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SUMMARY

Thousands of interactions assemble proteins into modules that impart spatial and functional 

organization to the cellular proteome. Through affinity-purification mass spectrometry, we have 
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created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results 

from affinity purification of 10,128 human proteins – half the proteome – in 293T cells and 

includes 118,162 interactions among 14,586 proteins. The second results from 5,522 

immunoprecipitations in HCT116 cells. These networks model the interactome whose structure 

encodes protein function, localization, and complex membership. Comparison across cell lines 

validates thousands of interactions and reveals extensive customization. While shared interactions 

reside in core complexes and involve essential proteins, cell-specific interactions link these 

complexes, ‘rewiring’ subnetworks within each cell’s interactome. Interactions covary among 

proteins of shared function as the proteome remodels to produce each cell’s phenotype. Viewable 

interactively online through BioPlexExplorer, these networks define principles of proteome 

organization and enable unknown protein characterization.

Graphical Abstract

Abstract

Comparative analysis of large scale protein-protein interactions across two cell lines highlights 

context-specific interactions and proteome-scale shifts in how functional networks are arranged.

INTRODUCTION

While a cell’s genetic inheritance is fixed, its proteome adapts to external and internal cues, 

fostering great diversity of form and function that drives multicellular life. Myriad physical 
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interactions assemble proteins into modules that impart spatial and functional organization 

and define the interactome, a network whose topology encodes each protein’s cellular 

environment and whose structure varies with cell state. Defining the repertoire of protein 

interactions and the conditions in which they occur is thus essential to understand proteome 

and cellular diversity.

Despite its importance, a complete map of the human interactome remains elusive due to 

several challenges: 1) the innumerable proteins, isoforms, and post-translational states 

within the proteome; 2) the biochemical properties of individual proteins; 3) variable protein 

expression; 4) the prevalence of transient interactions; and 5) interaction context 

dependence. Existing interaction profiling methods have only partially addressed these 

challenges. Binary methods including yeast-two-hybrid assays excel at screening large 

libraries, though interacting protein pairs must be detected in isolation within a foreign 

cellular environment (Rolland et al., 2014). Alternatively, co-fractionation detects protein 

interactions in native complexes, subject to limits of sensitivity, dynamic range, and 

resolution of fractionation (Havugimana et al., 2012; Wan et al., 2015). In contrast, affinity-

purification mass spectrometry (AP-MS) enables enrichment and detection of even low-

abundance proteins, though exogenous expression of tagged baits is required, and extensive 

sample preparation has limited scalability while precluding recovery of transient interactions 

(Gingras et al., 2007). Approaches that combine datasets (Drew et al., 2017, 2020) or mine 

literature (Oughtred et al., 2018) can compensate for limitations of individual approaches, 

though experimental context may be lost (Stacey et al., 2018). Thus, our view of the 

interactome remains static and fragmentary. While our understanding of interactome 

dynamics is especially limited, context-dependent interactions enable cells to adapt to 

variable environments and create the cellular diversity that drives tissue-specific function 

and disease susceptibility. Such conditional interactions combine with protein expression, 

localization, and post-translational modifications – the proteotype – to biochemically link 

genotype to phenotype.

Though no single methodology can overcome all limitations, AP-MS excels for profiling 

interactomes – including yeast (Gavin et al., 2002; Ho et al., 2002; Krogan et al., 2006), 

Drosophila (Guruharsha et al., 2011), and human (Hein et al., 2015) – due to its sensitivity 

and its ability to detect interactions in appropriate cellular contexts. Thus, we have 

established a robust AP-MS platform, generating BioPlex 1.0 and 2.0 (Huttlin et al., 2015, 

2017). Here we present BioPlex 3.0, the most complete model of the human interactome to 

date, accompanied by a second interaction network acquired in HCT116 cells. Individually, 

each network encodes protein function and reveals fundamental principles of interactome 

organization. In tandem, these cell-specific interaction networks begin to reveal how 

interactomes vary with cellular state. Together, they depict shared and cell-specific modules 

with characteristic biological properties that often align with the unique phenotypes of each 

cell line. In combination, they enable biological discovery, revealing physical interactions 

and suggesting functions for thousands of proteins. Both networks are viewable interactively 

through BioPlex Explorer.
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RESULTS

Interactome Profiling in Multiple Human Cell Lines

Previously we established a large-scale AP-MS platform to identify binding partners for 

affinity-tagged bait proteins following lentiviral expression in cultured cells. By expressing 

clones from the human ORFeome v. 8.1 (Yang et al., 2011) in HEK 293T cells derived from 

embryonic kidney tissue, we have profiled interactions for thousands of proteins to produce 

interaction networks of increasing scope (Figure 1A), including BioPlex 1.0 and 2.0 (Huttlin 

et al., 2015, 2017). These networks have been valuable for biological discovery, revealing 

tens of thousands of interactions that define the structural and functional organization of the 

interactome and afford biological context for thousands of uncharacterized proteins. 

Nevertheless, BioPlex incompletely models the interactome because i) only a fraction of 

human proteins has been profiled; and ii) although the interactome is dynamic, we have only 

profiled interactions in a single context.

To further enhance coverage, we have taken a bipartite approach. First, we have nearly 

doubled the number of baits profiled in 293T cells, completing AP-MS of all validated 

ORFeome v. 8.1 clones to produce BioPlex 3.0 (Figure 1A; Table S1A–B). This network, 

derived from 10,128 pulldowns targeting over half of human proteins, encompasses 70% of 

the known proteome (The UniProt Consortium, 2015). Coverage of many important protein 

classes is even higher, including cell fitness genes (90%) (Blomen et al., 2015; Wang et al., 

2015), and kinases (85%) (kinase.com/web/current/human/). Moreover, BioPlex 3.0 contains 

most medically significant proteins, including 88% of cancer genes (Vogelstein et al., 2013), 

65% of disease genes (Piñero et al., 2017), and 70% of drug targets (www.drugbank.ca).

Second, we have begun to repeat AP-MS of all baits in a second cell line. This effort 

promises large-scale validation across thousands of pulldowns and tens of thousands of 

interactions while producing a second proteome-scale, context-specific network as a step 

toward understanding interactome diversity. We have completed 5,522 pulldowns in 

colorectal carcinoma-derived HCT116 cells and created a second network that, while not yet 

as comprehensive as our 293T network, nevertheless affords a contrasting view of the 

interactome (Figure 1B; Table S1C–D).

Individually and in tandem, BioPlex 293T and HCT116 networks significantly increase our 

knowledge of human protein interactions. Compared to past efforts using yeast-two-hybrid 

(Luck et al., 2020; Rolland et al., 2014; Rual et al., 2005), correlation-profiling 

(Havugimana et al., 2012; Wan et al., 2015), AP-MS (Hein et al., 2015; Huttlin et al., 2015, 

2017), and combinations thereof (Drew et al., 2017, 2020), both networks attain greater 

coverage, including more interactions and encompassing more of the proteome (Figure 1C).

By screening human proteins without regard to prior knowledge, we have surveyed large 

swaths of unexplored protein interaction space. For instance, just 9% of BioPlex edges have 

been previously reported and incorporated into the BioGRID database (Oughtred et al., 

2018) (Figure 1D). Binning interactions according to PubMed citations for each protein 

reveals that those confirmed by other low- or high-throughput studies involve well-studied 
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proteins. In contrast, BioPlex-specific interactions couple well-studied and unknown 

proteins alike, reflecting the sensitive, unbiased nature of our approach.

More fundamentally, creating two contrasting networks unveils context-specific interactome 

remodeling at proteome scale. Both networks contain similar proteins, with 67% shared 

(Figure 1E). Proteins detected in just one cell line are usually baits not yet targeted in the 

other. Though these networks share most proteins, overlap among interactions is modest, 

with 35,704 shared (Figure 1F, Table S1E). After removing IP’s not repeated in HCT116 

cells, this represents ~50% overlap among remaining interactions.

Detecting different interactions in 293T and HCT116 cells is not unexpected. Though both 

cell lines grow robustly and readily express exogenous proteins, suiting them for large-scale 

AP-MS, they differ in sex, tissue of origin, karyotype, and driver modifications – significant 

variations in phenotype that can manifest in their interactomes. Nevertheless, contrasting 

interactions in these cells inspire several questions. To what extent do these differences 

reflect biological versus technical variation? What factors determine whether interactions are 

detected in both? How do shared and cell-specific interactions relate to the functions of their 

constituent proteins and to the unique phenotypes of each cell line? Finally, how do these 

networks enable biological discovery? Here we show that both networks faithfully model 

protein interactions in their respective contexts. Moreover, shared interactions often relate to 

essential functions while cell-specific interactions evoke unique biology of each cell line. 

Thus, our networks capture both core and specialized cell processes.

Internal and External Validation of the BioPlex Networks

To provide meaningful insights, our networks must faithfully model protein interactions. 

