions: monopolar configurations (e.g., C+0−) were modeled using a non-zero voltage at 

one electrode and a zero voltage at the outer boundary of the model, representing a remote 

shoulder return electrode, and bipolar configurations were modeled using non-zero voltages 

of opposite polarity at two electrodes. Inactive contacts were modeled using a mixed 

boundary condition with two constraints per electrode: one, the equality of all surface 

electric potential, and two, no net current flow through the electrode surface. This floating 

potential boundary condition was used to model efficiently the effects of highly conductive 

passive electrodes on the millimeter scale. While heterogeneous dynamics of the electrode-

tissue interface at the submillimeter scale produce a dispersion of time constants of voltage 

decay across the active contact, at the millimeter scale, the temporal dynamics of voltage 

decay are more spatially uniform [32,67] and thereby can be approximated with an 

equivalent one-dimensional circuit model [68]. Ideal insulators were modeled using 

homogeneous Neumann boundary conditions with zero current density (A/m2). The tissue 

models for standard leads (3387, 3389, and 2201) were axially symmetric and thereby 

discretized in 2D using 4,021 third-order elements and 8,240 nodes. The tissue models for 

steerable leads (6172 and 2202) were discretized in 3D using 1,429,416 elements and 

6,524,354 nodes. For efficiency, the patients’ lead and axonal coordinates were rigidly 

transformed so that the lead was oriented along the positive z axis with its tip at the origin, 

preserving the discretization of the 2D and 3D tissue models across all patients.

Electric potentials (Φ) in the tissue medium at the onset of the stimulus pulse were 

numerically approximated by solving Laplace’s equation,

∇ ⋅ Σ ⋅ ∇Φ = 0

with the Finite Element Method (FEM), where Σ is tensor conductivity field. The temporal 

variation of Φ was approximated by multiplying the quasi-static solution of Laplace’s 

equation with a waveform derived from an equivalent circuit model stimulation [32,68] with 

constant current-regulation.

Thresholds of direct axonal responses to extracellular stimulation were estimated using a 

predictive algorithm [34] based on the force driving polarization of the axonal membrane 

[69]. Briefly, locations of Nodes of Ranvier of axons within the CSBT and HDP were 

interpolated based on their fiber/body diameter [70] and spline-based trajectories. We used 
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the vector of extracellular potentials applied to each axon to calculate a modified driving 

force [71] based on the weighted integration of the most polarizing currents at the Nodes of 

Ranvier [72], The driving force metric was then used to estimate stimulation thresholds for 

all axons in the CSBT and HDP. We examined the response of fiber diameters ranging from 

4 μm to 20 μm [34].

Models of mammalian axons [70] and volume conduction for DBS [32,68,73] have been 

previously developed, so model parameters were chosen to be consistent with prior DBS 

modeling works, for consistency. Because white matter is composed of axons with a wide 

range of fiber diameters, modeling studies generally use a single representative fiber size to 

estimate a pathway’s response to DBS in the absence of human histological data. Given that 

fiber diameter is often a free parameter in biophysical models of DBS, we focused on 

determining its value using EP amplitudes.

Statistical analyses

We evaluated responses to 376 stimulation settings (i.e., combinations of electrode 

configuration, pulse width, amplitude, and frequency) spanning eleven patients (Table 1) to 

test the hypotheses that EP0 and EP1 amplitudes vary in proportion to the percent activation 

of CSBT and HDP, respectively (Fig. 2). Model performance was quantified using the 

coefficient of determination (R2) between the electrophysiologic EP amplitude and the 

respective pathway activation. EP1 was never all zeros for any given patient. However, EP0 

was zero for all settings tested in Patients 7, 10, and 11; with no variance in EP0, R2 was 

indeterminable. In these cases, we used a secondary metric of accuracy, defined as the 

percentage of correct assessments of true positives (activation) and negatives (no activation), 

to assess correspondence between the model predictions and the intraoperative 

measurements. Statistical comparisons between distributions of R2 were conducted using a 

two-sample Kolmogorov-Smirnov test with α = 0.05. We first evaluated the most important 

model variants to assess optimal performance and then used the best general set of global 

model parameters to explore potential sources of unexplained variability. Because our results 

focus on the biophysical aspects of model refinement and testing, we leave a more thorough 

analysis of lead localization in the Appendix A.