Since most interactions in each involve proteins lacking independent interaction data, 

validation has required several complementary strategies. To assess coverage of known 

complexes, each network was compared against CORUM (Giurgiu et al., 2018). In each 

network we expect subnetworks matching each CORUM complex to be highly 

interconnected relative to global network density (Figure S1A). Indeed, 75% of complexes 

detected in 293T cells are enriched, exceeding prior interaction datasets (Figure S1B). This 

includes prior BioPlex versions - as the network has grown, complex coverage has increased 

individually (Figure S1C) and collectively (Figure S1B). Likewise, the HCT116 network 

achieves coverage matching comparably sized BioPlex 2.0, meeting or exceeding other 

interaction networks.

Because CORUM complexes match just a fraction of BioPlex, we used other approaches to 

validate a larger share of its interactions. Since complex members at least partially co-elute 

via size exclusion chromatography, we correlated elution profiles from proteome co-

fractionation (Heusel et al., 2019) for all interacting proteins in both networks. Strong 

correlations among these interacting proteins suggest that coelution confirms many 

interactions in both cell lines (Figure S1D). Similarly, interacting proteins must co-localize. 

Comparison of subcellular fractionation profiles (Orre et al., 2019) revealed that interacting 

proteins tend to co-purify (Figure S1E).

Huttlin et al. Page 5

Cell. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, interactions may be confirmed within each network via reciprocal AP-MS of 

interacting protein pairs or repeated co-purification of protein complexes. As the fraction of 

baits has increased to 70% and 52% in our 293T and HCT116 networks, much of each 

network has become eligible for intranetwork confirmation. For reciprocal detection, both 

interacting proteins must be baits and must appear as preys in the relevant cell line. While 

technical factors sometimes prevent reciprocal detection, we observe reciprocity rates of 

29% and 41% among eligible interactions in 293T and HCT116 networks (Figure S1H). 

Occurring far more often than null models would predict (Figure S1I), thousands of 

reciprocal interactions validate significant shares of each network and include associations 

among heterodimers (e.g. YWHAG – YWHAB; ERO1L – ERO1LB) and complex 

members, both direct (e.g. ARPC3 – ACTR3) and indirect (e.g. APC3 – ARPC5) (Goley and 

Welch, 2006), as well as pairings involving understudied proteins (e.g. ASF1B – C15orf41) 

(Figure S1F).

Analogously, complex co-purification may be assessed via 3-cliques: mutually interacting 

protein triads. Examples include SCF complexes, enolase subunits, and katanin subunits 

(Figure S1G). 3-cliques are also enriched in both networks (Figure S1J), reflecting modular 

architecture and frequent complex copurification. When both reciprocals and 3-cliques are 

considered, most edges (293T: 52%; HCT116: 54%) are confirmed by at least one additional 

IP within the same network.

While reciprocals and 3-cliques seek support for interactions among other IP’s within the 

same network, interactions may also be confirmed across cell lines. Remarkably, when all 

three are considered together, 57% of 293T interactions and 68% of HCT116 interactions 

are confirmed (Figure S1K).

As further validation, we repeated AP-MS of 999 baits in 293T cells (Figure S1L, Table 

S2A–B) and achieved a median 60% replication rate. Several replication profiles are 

displayed; high overlap was seen for many baits, including CASTOR1 (100%), C12orf34 

(100%), and CDC20 (89%). When replication was lower, other BioPlex interactions often 

supported non-replicated edges. Examples include C12orf10 (25%), whose three non-

replicated interactions are supported by pulldown of NOTCH2HL; similarly, though REG1B 

pulldown of REG1A did not replicate, the interaction was confirmed reciprocally. When 

these 999 293T replicates are compared with 72 HCT116 replicates (Table S2C–D) and 

5,112 pulldowns in both lines (Table S2E–F), median clone-wise reproducibility rises to 
~60% within the same cell line (Figure S1M), suggesting that cell context accounts for much 

inter-network variability.

Whether assessed through replication or inter- and intra-network confirmation, ~60% of 

interactions in both networks are confirmed. This compares favorably with prior AP-MS 

studies, particularly given the high-throughput nature of our work. Far smaller studies 

targeting protein families such as de-ubiquitinating enzymes (Sowa et al., 2009) or kinases 

(Varjosalo et al., 2013) have reported up to 70-80% replication after optimization. Since we 

find proteins average just 8 partners, our replication rate suggests loss of just 1-2 interactors 

per IP over 100-fold more baits from diverse protein families.
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Another consideration is that both false positives and false negatives contribute to 

reproducibility, and false negatives may prevail in our dataset due to stringency of 

biochemical purification and statistical filtering. In fact, many non-replicated edges in Figure 

S1L are nonetheless confirmed by other IP’s. Because we are performing thousands of 

pulldowns, we must maintain a very low FDR – much lower than required of smaller studies 

– to avoid reporting thousands of spurious interactions. Our stringent approach accepts only 
~2% of candidate interactions across all IP’s as high confidence interacting proteins. Though 

this high standard will cause us to miss some real interactions, it is essential for FDR control 

across thousands of IP’s.

To ensure accuracy of our cell line comparisons, we take three steps to focus on biological 

differences. First, interactions detected in one network at high stringency (top ~2%) are 

considered replicated if they are confirmed in the other network with relaxed stringency (top 

5%). Second, rather than individual IP’s, our comparisons focus primarily on complexes, 

communities, and pathways: protein groups that have been immunopurified repeatedly 

targeting multiple baits with consistent results. Third, comparisons focus on interactions 

detectable in both cell lines, given the baits targeted in each.

In the following sections we survey the interaction landscape, focusing first on interactions 

shared between cell lines. Later, we explore cell-specific interactions that reveal extensive 

remodeling according to each cell’s unique physiology.

Core Protein Complexes Replicate in 293T and HCT116 Cells, Reflecting Complex 
Structure and Revealing Additional Complex Members

Although just 50% of interactions are shared between networks, replication is far higher 

within core protein complexes: among 912 drawn from the CORUM database, the median 

overlap is 100%, with most identical across cell lines (Figure 1G), including the exosome 

and COP9 signalosome (Figure 1I–J). That complexes such as these are unchanged is 

expected, as many are essential to cellular life. Their high conservation also complements 

prior observations (Gavin et al., 2006) that complexes often assemble from a central nexus 

of required proteins accompanied by additional peripheral proteins whose binding depends 

on context. In contrast, cell-specific complexes are often more specialized. For example, 

interactions among Fanconi Anemia complex members are largely HCT116-specific (Figure 

1H), possibly reflecting differential DNA repair activity. Similarly, BCOR complex 

connectivity is reduced in HCT116 cells relative to 293T (Figure 1K), likely reflecting 

undetectable BCOR expression in the former cell line.

Detecting nearly identical interactions within several hundred well-known assemblies 

demonstrates the robustness of our AP-MS platform. Moreover, the specific interactions 

observed in these well-characterized complexes afford additional insight. To gain structural 

context we mapped BioPlex edges onto three-dimensional structures of complexes drawn 

from the Protein Data Bank (PDB) (Berman et al., 2000) (Table S3). Each structure was 

converted into an interaction network, assuming direct interactions among proteins separated 

by less than 6 Å, while inferring indirect interactions among other protein pairs. BioPlex 

edges were then overlaid as shown for U1 snRNP (Figure 2A). All direct interactions 
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involving at least one bait were observed, along with many indirect interactions. Nearly all 

observable interactions were detected in both cell lines.

Across 309 structures with ample coverage in BioPlex we observe 70% of all detectable 

edges in at least one cell line (Figure 2B). This aligns with replication and inter-/intra-

network confirmation rates noted earlier (Figure S1K–M) while suggesting that false 

negatives may limit replication. Within these structures, 32% of BioPlex edges are direct and 

their propensity for detection in both networks decreases with increasing distance (Figure 

2B–C). Interactions involving proteins separated by less than 2.4 Å are 9-fold more likely to 

be shared than cell-specific. Yet among the most distant protein pairs, shared interactions are 

favored only 4-fold. Thus, direct interactions are more often shared between cell lines than 

indirect interactions. In over half of 306 PDB structures, 100% of direct interactions are 

detected in both cell lines (Figure 2D); in contrast, among 132 PDB structures with indirect 

interactions, the median rate of indirect interaction replication is 93% (Figure 2E). This 

reduced propensity for indirect interactions to replicate across cell lines is both technical and 

biological, as interactions requiring one or more intermediate proteins are less likely to 

survive immunopurification and more likely to involve proteins subject to differential 

regulation.

Viewing intra-complex interactions in their spatial context can afford further insights. All 

direct interactions within Ribonuclease P are detected in both cell lines, accompanied by 

many indirect interactions (Figure 2G). Within the TFIIH complex, 75% of direct 

interactions are detected, all within both cell lines, while just a few indirect edges are cell-

specific (Figure 2F). In contrast, many direct and indirect interactions within the CDC45-

MCM-GINS Helicase are exclusive to 293T cells (Figure 2H). These 293T-specific edges 

bridge GINS-CDC45 and MCM subcomplexes detected in both cell lines. Though needed in 

both cell lines, the intact complex appears more readily purified from 293T cells, perhaps 

owing to differential abundance or stability (see below).