Model fidelity was further evaluated in each patient by evaluating the performance of a set 

of restricted models fit to only a subset of stimulation settings. We first determined if there 

was a consistent trend in which types of stimulation settings could reliably predict EP 

amplitudes of other settings across patients. We limited the initial search to sets of four 

stimulations settings, which is the minimal number of settings tested during a standard 

programming session in the clinic, and then we determined how many data points, at 

minimum, per patient were needed to extrapolate reliability all other data points not included 

in the regression fits.

Results

The study’s objective was to evaluate model performance in estimating activation of CSBT 

and HDP (Figs. 1 and 2) against direct electrophysiological measurements of their activation 
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[37]. This work builds on a prior modeling study of subthalamic DBS [36], extending 

analyses to varied patients, lead designs, and stimulation settings (Table 1).

Optimal model performance

DBS leads were first localized using intraoperative CT images (Fig. A.1) acquired during the 

experiments. Average model performance was relatively poor (R2 < 0.5), so leads were 

relocalized in the postoperative images using FSL’s nonlinear registration algorithm with the 

same registration settings across all patients. Discrepancies in the lead’s position differed by 

several millimeters between the localizations defined by intra-operative CT vs. post-

operative T1w images for many patients (Fig. A.1A). With CT images, R2 ranged from 

0.25–0.67 (median = 0.46) for CSBT and from 0.09–0.92 (median = 0.49) for HDP, and 

when re-localizing leads with T1w images, model performance improved in 5/8 patients for 

CSBT and in 7/11 patients for HDP (Fig. A.1B), yielding a median R2 of 0.60 and 0.73 for 

CSBT and HDP, respectively (Fig. A.1C). Therefore, the post-operative T1w images were 

used for all subsequent model analyses.

The actual distribution of fiber diameters within each pathway is unknown across patients. 

Therefore, the second optimization step looked at empirically selecting fiber diameters in the 

biophysical model that best represented the electrophysiological activations of CSBT and 

HDP for each patient. Model performance generally increased with increasing fiber diameter 

(Fig. 3A) with a relatively constant accuracy in predicting activation (true positive) versus no 

activation (true negative) (Fig. 3B). Across individuals, R2 ranged from 0–0.83 for CSBT 

and from 0.16–0.92 for HDP. Although the optimal fiber diameter varied by patient, the 

trend of better accuracy with a larger fiber diameter was consistent across most subjects. 

Comparable model performance was achieved using a single fiber diameter of 12 μm for 

CSBT, and a single pair of fibers diameters for HDP of 12 μm and 4 μm for the corticofugal 

axon and collateral, respectively (Fig. 3C). Those representative fiber diameters were then 

used for all subsequent analyses.

The third optimization step assessed how anatomical organization of the pathways (Fig. 

4A/C) affected subsequent model predictions. We predicted that nonmotor subdivisions of 

pathways would poorly predict variance in the evoked responses because ECoG data were 

acquired from electrodes overlying the primary motor cortex (M1) (Fig. 2A). As expected, 

activation of limbic subdivisions of pathways alone were poor predictors of EP0 and EP1 

compared to motor subdivisions, but removing limbic subdivisions did not improve model 

performance (Fig. 4B/D). We found that model performance was optimal with a broader 

coverage of the internal capsule that included both motor and limbic fibers.