Since interactions within core complexes are usually consistent, we sought additional 

complex members that associate in both cell lines and found that the uncharacterized protein 

C11orf49 associates with the TTLL1 polyglutamylase complex. This complex resides in 

centrosomes where it polyglutamylates protein substrates, typically tubulin, modulating 

binding of microtubule-associated proteins (Janke et al., 2008). In both cell lines C11orf49 

interacts with all complex members as well as pericentriolar marker protein PCM1 (Figure 

S2A). Since these interactions – detected reciprocally in both cell lines – strongly link 

C11orf49 to the polyglutamylase complex, we selected it for validation, demonstrating 

binding of endogenous C11orf49 to other polyglutamylase complex members (Figure 

S2B,C). Two C11orf49 isoforms localized to the pericentriolar region (Figure S2D–F), along 

with established polyglutamylase member LRRC49 and PCM1 – their mutual interacting 

partner and pericentriolar marker – in the vicinity of gamma-tubulin (Figure S2G). Since 

C11orf49 associates with a complex responsible for polyglutamylation, future inquiry into 

its role may afford key insights into the cellular function and regulation of this incompletely 

understood post-translational modification.
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293T and HCT116 Cells Reveal Extensive Remodeling of the Human Interactome

While interactions within core complexes replicate at high rates, just 50% of observable 

interactions are detected in both networks. This is not unexpected, as these cell lines exhibit 

distinct phenotypes (Figure S3A), and quantitative proteomics (Erickson et al., 2019) 

revealed that 54% of proteins are differentially expressed (Figure S3B, Table S4A). While 

293T-specific proteins were enriched for embryonic/nervous system development, evoking 

their embryonic kidney/adrenal origin (Stepanenko and Dmitrenko, 2015), proteins specific 

to colorectal-cancer-derived HCT116 cells were enriched for cell adhesion and cadherin 

binding. Marker proteins reflect the male status of HCT116 cells (EIF1AY), the potential for 

293T cells to ciliate (CEP290) (Takahashi et al., 2018) and the contrasting epithelial 

(GRHL2, CDH1, LAMC2) and mesenchymal (TBX2, CDH2, VIM) origins of HCT116 and 

293T cells (Figure S3C–F).

Cell-specific Interactions can Reflect Differential Bait and Prey Expression

Two sources of AP-MS variability are bait and prey expression. Since most proteins are 

differentially expressed between cell lines (Figure S3B), prey abundance will vary. Bait 

abundance also varies, with HCT116 cells achieving lower expression for 75% of baits 

(Figure S3G). These decreases in bait or prey abundance reduce median HCT116 replication 

rates, though variation is high (Figure S3H–I). Subnetworks surrounding 293T-specific 

proteins CDH2 and MYEF2 as well as HCT116-specific proteins FAM111B and RAC2 link 

differential expression with cell-specific interactions (Figure S3J–M).

Further insight emerges overlaying protein expression onto CORUM complexes (Figure 1H–

K). Interactions within the Exosome and COP9 Signalosome are 100% replicated, and their 

constituent proteins express equally between cell lines (Figure S4B–C). In fact, expression 

variability is reduced within these complexes, reflecting that core components of essential 

complexes tend to express similarly (Romanov et al., 2019). In contrast, differential 

expression can contribute to cell specificity. Components of the HCT116-specific Fanconi 

Anemia Complex (Figure 1H) are expressed comparably in both cell lines (Figure S4A), 

while proteins BCOR and PCGF1 in the 293T-specific BCOR complex (Figure 1K) are 

elevated in 293T cells, likely driving cell specificity (Figure S4D). Similarly, 293T-specific 

CDC45-GINS-MCM helicase interactions (Figure 2H) may reflect elevated GINS1-4 and 

CDC45 abundance (Figure S4E). Nevertheless, while differential expression explains some 

interaction specificity, it does not explain most differences observed, as highlighted in Figure 

S4 for several additional examples described below.

This link between differential protein abundance and cell-specific interactions is partly 

biophysical: depending on the relevant dissociation constants, decreased bait or prey levels 

may reduce the likelihood of interaction while making detection more difficult, thus 

affecting reproducibility. Alternatively, both prey abundance and interactions may vary due 

to differential biology. In fact, several lines of evidence suggest that shared and cell-line-

specific interactions differ in network context and biology.
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Shared and Differential Interactions Reside in Contrasting Network Contexts

To assess network context, 293T and HCT116 networks were merged and edges scored for 

betweenness centrality (the number of ‘shortest paths’ among nodes that include each edge) 

and local clustering coefficient (a measure of network density). The fraction of edges shared 

between cell lines varied inversely with edge betweenness centrality (Figure S5A) and 

jointly with local clustering coefficient (Figure S5B), suggesting that shared interactions 

reside in dense subnetworks while cell-specific interactions bridge disparate proteins and 

complexes, “rewiring” connections among core modules.

To contrast the properties of proteins involved in shared versus cell-specific interactions, we 

next assessed how cell fitness and protein expression variability influence interaction 

overlap. Superimposing cell fitness data (Blomen et al., 2015; Dempster et al., 2019; Wang 

et al., 2015) onto our networks revealed a strong positive correlation between “essential” 

proteins and interaction overlap (Figure S5C). Similarly, ranking by expression variability 

across cancer cell lines (Nusinow et al., 2020) (Figure S5D) or human tissues (Wang et al., 

2019) (Figure S5E–F) indicates that proteins with cell-specific interaction profiles are 

variably expressed in diverse biological contexts.

Differential Interactions Reflect Protein Evolution

Evolution is among the most potent forces shaping biological systems. To evaluate the 

evolutionary context of cell-specific interactions, we mapped protein evolutionary ages 

(Liebeskind et al., 2016) onto BioPlex (Figure S6A). Assigning each interaction the age of 

its youngest constituent protein split the network into subnetworks matching eight 

evolutionary stages (Figure S6B). While some proteins and interactions dated to the dawn of 

cellular life, most arose during eukaryotic and eumetazoan ages. A striking correlation was 

observed between cell specificity and evolutionary age with the oldest interactions 

overlapping 6-fold more often than their youngest counterparts (Figure S6C/D).

This relationship between shared interactions and evolutionary age also appears in individual 

protein interaction profiles. Among DDX31 interactors, cell-specific replication drops from 

100% to 35% as younger proteins are added (Figure S6E). Similar trends are seen for 

HDAC1 and C15orf41 (Figure S6F–G).

Interactions within Complexes, Pathways, and Protein Families Covary According to 
Cellular Phenotype

While many factors contribute, biological function most strongly governs replication. 

Broadening our analysis of CORUM overlap to include Reactome pathways (Fabregat et al., 

2017), GO categories (Ashburner et al., 2000), and DisGeNET disease associations (Piñero 

et al., 2017) reveals that cell specificity varies with category (Figure 3A, Table S5): those 

most closely associated with physical entities (e.g. CORUM, GO cellular components) 

overlap more than abstract functional classes (e.g. GO biological processes, disease 

associations).

As before, entities essential to cell function are replicated in both lines. Examples include 

glycolysis (Figure 3B) and RNA polymerase II transcription initiation (Figure 3C) pathways. 
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Protein expression is equivalent in both lines, and expression variation is suppressed, 

reflecting co-regulation (Figure S4F–G).

In contrast, cell-specific entities reveal coordinated remodeling. Among GO categories and 

DisGeNET disease associations, greater variation reflects cell specialization and the tissue-

specific nature of disease. Among Reactome pathways, variable interactions reflect 

differential signaling. Some divergent interactions evoke phenotypes specific to 293T or 

HCT116 cells.

One example is EPH-Ephrin signaling (Figure 3D). Ephrins and ephrin receptors are cell 

surface proteins whose binding triggers complementary signaling in neighboring cells, 

contributing to cell migration, repulsion, and adhesion, especially during development 

(Kania and Klein, 2016). Though no consistent bias in abundance is seen (Figure S4H), their 

cell-specific interactions suggest increased ephrin signaling in 293T cells, which is further 

supported by increased phosphorylation of ephrin receptors and ligands when expressed as 

baits in 293T versus HCT116 cells (Figure 3E, Table S4B). This differential signaling may 

reflect the mesenchymal nature and fetal origins of 293T cells.

Cell-specific signaling is also reflected by SMAD2/3 which mediate TGF-β signaling by 

binding SMAD4 and translocating to the nucleus to modulate gene expression (Tzavlaki and 

Moustakas, 2020) (Figure 3F). Despite similar expression in both cell lines (Figure S4I), 

cell-specific interactions among SMAD2/3/4 suggest higher TGF-β signaling in 293T cells. 