Sources of variance

We used the best representative model parameters across the cohort (i.e., postoperative T1w 

lead localizations, all anatomical subdivisions of the axonal pathways, and a single fiber 

diameter of 12 μm for the corticofugal axons) to evaluate potential sources of unexplained 

variance. Errors in estimating evoked responses (i.e., (predicted value – actual value) / actual 

value) had a discernable positive skew for directional bipolar and segmented cases compared 

to monopolar and ring cases, respectively (Fig. 5A). Therefore, we refitted models using 
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only data acquired with omnidirectional (monopolar, ring) electrodes and stimuli. Omitting 

directional stimulation cases improved model performance, particularly for patients with 

steerable leads: R2 improved from 0.66 to 0.95 for Patient 4, from 0.66 to 0.77 for Patient 5, 

and from 0.48 to 0.73 for Patient 6 (Fig. 5B). Moreover, improvements in model 

performance were more pronounced for HDP than CSBT (Fig. 5C); median R2 increased 

from 0.60 to 0.62 for CSBT and from 0.73 to 0.81 for HDP. As expected, EP0 was the 

largest when the active contacts were in the posterolateral STN, closest to the CSBT (Fig. 6). 

This is consistent with the expected orientation of the steerable contacts, so errors were more 

likely to be a product of other factors, such as but not limited to heterogeneity in the 

anatomical distribution of pathways not captured by the pathway models (Fig. 6B).

Despite good model performance within each patient, aggregation of data across patients 

degraded the models’ predictive power (Fig. 7). Degraded performance from aggregation 

(and normalization) could be explained as a product of two factors. First, an increase in 

unexplained variance from patients with the worst model performance (i.e., those with the 

lowest R2). Second, an accumulation of unexplained inter-patient variability, meaning that 

the rate of change of EP amplitudes and their maximum values were variable functions of 

percent activation across patients. Therefore, patient-specificity was key to good model 

performance.

The four settings in each patient with the smallest errors were a combination of monopolar 

and bipolar (pseudo) ring configurations with a cathode spanning all four ring contacts. For 

these settings, the pulse widths were all 60 μs, and the amplitudes were primarily 5 mA. 

Restricted models fit to only four monopolar ring electrode configurations (e.g., C+0−, C

+1−, C+2−, and C+3−) or four bipolar ring configurations (e.g., 1+0−, 2+1−, 3+2−, and 

2+3−) performed worse than the full model fit to all settings, yielding a median R2 < 0.5 

across patients for CSTB (Fig. 4A/B) and HDP (Fig. 4C/D). However, when combined, the 

EP amplitudes of these eight standard ring settings predicted the EP amplitudes of all other 

patient’s settings with a median R2 of 0.60 and 0.73 for CSBT and HDP, respectively, across 

the cohort. Note, for Patients 4–6, few pseudo bipolar ring settings were tested, so the eight 

settings were C+0−, C+1−, C+2−, and C+3− at 3 mA and 5 mA. And for Patients 7, 9–11, 

only bipolar electrode configurations were tested, so the eight settings were 1+0−, 2+1−, 

3+2−, and 2+3−at 3 mA and 5 mA. Therefore, capturing variation in EP amplitudes across 

contacts may be sufficient to predict variation responses across other directional electrode 

configurations, stimulation amplitudes, and pulse widths.

Discussion

This is the first study to evaluate patient-specific estimates of neural pathway activations 

against intracranial electrophysiologic recordings of axonal responses to DBS. Overall, 

model accuracy was good, with performance being critically dependent on accurate lead 

localization, appropriate selection of pathway fiber size, as well as the DBS lead type and 

electrode contact configuration used to fit the model parameters. While the absolute best 

model parameters were patient-specific, trends across the cohort were consistent, and a 

general set of model parameters (i.e., postoperative T1w lead localizations, 12 μm fiber 

diameters, and the use of all anatomical pathway subdivisions) provided a suitable 
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alternative, yielding median R2 of 0.60 and 0.73 in estimating electrophysiologic activations 

of CSBT and HDP, respectively. Nonetheless, model fits were patient-specific, meaning that 

the rate of change of EP amplitudes and their maximum values varied as a function of 

percent activation across patients, highlighting the importance of patient-specificity for 

extrapolation. Overall, our findings demonstrate that connectomic models of DBS can 

predict recruitment dynamics of white matter pathways, but the accuracy of these predictions 

is highly dependent on accurate localization of the lead and targets, explicit representations 

of the target fiber’s geometry, and accurate estimates of the applied DBS field. Models that 

ignore these details are unlikely to capture reliably recruitment dynamics across varied 

pathways and DBS settings.