In the nucleus these proteins act with Snail, Zeb and bHLH family transcription factors to 

promote the mesenchymal state (Xu et al., 2009). Since TGF-β contributes to epithelial-to-

mesenchymal transition during embryogenesis, its persistence again likely reflects 293T 

cells’ embryonic origin and mesenchymal phenotype (Figure 3G, Figure S3C).

Finally, cell-specific interactions reflect other facets of cellular identity. Interactions among 

post-synaptic membrane proteins mostly favor 293T (Figure 3H). This reflects differential 

protein expression (p = 6e-4; data not shown) and evokes 293T cells’ neural crest derivation 

(Stepanenko and Dmitrenko, 2015) and partially neural phenotype, as they express many 

neural proteins (Figure S3A) and may be induced to form synaptic structures (Biederer and 

Scheiffele, 2007).

Linking Differential TP53 Signaling to Cell-Specific Interactions

Among 293T and HCT116 cells, differential TP53 signaling may be their clearest contrast. 

TP53 signaling governs cell cycle progression and DNA repair and its disruption can drive 

cancer development and viral infection (Hafner et al., 2019). While unperturbed in HCT116 

(Ahmed et al., 2013), TP53 signaling has been disrupted in 293T by adenoviral 

transformation (Stepanenko and Dmitrenko, 2015) and SV40 Large T antigen (LgT) 

expression. This divergent signaling leads to cell-specific interactions and differential 

expression and phosphorylation of related proteins.

TP53 is a transcription factor that governs expression of CDKN1A and other cell cycle 

regulators, and whose abundance and activity are restricted by MDM2 and MDM4 (Figure 

4A). While interactions with MDM2/4 are observed in both cell lines, interactions with 
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ABRAXAS2 and STK11 – both involved in DNA damage response – are 293T-specific 

(Figure 4B). TP53 disruption results from direct binding of LgT (Topalis et al., 2013), and 

indeed we detect dramatic enrichment of LgT following AP-MS of TP53 in 293T cells 

(Figure 4C, Table S4C). When LgT binds, TP53 is stabilized and its activity blocked, 

increasing TP53 abundance in 293T cells while levels of TP53 targets SFN and CDKN1A 

(Fischer et al., 2016) fall in concert with other cell cycle regulators (Figure 4D). In response, 

MDM4 declines. The 293T-specific ABRAXAS2-TP53 interaction may also be 

compensatory, as it promotes TP53 activity by facilitating its deubiquitination and 

stabilization (Zhang et al., 2014).

Some effects of TP53 inhibition directly alter interactions: interactions of TP53 targets 

ZNF37A and ZNF561 (Fischer et al., 2016) with TRIM28 are detected only in HCT116 

(Figure 4E), likely owing to decreased 293T expression and leading to HCT116-specific 

gene silencing. In contrast, interactions among CDK4, CCND1-3, and CDKN1A-C are 

unchanged despite decreased abundance of several components (Figure 4G). Nevertheless, 

293T-specific TP53 inhibition alters CDK4 activity; this may explain increased 

phosphorylation of CDK4 targets RBL1/2 in 293T cells, consistent with decreased inhibition 

by TP53 target CDKN1A (Figure 4F, Table S4D).

RBL1/2 are themselves important cell cycle regulators whose interactions differ in 293T and 

HCT116 cells. Both are members of the DREAM (DP, RB-like, E2F, and MuvB) complex 

which represses cell cycle gene expression in quiescent cells (Figure 4A). While the 

DREAM complex is detected in HCT116 cells, it disintegrates in 293T (Figure 4H) 

following destabilization from RBL1/2 phosphorylation and RBL1/2 binding to LgT 

(Sadasivam and DeCaprio, 2013). In its absence, some DREAM targets (Fischer et al., 2016) 

are upregulated in 293T (Figure 4D), potentially contributing to cell-specific interactions 

among proteins responsible for mismatch repair (Figure 4I).

Data-driven Discovery of Shared and Cell-specific Network Communities

While replication within known complexes, pathways, and protein families has linked 

protein function to cell-specific remodeling, these analyses have included only well-studied 

portions of the interactome. Thus, we also used MCL clustering (Enright et al., 2002) to 

discover protein communities within the combined network (Table S6A–B). We then sought 

statistical associations among community pairs whose members were especially likely to 

interact (Table S6C) and quantified cell-specific overlap within and between communities 

(Figure 5A, TableS6D–E). Together, these communities and associations define a network 

(Figure 5B). Because they are defined independently of existing biological knowledge, these 

communities model the interactome more completely, incorporating characterized and 

uncharacterized proteins and complexes without bias.

Overlap within communities (Figure 5C) exceeds overlap between communities (Figure 

5D), implying that shared complexes interconnect in cell-specific ways. Compared to 

knowledge-driven protein classes (Figure 3A), overlap within and between data-driven 

communities is low. The median overlap within these communities trails all literature 

classifications – especially CORUM and GO Cellular Component categories that most 

directly encapsulate known complexes. This suggests that prior knowledge is biased and 
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incomplete, focusing disproportionately on universal complexes that represent just a fraction 

of the interactome. Indeed, while some communities match core complexes that are equally 

detected in both cell lines (Figure 5E) and whose constituent proteins are equally expressed 

(Figure S4K), other communities are cell specific. While the role of the HCT116-specific 

complex in Figure 5F is uncertain, its cell-specific co-purification with many constituents 

implies context-dependent assembly, perhaps driven by up-regulation of some members 

(Figure S4L). Finally, partial edge overlap within a community can reveal cell-specific 

processes. In 293T cells we detect nuclear proteins bound to multiple PIP4K2 subunits; 70% 

of these interactions are undetectable in HCT116 cells, separating PIP4K2 subunits from 

nuclear proteins (Figure 5G). Since expression of the most central proteins is unchanged 

(Figure S4M) and PIP4K2 subunits reside in multiple compartments, these interactions 

suggest 293T-specific nuclear translocation.

Cell-line Specificity among Domain Associations

Although myriad interactions occur, many fit recurring motifs, as proteins bearing specific 

combinations of structural domains preferentially interact. Previously we demonstrated 

enrichment of interactions linking thousands of domain pairs within the human interactome 

(Huttlin et al., 2010, 2017). While these associations need not imply direct interactions 

between domains, they do suggest recurring structural motifs among interacting proteins. In 

contrast to pathways and complexes which form discrete subnetworks, interactions matching 

specific domain associations may distribute more broadly across the interactome; yet their 

structural similarity may suggest similar modes of regulation.

To understand how interactions matching domain associations covary, we mapped PFAM 

domains (El-Gebali et al., 2018) onto our combined network and identified domain pairs 

whose members interact especially often (Table S7A). We then extracted interactions linking 

each domain pair and calculated their overlap in both cell lines (Figure 6A, Table S7B). 

These domain associations define a network viewable via BioPlexExplorer. Though 

interactions vary, with median 40% overlap, most associations (88%) are found in both cell 

lines, suggesting that these interaction motifs transcend cell type.

While most domain associations appear in both cell lines, the underlying interactions often 

reveal stark differences. For example, kinases partition into clusters corresponding to 

CDK’s, MAP kinases, and others (Figure 6B). After removing pulldowns not performed in 

both cell lines, few HCT116-specific edges are seen, though 42% appear only in 293T cells 

and suggest differential signaling. Likewise, C2H2-zinc-finger proteins often bind DNA and 

dimerize, frequently through SCAN or BTB domains (Figure 6C). Over 80% of these 

interactions are 293T-specific, though the basis for this selectivity is unclear. In contrast, 

interactions among Zip domain-containing proteins and 7-transmembrane-domain-

containing proteins favor HCT116 cells (Figure 6D), suggesting specialized zinc transport. 

Finally, distinct interactions among cadherins and tyrosine kinases are observed in 293T and 

HCT116 cells (Figure 6E), suggesting cell surface proteome reorganization.
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Interactions of Individual Proteins Reveal Cell-specific Variations on Consistent Biological 
Themes

Given the variation observed between cell lines, we asked whether cell-specific interactions 

of individual proteins share common functions, analyzing functional term enrichment among 

each bait’s neighbors in the combined network. Proteins matching each enriched term were 

categorized according to detection in one or both cell lines and each protein – function 

association plotted to reflect its overlap between cell lines (Figure S7A). For ECHDC2, only 

4/10 interactors were observed in both cell lines; yet nearly all are mitochondrial and several 

link to mitochondrial organization and branched-chain amino acid metabolism. Across baits 

targeted in both cell lines, 90% of protein – function associations map to both (Figure S7B, 

Table S7C).

Though a protein’s neighbors may differ across cell lines, their function is often consistent. 