Determinants of model performance

Details that are often ignored or assumed to be of negligible importance in patient-specific 

models of DBS were actually critical determinants of good model performance. In 

particular, our results counter three simplifying assumptions commonly used in other DBS 

modeling analyses. First, positional uncertainties in the electrode locations are not negligible 

and may be on the order of several millimeters (Fig. A.1A) despite visually overlapping 

image co-registrations. While the lowest image resolution sets an error floor, positional 

errors remain unbounded due to a number of latent factors, including lead movement or 

rotations [74], brain shift and deformations from surgery [75,76], and errors from multiple 

registrations, particularly across (CT and MRI) imaging modalities [77–79]. While nonlinear 

registrations between intracranial anatomy can mitigate potential positional errors, positional 

uncertainties, if not mitigated through post processing, can be millimeter-sized from the 

combination of surgical factors, image coregistrations, and the finite resolution of the 

imaging [80].

Second, a pathway’s effective excitability to DBS is variable across different pathways and 

patients, and cannot be discerned from its anatomical organization alone. Histological 

[81,82] and neuroimaging [83–85] priors can inform an initial guess, but determining a 

pathway’s excitability requires taking into account the differential excitability and topology 

of its axonal constituents [86]. The most straight-forward way of calibrating a pathway’s 

excitability is adjusting the fiber diameter value, but the optimal value is not known a priori 
and thereby should be empirically determined for each pathway based on 

electrophysiological data (Fig. 3).

And third, the traditional tripartite organization of the STN (into a dorsolateral motor part, a 

ventromedial associative part, and a medial limbic part) [87] likely underrepresents the 

overlapping [88] and varied topological organization of HDP and CSBT across patients [89–

91]. Limbic subdivisions of our pathways were the poorest predictors of potentials evoked in 

the motor cortex (Fig. 4B/D), but their exclusion unexpectedly degraded model accuracy. 

This suggests that in the absence of neuronal tract tracing, it’s empirically advantageous to 

cast a wide net and make no definitive a priori determination of how fibers are topologically 

organized in the STN (Figs. 4 and 6).

We also found that accurate field modeling is key to model performance [13,28]. 

Homogeneous, isotropic field calculations are the most parsimonious way of implementing 
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electrical realism, and were able to achieve overall good model accuracy (median R2 ≥ 

0.60), but performance was limited, particularly for directional stimuli (Fig. 5). While gross 

misorientation of the steerable lead is possible from torsion after fixation to the skull [92], 

leads were held by a microdrive during ECoG recordings, and fluoroscopy and EP 

measurements (Fig. 6B) were consistent with the desired lead orientation. Therefore, we 

posit that the relative underperformance of modeled directional cases compared to 

omnidirectional (monopolar, ring) were more a product of, and can be rectified by modeling 

inter-patient variability in the peri-electrode environment. This variability arises 

endogenously, from anisotropy and heterogeneity [32,93], and exogenously, from surgery, 

due to peri-electrode edema or air bubbles, loss of cerebrospinal fluid, and changes in 

intracranial pressure from pneumocephalus [94,95]. In other words, compared to 

omnidirectional settings that distribute current throughout the entire tissue medium, 

directional settings primarily guide current through local regions of tissue between contacts, 

and given this, the directional electric fields are more critically dependent on how readily 

current passes through these specific subregions. However, to what degree these electrical 

details should be incorporated is still an open question, and will likely depend on the target 

and use case for the model (e.g., pre-operative surgical targeting vs. post-operative 

parameter selection).

Implications for model-driven studies

The increasing complexity of DBS technologies provides an impetus for computational 

strategies to simplify and automate its clinical administration. DBS systems now provide 

segmented, cylindrical electrode arrays [46] that can interleave and/or couple multiple 

independent current sources [96], adding to an already enormous space of device stimulation 

parameters that cannot be explored within the limited time and resources available for 

clinical testing [97,98]. Providing physicians with an overwhelming amount of information – 

and options – is at odds with simplifying surgical planning and programming for DBS [7], 

so in silico systems are being employed to synthesize patients’ data into actionable insights 

and instruction [99,100]. In addition, connectomic-based targeting is redefining surgical 

planning in psychiatric indications of DBS [18,19], but the merits of connectomic modeling 

for parameter selection for subthalamic DBS remain unclear [17,30,101].