This is demonstrated by TRIM28, a protein known to recruit gene-silencing complexes to 

specific genomic regions upon binding to KRAB-domain-containing zinc-finger proteins 

(Ecco et al., 2017) (Figure S7C). As expected, 92% of its 157 neighbors contain KRAB 

domains. Only 80 TRIM28 interactors are shared; 55 are HCT116-specific and 22 were 

detected in 293T only. Differential expression explains only a fraction of these cell-specific 

interactions. That TRIM28 would bind different zinc-finger proteins in each cell line is not 

unexpected, as gene silencing differs in each. Similarly, we find that phosphatase inhibitor 

FAM122A binds distinct phosphatases (Figure S7D): while interactions with PP2A 

phosphatase subunits are detected in both cell lines, interactions with calcineurin are 293T-

specific.

Interacting with specific sub-populations of functionally similar proteins will modulate a 

protein’s activity, and we can sometimes relate cell-specific interactions of individual 

proteins to specific phenotypes. While Kelch/BTB protein KLHL29 binds BTB proteins in 

both cell lines (Figure S7E), several detected specifically in 293T cells evoke known 

properties of the cell line. As a known regulator of neural crest specification (Werner et al., 

2015), KBTBD8 reflects their neural crest lineage and retained neural qualities (Figure 3H); 

similarly, NUDCD3 and NPHP3 (Bergmann et al., 2008) participate in ciliary development, 

a process seen also in the 293T-specific proteome (Figure S3B). Likewise, we observe that 

the transcription factor TWIST2 interacts with cell-specific proteins that participate in DNA-

templated transcription (Figure S7F). A bHLH family member, TWIST2 acts downstream of 

TGF-β signaling to promote a mesenchymal cell state. While TWIST2 interacts with E-box-

binding proteins that activate transcription in both cell lines, we detect HCT116-specific 

interactions with three transcriptional repressors, confirming our previous observation 

(Figure 3F–G) that TGF-β signaling seems reduced in HCT116 cells compared to 

mesenchymal 293T cells.

Linking Physical and Functional Associations for Biological Discovery

An emerging theme is that biological function organizes interactome structure and 

dynamics, as proteins involved in specific processes interact preferentially and in concert to 

form context-specific networks. Yet because the categories considered thus far are 

intentionally broad, we have not yet accounted for specific functional relationships among 
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interacting protein pairs. In one final analysis, we explore how proteins’ relative fitness 

effects relate to interaction replication across cell lines.

We combined BioPlex networks with genome-wide CRISPR co-essentiality profiles 

measured across hundreds of cancer cell lines through Project Achilles (Meyers et al., 2017). 

Previously, covarying fitness effects have revealed functional associations within complexes 

(Boyle et al., 2018; Pan et al., 2018) and identified novel complex members (Wainberg et al., 

2019). We thus correlated fitness profiles for each interacting protein pair in both BioPlex 

networks (Figure 7A, Table S7D) and extracted subnetworks corresponding to interactions 

with either positive (Figure 7B) or negative (Figure 7C) correlations. While the cell 

specificity of negatively correlated edges matched the background distribution of edges for 

which fitness profiles were available, positively correlated edges were enriched for shared 

edges. This reflects a key structural difference: whereas the positive network includes 

numerous complexes, the negative correlation network contains none. This is because 3 or 

more proteins cannot simultaneously correlate negatively with each other. While entire 

complexes may correlate positively with each other – and have higher probability of 

conservation across cell lines – negative correlations connect specific members of complexes 

or span multiple complexes. Thus, positive and negative correlations reflect different 

functional and structural relationships.

Because positive correlations capture entire complexes, the positively correlated network 

identifies novel complex members that interact physically and share similar fitness effects 

(Figure 7B). We observe in both cell lines that the unknown protein C18orf21 binds 

physically and correlates functionally with most members of the Ribonuclease P complex 

highlighted previously (Figures 7C/2G). In contrast, positively correlated interactions among 

protocadherins (Figure 7E) are mostly cell-specific, implying cell surface proteome 

reorganization. The positively correlated network also includes clusters of signaling proteins 

and CDK’s (Figure 7F). While interactions among core components (CDK1/2, cyclins, and 

CDK inhibitors) are found in both, interactions with regulatory proteins (PCNA, CKS1B) 

differ between cell lines.

In contrast, negative correlations capture antagonistic interactions among protein pairs. 

Examples include alternating pro- and anti-apoptotic proteins (Figure 7G); TP53 and its 

negative regulators MDM2 and MDM4 (Figure 7H); and mixtures of CDK’s, cyclins, and 

CDK inhibitors (Figure 7I). The negative fitness correlations depicted in the latter two 

examples encode key relationships governing TP53 signaling and cell cycle control as 

highlighted previously (Figure 4A).

DISCUSSION

With hundreds of cell types existing in myriad states, human cell biology is diverse and 

specialized. This is achieved through customization of each cell’s proteotype, fine-tuning 

protein expression, localization, post-translational modifications, and interactions to achieve 

the desired phenotype. Thus, defining interactome structure and dynamics is required to 

understand cellular diversity. Deploying affinity enrichment at scale to profile protein 

interactions has advanced these goals two-fold.
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First, we have profiled interactions with singular depth and breadth. While this is mostly due 

to targeting over half the human proteome for AP-MS in 293T cells, repeating AP-MS in 

HCT116 cells has revealed additional cell-specific modules. Such context-specific 

interactions are important, as current knowledge favors core complexes. Maximizing 

coverage enhances network quality – affirming associations via repeated co-purification – 

and enables discovery, as BioPlex suggests function, localization, and complex membership 

for thousands of proteins, many uncharacterized.

Second, performing AP-MS in 293T and HCT116 cells has enabled comparison of two 

context-specific, proteome-scale interaction networks. Though it has been long recognized 

that interactions vary with context, our understanding of interactome dynamics remains 

rudimentary. These networks have revealed widespread reorganization. Whereas shared 

interactions reside in dense subnetworks and preferentially link consistently expressed, often 

essential proteins with long evolutionary histories, cell-specific interactions span disparate 

network components, coupling variably expressed proteins in context-specific 

configurations. Interactions among proteins of shared function covary, assembling 

specialized modules according to need. These variations in network structure arise via 

diverse mechanisms including differential protein expression, localization, and post-

translational modification, and often link to specific phenotypes. Extensive proteome 

coverage has been essential for defining this reorganization since cell-specific interactions 

often reside outside core complexes. These direct observations of interactome reorganization 

complement reports of co-variation within protein complexes as inferred from constituent 

protein expression across cell lines, tissues, and individuals (Luck et al., 2020; Ori et al., 

2016; Romanov et al., 2019; Ryan et al., 2017).

LIMITATIONS OF THE STUDY

Though BioPlex has increased our knowledge of human protein interactions, our 

understanding of the interactome remains incomplete. While we have completed AP-MS for 

over 10,000 human proteins, nearly as many remain untargeted. Moreover, low-affinity 

interactions and interactions involving certain protein classes (e.g. membrane proteins) may 

be challenging to detect via AP-MS. Given its relative advantages detecting weaker, more 

transient interactions and its compatibility with challenging proteins, large-scale proximity 

labeling (Go et al., 2019) is an important complement. Beyond scale and technical 

limitations, no two cell lines can capture the full range of cellular diversity. While systematic 

AP-MS will be essential for probing additional context-specific interactomes with maximum 

depth, parallel deployment of complementary experimental approaches like co-fractionation 

(Heusel et al., 2019; Rosenberger et al., 2020) will facilitate rapid interactome screening 

across cellular contexts.

FUTURE DIRECTIONS

Despite these limitations, this work establishes a basis for probing the interactome even 

more broadly. First, our AP-MS platform is limited by clone availability; as clones for 

remaining human genes become available, our networks can grow to encompass every 

amenable protein. Second, since large-scale AP-MS has proven both feasible and 
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informative in multiple cell lines, incorporating additional cell lines will reveal interactions 

across diverse cellular contexts. Similarly, as seen for nutrient-sensing proteins CASTOR1/2 

(Chantranupong et al., 2016) and SAMTOR (Gu et al., 2017), specific interactions afford 

tantalizing insights into the biology of many uncharacterized proteins that warrant 

hypothesis-driven study. Finally, the BioPlex networks are powerful predictive tools 

individually and in tandem with complementary datasets. For example, BioPlex may be 

combined with immunofluorescence imaging from the Human Protein Atlas (Thul et al., 

2017) to model cellular structures at scales ranging from interacting protein pairs to entire 

organelles (Qin et al., 2020). With time we expect this work to broaden our understanding of 

the protein interaction landscape and to enable many complementary forms of biological 

discovery.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Steven Gygi.

Materials Availability—Open reading frames used in this project were taken from the 

Human ORFeome collection v. 8.1 which is available for purchase from Horizon Discovery 

(https://horizondiscovery.com/en/gene-modulation/overexpression/orfs/human-orfeome-

v8-1). All clones generated for this project will be available from the DNASU plasmid 

repository (http://dnasu.org). Individual clones are available from the Lead Contact upon 

request without restriction, though requests for large numbers of clones should be directed to 

DNASU.

Data and Code Availability—This project has generated many types of data and code 

that are available for distribution via numerous venues. Items not listed here will be provided 

by the Lead Contact upon reasonable request.