DBS clinical outcomes are inextricably linked to underlying neural activations, specifically 

of myelinated axons [102–104]. Therefore, we postulate that optimizing models to predict 

accurately specific neural pathway activations is a necessary step for developing models that 

can predict DBS outcomes. Thus far, only volume of tissue activated (VTA) algorithms have 

been tested in clinical pilot studies, and those studies have generated inconsistent results 

[30,101] [13]. VTAs were originally designed as a coarse predictor, sacrificing accuracy for 

speed, to permit interactive visualizations of a very liberal upper bound on the potential 

spread of axonal activation [28], and thereby are significantly simplified compared to the 

biophysical models used in this study. VTAs may be useful for estimating a worst-case 

scenario of current spread, which has merit in avoiding unintended side effects [17]. 

However, VTAs ignore critical anatomical and electrical details that are essential for 

simulating neural responses [13]. As such, their utility for parameter titration based on 

pathway activations will likely be of limited assistance and prone to error [30]. The methods 
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[34,35] tested herein address the inherent methodological limitations of earlier approaches. 

New models that include more anatomical and electrical details, and correlate well with 

neural activation, should in theory also perform better at predicting DBS settings that 

provide therapeutic benefit. However, the actual clinical fidelity of these new types of DBS 

models awaits testing in a clinical trial.

We propose that standards are needed for the application of connectomic DBS modeling 

methods to clinical DBS studies, which begins with redefining the objectives. We 

recommend that connectomic models be evaluated based on well-defined 

electrophysiological measurements of neuronal activation [105–107]. Doing so distills 

concepts into testable hypotheses on which neural pathways are directly tied to symptom 

relief and/or disease state. This pivots the modeling strategy from predicting behavioral 

outcomes, which are idiosyncratic and temporally dynamic, to predicting direct 

physiological responses that are mechanistically well-defined [37,108,109]. Current trends 

in connectomic DBS research have focused on attempting to define correlations between 

coarsely modeled sites of activation and clinical behavioral measurements [29]. 

Unfortunately, application of these unvalidated model-based strategies have had limited 

assistance for clinical programming [30].

We also recommend that decisions based on modeled neural responses be patient-specific 

[20]. As demonstrated, inter-patient variability in neural responses were a confounding 

factor for model predictions when aggregated and normalized (Fig. 7). Therefore, the rate of 

change of EP amplitudes and their maximum values varied as a function of percent 

activation across patients, and is one potential reason why normative models have failed to 

predict accurately behavioral outcomes in individual patients [29,110–115]. Even within 

homogeneous cohorts of patients with PD, there is no globally best anatomical target, as best 

locations across patients span the entire STN and zona incerta [116,117]. This general 

finding implicates a number of candidate therapeutic white matter targets that can be 

activated from various lead positions. While this study was not designed to ascertain which 

of the subthalamic white matter pathways are critical to best therapeutic outcomes, our 

results highlight the importance of preserving inter-patient variance in attempts to 

understand neural responses to DBS.

Limitations

The models implemented herein simplified certain anatomical and electrical details. First, 

we ignored anisotropy and heterogeneity present within the brain [32] and soft tissues [33]. 

Solving highly detailed MRI-based head models for all pathways and stimulation settings 

requires days to complete for a single patient, even if parallelized on a compute cluster. 

These limitations prohibit high-throughput analysis of many patients and combinations of 

model parameters. Additionally, we estimated patients’ pathways by nonlinearly mapping 

known anatomical connections derived from (human and non-human) primate histological 

results in a high-resolution brain atlas to the patients’ MRI, [35], as opposed to tractography. 