First, both 293T and HCT116 networks are described in full in the supplementary tables 

included with this manuscript, as are results of all analyses described herein. These include 

functional and disease associations, predicted localizations, communities, PFAM domains, 

replicate analyses, etc. See supplementary table legends for details.

Second, both filtered and unfiltered lists of interactions in HCT116 and 293T networks are 

available for download on the BioPlex website at bioplex.hms.harvard.edu/

downloadInteractions.php. These interactions may be accessed either as flat files or through 

a custom API.

Third, both 293T (doi: 10.18119/N9RP5D) and HCT116 (doi: 10.18113/N9N012) networks, 

as well as the intersection of these two networks (doi: 10.18119/N9H887), have been 

deposited into NDEx (https://home.ndexbio.org/index/), the repository for biological 

network data (Prat et al., 2015).
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RAW files corresponding to both 293T and HCT116 AP-MS experiments may be accessed 

in multiple ways. First, if RAW files corresponding to a small number of specific baits are 

desired, these may be downloaded from the BioPlex website via a search interface at https://

bioplex.hms.harvard.edu/downloadData.php. If larger numbers of RAW files are desired, 

they will be accessible via the MassIVE repository (ftp://massive.ucsd.edu). Finally, all 
~30,000 RAW files corresponding to 293T and HCT116 AP-MS networks are available upon 

request via GLOBUS infrastructure.

CompPASS software is available as an R package (https://github.com/dnusinow/

cRomppass); we also make it available for small to medium-scale AP-MS experiments 

online via the BioPlex website: https://bioplex.hms.harvard.edu/comppass/.

CompPASS-Plus is also available (https://github.com/HMSBioPlex/CompPASS-Plus-CLI), 

though we only recommend its use for very large AP-MS studies involving 1000+ IP’s.

RAW files corresponding to the RTS-MS3-TMT comparison of 293T and HCT116 

proteomes have been deposited in MassIVE (ftp://massive.ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clone Construction—Clones corresponding to human genes were obtained and prepared 

for AP-MS analysis as described previously (Huttlin et al., 2015). Briefly, open reading 

frames were taken from the human ORFeome, version 8.1 (Yang et al., 2011) and the OC 

collection (http://horfdb.dfci.harvard.edu) and cloned using Gateway techniques into a 

lentiviral recipient vector that incorporated a c-terminal FLAG-HA tag and expressed the 

target ORF and a puromycin resistance marker under control of a CMV promoter. All clones 

were sequenced to verify ORF identity.

Within version 8.1 of the ORFeome, clones were generally sorted by length and accordingly 

assigned to 96-well-plates. In contrast, OC collection baits were arrayed on 96-well plates in 

more random order. Throughout the project, clones have generally been targeted for AP-MS 

in batches corresponding to these 96-well plates. During initial AP-MS analysis in 293T 

cells, plates were run in random order, though plates corresponding to very large or small 

clones were avoided until late in the project. For HCT116 cells, roughly half of plates 

consisted of cherry-picked baits that 1) had worked in 293T cells and 2) were selected to 

sample evenly across the 293T interaction network; subsequently we have run remaining 

baits in batches according to their original ORFeome plate assignments. Baits repeated in 

293T cells were also selected to sample evenly across the 293T interaction network.

Creation of Stable Cell Lines in 293T and HCT116 Cells—Cell culture and bait 

expression were performed as described previously (Huttlin et al., 2015). Briefly, lentivirus 

was produced in 293T cells following transfection of Gateway expression clones using PEI 

as an adjuvant. Upon subsequent lentiviral transduction of bait constructs, either 293T cells 

or HCT116 cells (both from ATCC) were expanded in the presence of 1 μg/mL puromycin 

selection (Gibco) to obtain five 10-cm dishes per cell line. Once they reached minimum 80% 

confluence, cells were washed with ice cold PBS phosphate-buffered saline (PBS) pH 7.2 
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(Gibco) and harvested via gentle scraping, followed by centrifugation to pellet cells and PBS 

removal. Cell pellets were stored at −80°C.

All cell lines were tested for presence of mycoplasma using the Mycoplasma Plus PCR 

assay kit (Agilent) and found to be free of contamination. Additionally, the identities of 

293T and HCT116 cell lines were verified through GTG-banded karyotyping by the 

Brigham and Women’s Hospital Cytogenomics Core Laboratory.

Creation of Stable Cell Lines in U2OS Cells for Immunofluorescence Imaging
—U2OS cells (American Type Culture Collection) were plated on glass coverslips (Zeiss) 

and transduced with lentiviral vectors expressing C-terminal Flag–HA-tagged baits. Baits 

included TTLL1, LRRC49, and isoforms 2 and 3 of C11orf49. At 48 h after infection, cells 

were fixed with 4% paraformaldehyde for 15 min at room temperature. Immunofluorescence 

imaging was performed as described below.

METHOD DETAILS

Affinity-Purification Mass Spectrometry—Affinity-purification mass spectrometry 

experiments were performed as previously described in detail (Huttlin et al., 2015, 2017). 

Methods are summarized below. AP-MS experiments in each cell line were performed 

separately: HCT116 AP-MS experiments were not initiated until all experiments in 293T 

cells had been completed. Baits targeted in 293T cells are summarized in Table S1A while 

baits targeted in HCT116 cells are summarized in Table S1C.

Affinity Purification of Protein Complexes: After thawing, cell pellets were lysed in 50 

mM Tris-HCl pH 7.5, 300 mM NaCl, 0.5% (v/v) NP40 and the lysate was clarified by 

centrifugation and filtration. Immobilized, pre-washed mouse monoclonal anti-HA agarose 

resin (Sigma-Aldrich, clone HA-7) was used to immunoprecipitate affinity-tagged bait 

proteins and their binding partners. Beads were incubated with lysates for 4 hours at 4°C, 

followed by supernatant removal, four washes with lysis buffer, and two washes with PBS 

(pH 7.2). Elution was achieved in two steps via addition of 250ug/mL HA peptide in PBS at 

37°C for 30-minute incubations with gentle shaking.

Following affinity enrichment, residual HA peptide and other non-protein material were 

removed through precipitation with 20% TCA followed by a wash with 10% TCA and 

triplicate washes with cold acetone. Pellets were then resuspended and reduced in 150 μL of 

100 mM ammonium bicarbonate (Sigma-Aldrich) with 1 mM DTT (Fluka) and 200 ng of 

sequencing grade trypsin (Promega) was added for digestion overnight at 37°C. For 

HCT116, TCA precipitated pellets were resuspended in 20uL of 55mM Tris pH 8.5/10% 

Acetonitrile/1mM DTT, with 200ng trypsin added per sample.

5% HPLC-grade formic acid (Thermo Fisher Scientific) was subsequently added to quench 

digestion and samples were desalted with homemade stage tips as described previously 

(Rappsilber et al., 2007). After elution with 80% acetonitrile/5% formic acid, peptides were 

dried in a speed-vac and resuspended in 16 μL of 5% formic acid and 4% acetonitrile.
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Mass Spectrometry Data Acquisition: All mass spectrometry data were acquired on first-

generation Q-Exactive mass spectrometers (Thermo Fisher Scientific) equipped with Famos 

autosamplers (LC Packings) and Accela600 liquid chromatography (LC) pumps (Thermo 

Fisher Scientific). Microcapillary columns used for peptide separation were prepared in-

house by packing ~0.25 cm of Magic C4 resin (5 μm, 100 Å, Michrom Bioresources) and 
~18 cm of Accucore C18 resin (2.6 μm, 150 Å, Thermo Fisher Scientific) into a 100 μm 

inner diameter microcapillary column. We loaded 4 μL of sample onto the column for each 

analysis. Each sample was run in technical duplicate in accordance with the requirements of 

the CompPASS-Plus algorithm (described below).

Each LC-MS run was approximately 70 minutes long including sample loading, analytical 

separation, and column re-equilibration. Peptide separation occurred over 40 minutes using a 

gradient from 5 to 26% acetonitrile in 0.125% formic acid. The scan sequence consisted of a 

single MS1 spectrum followed by MS2 scans targeting up to twenty precursors. Orbitrap 

MS1 scans were acquired in centroid mode at 70,000 resolution spanning a range from 

300-1500 Th with the automatic gain control (AGC) target set to 1.0e6 and a maximum ion 

injection time of 250 ms. Following higher-energy collision-induced dissociation (HCD), 

MS2 spectra were acquired in centroid mode at 17,500 resolution with the AGC set to 1.0e5 

and a maximum ion injection time of 60 ms. The isolation window was set to 2 Th and the 

normalized collision energy (NCE) was 25-30. Features were targeted for MS2 analysis in 

order of decreasing intensity while excluding unassigned and singly charged features. 

Dynamic exclusion was set to automatic.

Identification of Peptides and Proteins: Upon completion of each LS-MS analysis, the 

resulting RAW files were converted to mzXML format using msconvert (ProteoWizard). 