While tractography has merit for studying inter-patient structural differences in white matter 

connectivity, this technique is computationally demanding, limited in its anatomical 

accuracy [118], and prone to errors from spurious connections and registration with low-
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resolution scans [76,119]. Our goal was to capture the general anatomy of known pathways 

in the subthalamic region, and as such, the anatomical pathways atlas addressed some 

limitations of tractography [35]. Although more detailed models of axon morphology 

[23,90] and volume conduction [13] may further improve model accuracy, we focused on 

methods that are currently being used for DBS planning in clinical research [120]. These 

models sacrifice some details for accuracy but provide a consistent and tractable framework 

for high-throughput connectomic analyses.

Another limitation was that the putative associations between EP0 and CSBT, and EP1 and 

HDP in the primary motor cortex may not be exclusive, and some overlap in their latencies 

is expected. Smaller fibers in CSBT could contribute to EP1, and initiation of action 

potentials in the corticofugal axon of HDP in the internal capsule could contribute to EP0 

[36]. However, given that EP0 and EP1 peaks were always distinct in our data [37], we did 

not add contributions of EP0 to HDP or EP1 to CSBT in the regression models due to the 

potential for overfitting.

Small sample size was another limitation and an inevitable challenge for invasive human 

recordings. We considered electrophysiologic recordings as the gold standard for defining 

HDP and CSBT activations. However, due to limited cortical coverage and variability in 

cortical electrode locations, it is likely that some relevant activations were missed. We took 

advantage of a repeated-measured design, testing over 350 settings across different patients 

and lead designs. Nonetheless, more studies are warranted to assess the consistency of our 

findings and determine what level of model accuracy is adequate for extrapolating model 

predictions, for different pathways and use cases.

Conclusions

Connectomic modeling of DBS is driving innovation for DBS indications, with associated in 
silico tools that help navigate and evaluate the enormous parameter space of new DBS 

technologies capable of steering, combining, and/or interleaving currents between contacts. 

Patient-specific connectomic modeling with adequate electrical and anatomical realism can 

rapidly simulate individualized axonal responses to subthalamic DBS, and these biophysical 

predictions can be reliable across different patients and lead designs, albeit with some 

unexplained variability. Through rigorous comparison with electrophysiology, we identified 

a set of potential generalized best practices for connectomic modeling of subthalamic DBS, 

highlighting potential failure points of current DBS models in estimating pathway activation 

and where improvements are likely needed to improve their overall accuracy. That said, this 

study sets the stage for prospective model-based design of optimal stimulation strategies for 

subthalamic DBS based on activation of specific white matter bundles.
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Appendix

Figure A.1. Positional uncertainty was reduced with structural MRI lead localization.
(A) Average displacement between contact centers (Δdmove) when the leads were localized 

with a postoperative T1-weighted (T1post) image or an intraoperative CT (CTintra) image. 

The black arrow points to Patient 2 depicted in the top panel. L = lateral, A = anterior, and S 

= superior. (B) The change in model performance compared to the magnitude of the 

positional shift when relocalized with T1post. R2 = coefficient of determination, CSBT = 

corticospinal/bulbar tract, and HDP = hyperdirect pathway. (C) Model performance across 

the cohort with T1post or CTintra. R2 were indeterminate for CSBT in Patient 7, 10, and 11 

because EP0 was zero for all their settings.
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• First evaluation of connectomic model estimates against cortical recordings in 

humans

• Lead localization and pathway excitability are crucial determinates of model 

accuracy

• Model accuracy is superior for omnidirectional compared to directional 

stimulation

• Patient-specificity is important for good model performance

• General model parameters may be suitable for predicting activations across 

patients
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Figure 1. Individualized connectomic estimates of direct axonal activation.
(A) Anatomical models of corticospinal/bulbar tract (CSBT, reds) and hyperdirect pathway 

(HDP, blues) with the subthalamic nucleus (STN, green) overlaid. (B) Pathways warped into 

Patient 3’s preoperative T1w space with their lead overlaid. (C) Closeup of Panel B. 