Monoisotopic peak assignments and charge states were then verified for all features targeted 

for MS2 analysis and MS/MS spectra were matched with peptide sequences using the 

Sequest algorithm (Eng et al., 1994) along with a composite sequence database including the 

human Uniprot database (The UniProt Consortium, 2015), GFP (our negative control), the 

FLAG-HA affinity tag, and sequences of common contaminants. This Uniprot database 

includes both SwissProt and Trembl entries and dates to the outset of this AP-MS study in 

2013. Protein sequences were listed in both forward and reversed order to facilitate false 

discovery rate control. During database searching, fully tryptic peptides with up to two 

missed cleavages were considered and MS1 and MS2 tolerances were set to 50 ppm and 

0.05 Da, respectively. Variable oxidation of methionine (+15.9949) was permitted.

Following Sequest analysis, peptides and proteins identified in each LC-MS analysis were 

filtered in two steps using the target-decoy method (Elias and Gygi, 2007) to control both 

peptide- and protein-level false discovery rates. First, a linear discriminant function was 

trained to distinguish correct and incorrect peptide identifications using Xcorr, DCn, peptide 

length, charge state, mass error, missed cleavage count, and fraction of ions matched (Huttlin 

et al., 2010) and peptides were filtered to a 1% FDR. Next, these peptides were assembled 

into proteins, scored probabilistically, and filtered to a 1% protein-level FDR.

Although the filters previously described controlled the peptide- and protein-level FDR 

within each individual LC-MS analysis, when many datasets are combined as described in 
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this study, the overall dataset-level FDR tends to balloon as false positives accumulate. Since 

our 293T and HCT116 datasets include over 20,000 and 10,000 LC-MS runs respectively, 

without additional filtering this problem would be especially severe. To further control the 

global protein FDR as AP-MS datasets were combined, entropy-based filtering was applied 

to remove proteins inconsistently detected across technical replicates (Huttlin et al., 2015) 

and protein identifications within each IP were required to be supported by multiple unique 

peptides when technical replicates were combined. Together these additional filters reduced 

the global FDR by more than 100-fold.

AP-MS Pipeline Quality Control—Several steps have been taken to ensure that sample 

preparation and instrument performance has been maintained at consistent levels throughout 

the duration of this project. First, standards were routinely run on the instrument to monitor 

instrument performance over time. These standards consisted of trypsin-digested yeast 

whole cell lysate that was diluted to approximate the complexity and sample load of a 

typical AP-MS sample. Second, positive and negative control IP’s (RAB11B and GFP) were 

analyzed with every plate. Third, every IP was analyzed in technical duplicate with replicate 

runs acquired in reverse order on different LC-MS systems. These replicate analyses were 

primarily done to aid LC carry-over removal and enhance detection of high confidence 

interacting proteins, though they also enabled us to continuously compare the relative 

performance of all instruments devoted to this project in real time, making detection of 

instrument problems much easier.

In addition, every LC-MS run acquired for this project was screened using an automated 

anomaly detection system to identify problematic runs following database searching as 

described below. This algorithm monitored a variety of statistics for each run such as 

numbers of PSM’s, unique peptides, and proteins identified, estimated maximum numbers of 

true positives (TPMax), missed cleavage rate, average Xcorr, numbers of MS2 spectra 

acquired, etc. Each run was compared with all prior runs with respect to each of these 

parameters and scored using a kernel-density-based probabilistic model; anomalous runs 

were filtered allowing 1% of runs flagged as anomalies to be false positives. This algorithm 

updated continually as runs were added, allowing the algorithm to adapt to changing 

conditions. Classifications were monitored and manually corrected as necessary to maintain 

accurate performance. To accommodate cell-line-specific differences, separate models were 

trained from runs corresponding to 293T cells and HCT116 cells.

Prior to CompPASS-Plus analysis, each IP was screened to ensure detection of the expected 

bait protein, thus protecting against expression problems and occasional sample mix-ups. 

We expected each bait to be detected at levels significantly higher than background when 

targeted for AP-MS enrichment. Thus, we required the expected bait to be detected at 

elevated levels in two technical replicates for an AP-MS experiment to be eligible for 

CompPASS-Plus scoring. For a small number of baits whose sequences do not directly 

correspond to Uniprot entries, custom searches were performed to verify bait identities. 

These additional searches were only used for bait verification and only searches against the 

standard Uniprot database were used for interaction network generation. If the expected bait 

was not confidently detected and could not be determined to result from a mix-up, the runs 

were discarded, and the IP was repeated.
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Before an AP-MS experiment could be included in CompPASS-Plus analysis, two technical 

replicate LC-MS analyses passing all quality control checks were required. To accommodate 

occasional low-quality runs, we scaled our AP-MS pipeline to offer quadruplicate analysis. 

This provided up to two additional runs in cases where poor instrument performance 

compromised one of the initial runs. If two acceptable runs were not obtained after up to 

four injections, the bait was targeted for repeat AP-MS analysis.

Inferring Protein Interactions from LC-MS Data—Here we provide an overview of 

our approaches for identifying high-confidence interacting proteins from AP-MS data and 

creating integrated interaction networks as published previously (Huttlin et al., 2015). These 

procedures were performed separately for AP-MS data acquired in 293T and HCT116 cells. 

Additional information is provided below regarding how these networks were combined for 

comparative analysis. The BioPlex 3.0 network results from re-analysis of all AP-MS data in 

BioPlex 1.0 and 2.0, along with 4,237 additional new AP-MS datasets.

Identification of High Confidence Interacting Proteins: Identification of high confidence 

interacting proteins proceeded in four steps: 1) merging technical replicates; 2) CompPASS 

analysis; 3) Post-CompPASS filtering; and 4) CompPASS-Plus analysis. First, those AP-MS 

experiments that passed all quality control filters were identified; for each, their associated 

technical replicates were combined to produce a summary of proteins identified. Across 

replicates, peptides were re-assembled into proteins according to principles of parsimony 

and Uniprot ID’s were mapped to Entrez Gene ID’s. All subsequent analysis was performed 

on data assembled at the Gene ID level to address complications due to protein isoforms. For 

each gene product, spectral counts were averaged across replicates and entropy scores were 

calculated as described previously (Huttlin et al., 2015). Entropy scores (sE) were calculated 

according to the following equations.

SE = pAlog2(pA) + pBlog2(pB)

pA =
PSMA + 0.5

PSMA + PSMB + 1.0

pB =
PSMB + 0.5

PSMA + PSMB + 1.0

PSMA = Number of PSM’s for a particular gene product in replicate A

PSMB = Number of PSM’s for a particular gene product in replicate B

Second, all AP-MS experiments were scored using CompPASS essentially as described 

previously (Behrends et al., 2010; Sowa et al., 2009). Merged data from all AP-MS 
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experiments matching a single cell line were combined to create a “stats” table that indicates 

the number of PSM’s observed for each gene product in each AP-MS experiment. 

CompPASS analysis produced two scores for each protein detected in each IP: a z-score that 

reflects a given protein’s abundance compared to its typical background levels across all 

other IP’s in the dataset; and an NWD score, which takes each gene product’s abundance, 

detection frequency, and technical replication into account to estimate its enrichment 

compared to all other IP’s. NWD scores were scaled to assign values of 1.0 or higher to the 

top 2% of candidate interacting partners.

Third, after CompPASS analysis was complete, additional filters were applied to protein 

identifications in each IP to remove inconsistent or low-confidence protein identifications 

and avoid false positive interactions. These filters, two of which are also described above in 

the section titled “Identification of Peptides and Proteins” include 1) discard proteins for 

which only a single unique peptide sequence was observed across two technical replicates; 

2) require a minimum entropy score of 0.75 (calculated using Log2) comparing spectral 

counts observed in two technical replicates; and 3) within each 96-well-plate, look for 

proteins detected with unusual frequency compared to a background defined by all other 

plates – if statistically significant enrichment is detected, discard observations on that plate 

that fall below its average. The first two of these filters help to control the global protein-

level false discovery rate; furthermore, filters 2 and 3 protect against LC carry-over, 

especially as observed for overexpressed baits; finally, filter 3 protects miscellaneous plate-

specific variations in protein detection.

Fourth, following CompPASS scoring and application of filters as described above, all 

remaining bait-prey associations from a single cell line were scored and classified using the 

supervised classifier CompPASS-Plus as described previously (Huttlin et al., 2015). To 

enable training, each bait-prey association was assigned one of three preliminary labels 

(false positive interaction, background protein, or specific interactor). All preys 

corresponding to decoy protein sequences were labeled as false positives; preys whose 

interactions were confirmed in STRING (Szklarczyk et al., 2017) or GeneMANIA (Franz et 

al., 2018) were labeled as true positives; all others were labeled as background. In addition, 

because their levels are strongly enriched by design following affinity purification, baits 

within each IP were also labeled as “true interactors” for modeling purposes. Moreover, 

because both published and unpublished versions of BioPlex data have been previously 

released, care was taken to ensure that the STRING and GeneMANIA data used for training 

did not incorporate the results of any prior BioPlex analyses. Specifically, we used archival 

versions of these databases that predated release of any BioPlex datasets.