Directions: L = lateral, S = superior, A = anterior. (D) Extracellular voltages applied to the 

pathways from a 1 mA of current applied between an active cathodic contact (2−, magenta) 

and a distal large return electrode on the contralateral shoulder (C+, not shown). Examples 

of (E) percent co-activation of CSBT and HDP, and (F) selective activation of HDP at 10 Hz.
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Figure 2. Electrocorticographical evaluation of direct axonal activation.
(A) Evoked potentials (EPs) recorded with subdural electrocorticography (ECoG) during 

subthalamic deep brain stimulation (DBS). The electrode strip spanned the premotor cortex, 

primary motor cortex (M1), primary sensory cortex (S1), and superior parietal lobule. White 

arrow points at the central sulcus. The bottom panel depicts an averaged EP trace for 

monopolar and bipolar electrode configurations, demonstrating that EPs are distinct from the 

stimulation artifact. EP0 and EP1 peaks are denoted. (B) EP0 amplitude was correlated with 

modeled activation of the corticospinal/bulbar tract (CSBT, red) and EP1 amplitude with the 

hyperdirect pathway (HDP, blue). Data from Patient 3. (C) Linear correlations between the 

EPs and the model pathway activation from Panel B. R2 = Coefficient of Determination. 

Stimulation settings: IDs of anode (+) and cathode (−) / current amplitude / stimulus pulse 

width. Contact 0 is nearest to the tip of Medtronic Lead 3389.
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Figure 3. Model performance improved with increasing fiber diameter.
(A) Linear variation in evoked potential (EP) amplitudes explained by respective estimates 

of pathway activation. R2 = coefficient of determination, CSBT = corticospinal/bulbar tract, 

and HDP = hyperdirect pathway with a diameter ratio of collateral to body of 1:3. (B) 

Accuracy in predicting activation (true positives) versus no activation (true negatives). Black 

arrows point to the median fiber diameter. (C) Top: individual examples of model 

performance by diameter and patient. Bottom: model performance with a general fiber 

diameter (12 μm, black arrows) compared to model performance when the optimal diameter 

was selected per patient (Doptimal). Patients 7, 10, and 11 are excluded (n = 8) for CSBT 

cases because their EP0 was zero and unvarying, so R2 was indeterminate.
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Figure 4. Model performance was optimal with all anatomical subdivisions.
(A) Anatomical subdivisions of the corticospinal/bulbar tract (CSBT, reds) and (B) the 

respective model performance using these subdivisions. Subthalamic nucleus (green). R2 = 

coefficient of determination, L = lateral, P = posterior, and S = superior. ‘All’ is the 

combination of motor and limbic subdivisions (left), and the motor subdivision is further 

subdivided into the primary motor cortex (M1), supplementary motor area (SMA), and 

premotor cortex (right). (C and D) The same as A and B except for the hyperdirect pathway 

(HDP, blues). Asterisks denote statistical differences with a Kolmogorov-Smirnov test (α = 

0.05). Note, Patients 7, 10, and 11 are excluded (n = 8) for CSBT cases because their EP0 

was zero and unvarying, so R2 was indeterminate.
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Figure 5. Model errors were minimal with omnidirectional stimulation of pathways.
(A) Relative errors ((predicted value – actual value) / actual value) of evoked potential 1 

(EP1) collapsed across patients, and subdivided by electrode configuration (top) or type 

(bottom). (B) Model fits in patients with directional leads using all data (left), only data 

acquired during omnidirectional stimulation with a monopolar, ring electrode (middle), or 

only data acquired during directional stimulation with bipolar or segmented electrodes 

(right). R2 = coefficient of determination. (C) Comparative model performance with only 

data from omnidirectional stimulation cases. Data from patients in B are emphasized (black 
arrow and lines). R2 were indeterminate for CSBT in Patient 7, 10, and 11 because EP0 was 

zero for all of their settings.
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Figure 6. Evoked potential (EP) amplitudes were maximal in the posterior STN.
(A) Variation in EP0 (circles) and estimates of corticospinal/bulbar tract (CSBT) activation 

(squares) at 3 mA across the four (pseudo-)ring contacts in monopolar cathodic 

configurations. (B) The same as Panel A except for EP1 and the hyperdirect pathway (HDP). 

(C and D) Similar to A and B, except for segmented contacts at three current amplitudes. 

Contact orientations: A = anterior, PM = posteromedial, PL = posterolateral, with PL and 

PM flipped across hemispheres. The six points per each combination of orientation and 

amplitude are the data collected from the two segmented contacts in Patients 4–6 with 

steerable DBS leads. Data from Patients 7, 9, and 11 are excluded (n = 8) because their data 

were only collected with bipolar contact configurations. Bonferroni corrections were applied 

to the Kolmogorov-Smirnov tests to account for multiple comparisons: α < 0.05 / 6 for A 

and B (4 rings choose 2) and α < 0.05 / 3 for C and D (3 segments choose 2).
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Figure 7. Patient-specificity was necessary for good model performance.
(A) Linear correlations between the normalized evoked potential (EP) amplitudes and their 

respective pathway activations aggregated across the entire cohort, where EP0 (reds) and EP1 

(blues) were normalized by the respective range of amplitudes in each patient (i.e., (value – 

minimum value) / range of values) and expressed as a percentage. For comparison, the 

distribution of individual linear regression fits (dashed lines) for all patients are shown. R2 = 

coefficient of determination, CSBT = corticospinal/bulbar tract (n = 8, left), and HDP = 

hyperdirect pathway (n = 11, right). (B) R2 for aggregate fits (open squares) compared to 

respective patient-specific fits (filled circles). The black arrows point to the respective R2 for 

aggregate fits.
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Figure 8. Eight standard ring settings explained the majority of variance in EP amplitudes.
Correlations between CSBT and the respective evoked potential (EP0) amplitude for (A) 

Patient 1 and (B) all patients using all stimulation settings (red), only four monopolar ring 

electrode configurations (C+0−, C+1−, C+2−, and C+3−, maroon), only four bipolar ring 

configurations (1+0−, 2+1−, 3+2−, and 2+3, pink), or both monopolar and bipolar ring 

settings combined (gold). For restricted cases, the regression model was fit to only four or 

eight settings (enlarged and outlined in black), and then the coefficient of determination (R2) 

was calculated for all points. Pulse width = 60 μs, and amplitude = 5 mA unless specified 

otherwise (see Sources of variance). For electrode configurations, C, +, and − denote 

stimulation case, anode, and cathode, respectively. (C–D) The same as A–B for EP1 and 

HDP, with the same stimulation setting for the full (blue) and restricted models (teal, purple, 
and cyan). CSBT = corticospinal/bulbar tract (n = 8), and HDP = hyperdirect pathway (n = 

11). Asterisks denote statistical differences with a Kolmogorov-Smirnov test (α = 0.05).
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Table 1.

Patient characteristics

Patient Age/Sex Center ECoG side* ECoG laterality 
at M1*, mm

DBS lead model* Lead type Stimulator used No. DBS 
Settings

1 62/M Emory R 34.0 MDT 3389 Standard Neuro Omega 36

2 53/M Emory R 40.9 MDT 3389 Standard Neuro Omega 42

3 57/M Emory R 24.3 MDT 3389 Standard Neuro Omega 39

4 44/M Emory R 18.9 ABT 6172 Steerable Neuro Omega 42

5 53/M Emory R 28.0 BSC 2202 Steerable Neuro Omega 54

6 60/M Emory L 26.5 ABT 6172 Steerable Neuro Omega 46

7 64/M UCSF R 35.0 MDT 3389 Standard MDT analog 18

8 65/M UCSF R 44.0 MDT 3389 Standard Neuro Omega 34

9 60/M UCSF R 41.5 MDT 3387 Standard MDT digital 18

10 69/M UCSF R 27.5 BSC 2201 Standard Neuro Omega 27

11 67/M UCSF R 22.6 MDT 3387 Standard MDT digital 20

*
L (left), R (right), M1 (primary motor cortex), MDT (Medtronic), ABT (Abbott Laboratories), BSC (Boston Scientific Co.).
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