Once these preliminary labels were assigned, a separate Naive Bayes classifier was trained 

for each 96-well plate matching either 293T or HCT116 cells, using all other 96-well-plates 

from that cell line for training. This plate-based, leave-one-out cross-validation scheme 

ensured that separate data were always used for model training and scoring. Features 

considered by the classifier included CompPASS NWD and Z-scores, entropy, a plate-based 

z-score, binned unique peptide counts, the fraction of IP’s in which a given protein was 

detected, the total number of PSM’s observed for a given protein across all IP’s, the ratio of 

observed PSMs in a given IP to the total number of PSM’s across all IPs, and the 
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unique:total peptide ratio within the given IP. The output of this algorithm was a vector of 

three scores reflecting the likelihood that each interaction resulted from either an incorrect 

protein identification, background, or a bona fide interacting partner. CompPASS-Plus was 

implemented in R (RCoreTeam, 2011) using the Naïve Bayes classifier in the package e1071 

(Meyer et al., 2012). Because many features did not conform to normal distributions, 

continuous features were discretized by splitting each into 1000 equally-sized bins for 

classification.

Interaction Network Assembly: Following CompPASS-Plus scoring, all AP-MS 

experiments corresponding to a single cell line were assembled into a network that models 

the human interactome. While previous versions of BioPlex excluded a small number of 

baits with very high numbers of interacting partners (> 100), no filter was applied limiting 

the numbers of interactions that could be identified in a single AP-MS experiment. In cases 

where the same bait protein had been targeted multiple times, often because the ORFeome 

contained more than one matching clone, only a single IP was retained. In these cases we 

preferentially kept IP’s corresponding to full-length clones and favored IP’s that returned 

more interacting partners. Individual interacting partners were also filtered as the network 

was assembled. Specifically, a few dozen remaining decoy proteins were removed, as were 

common contaminant proteins (e.g. keratin).

Once filtering was complete, a nonredundant list of observed bait-prey pairs was compiled 

accompanied by CompPASS-Plus scores for each. When pairs of baits were found to 

associate reciprocally, their CompPASS-Plus scores were merged as described previously 

(Huttlin et al., 2015) to increase the probability of interaction. Finally, this list of bait-prey 

pairs was filtered according to CompPASS-Plus score: interactions with an interaction score 

equal to or greater than 0.75 were retained to create the final interaction network. This cutoff 

of 0.75 corresponds to the top ~2% of candidate interactions in both 293T and HCT116 

cells. Interactions observed in 293T and HCT116 networks are summarized in Table S1B 

and Table S1D, respectively.

Assembly of Combined and Replicated Networks—As described above, 293T and 

HCT116 networks were initially assembled independently through separate CompPASS and 

CompPASS-Plus analyses. To facilitate comparison, these networks were subsequently 

aligned using the following procedure:

1. Interactions within both 293T and HCT116 networks were merged to generate a 

single non-redundant list. For this purpose, each interaction was represented as a 

pair of linked Entrez Gene ID’s. This step effectively defines the “Combined 

Network” represented by the union of the Venn diagram in Figure 1F and 

includes every interaction among the top 2% detected in 293T cells, HCT116 

cells, or both.

2. Each interaction in the “Combined Network” was looked up in both 293T and 

HCT116 datasets. By definition, each of these interactions scored in the top 2% 

for at least one cell line, as was required for inclusion in the original networks. If 

this interaction ranked among the top 2% in 293T cells and was also observed 

among the top 5% of candidate interactions in HCT116 cells, then it was counted 
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as replicated in both cell lines. Similarly, if the interaction ranked among the top 

2% in HCT116 cells and was also observed in the top 5% of 293T cells, it was 

counted as replicated. Together these define the intersection of the Venn Diagram 

in Figure 1F.

3. If the interaction ranked among the top 2% of candidate interactions in one cell 

line and was either undetected or failed to score among the top 5% of candidate 

interactions in the other cell line, then it was considered either 293T- or 

HCT116-specific as shown in Figure 1F.

Using a slightly relaxed threshold for judging whether edges were replicated in the opposite 

network was necessary due to the inherent challenges of identifying a relatively small 

number of bona fide interacting partners within a much larger set of background 

interactions. This relaxed threshold for replication enabled us to be confident that edges we 

call cell-line specific correspond to substantial differences in detection rather than ‘near-

misses’ that were detected and fell just short of our chosen significance cutoffs.

A complete list of interactions within this combined network is provided in Table S1E; each 

edge is labeled to indicate whether it maps to the original 293T or HCT116 networks and 

whether it was classified as replicated or cell-line-specific as described above.

293T Replication Experiments—Baits used for replicate AP-MS analysis in 293T cells 

were selected from the set of baits that worked following first-pass analysis in 293T cells 

(Table S2A). Baits were selected to sample evenly across the interactome, ensuring that 

large complexes such as the ribosome and proteasome would not be overrepresented in the 

replication set and that baits falling outside of well-defined clusters would be included as 

well. Identical virus was used to infect a second batch of 293T cells. Cell culture, affinity 

purification, and mass spectrometric analysis were all performed using standard procedures 

as described above. These replicates were run on separate 96-well plates separated by 

several months to several years from the original AP-MS analysis. Replicate datasets were 

scored against the main 293T “stats” table just as the original IP’s were, though they were 

not included in the stats table for scoring other IP’s. Identical filters for unique peptides, 

entropy scores, etc. were applied to replicates. And replicate IP’s were scored using 

CompPASS-Plus models trained on the full 293T dataset using plate-based leave-one-out 

cross-validation as described previously. For consistency with our 293T – HCT116 

comparisons, interactions identified in the original 293T IP’s were considered replicated if 

they were detected in the top 5% in the second IP (Table S2B).

Quantitative Proteomic Comparison of 293T and HCT116 Cells—The quantitative 

proteomic comparison of 293T and HCT116 proteomes presented here has been published 

previously (Erickson et al., 2019). Protein extraction, digestion, and TMT labeling were 

accomplished using the SL-TMT method (Navarrete-Perea et al., 2018). First, quintuplicate 

pellets of 293T and HCT116 cells were lysed in 8M urea and lysates were reduced with 5 

mM TCEP and alkylated with 10 mM iodoacetamide. Proteins were then purified via 

methanol-chloroform precipitation, resuspended in 200 mM EPPS, pH 8.5 and digested 

sequentially with LysC and Trypsin. Peptides were then labeled with TMT, combined, and 
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desalted prior to high-pH reversed-phase fractionation to produce 24 fractions. Of these, 12 

non-adjacent samples were analyzed via LC-MS.

All samples were analyzed on an Orbitrap Fusion Lumos utilizing an MS3 workflow that 

featured a custom real-time database search method as described previously (Erickson et al., 

2019). Briefly, the instrument was operated in data-dependent mode with each MS1 scan 

followed by multiple MS2 scans to attain a cycle time of 2 seconds. MS1 spectra were 

collected in the Orbitrap at 120,000 resolution allowing ion times up to 100 ms. Features 

with defined monoisotopic masses and charge states greater than one were targeted for 

collision-induced dissociation in descending order based on intensity. MS2 spectra were 

acquired in the ion trap using a quadrupole isolation width of 0.5 m/z; automatic gain 

control of 20,000; and maximum ion time of 35 ms.

Upon acquisition, each MS2 spectrum was provided via API to a custom module that 

performed database searches in real time. Each spectrum was searched against a database 

containing Uniprot human sequences plus common contaminants. When a spectrum 

matched a human peptide sequence with binomial score of at least 55, an MS3 scan was 

triggered through the API. MS3 spectra were acquired for up to 150 ms at an AGC of 50,000 

utilizing a normalized collision energy of 55. Synchronous precursor selection of up to 10 

fragments was employed; all selected fragments were required to account for at least 5% of 

base peak signal and to match a b- or y-ion corresponding to the predicted peptide.

Following acquisition, RAW files were converted to mzXML format using msconvert. 

Monoisotopic peak assignments were then verified for any features that were targeted for 

MS2 analysis. Spectra were then submitted for database searching using SEQUEST (Eng et 

al., 1994) along with a database of human protein sequences (Uniprot, 2014) and common 

contaminants in forward and reversed orientation. Fully tryptic peptides were considered for 

database searching assuming precursor and product ion tolerances of 50 ppm and 0.9 Th, 

respectively. Fixed modifications of TMT (+229.163 Da) on lysines and N-termini and 

carbamidomethylation (+57.021 Da) of cysteines were assumed while variable oxidation 

(+15.995 Da) of methionine was considered. Peptide-spectral matches were filtered to a 1% 

FDR using the target-decoy method in combination with linear discriminant analysis 

(Huttlin et al., 2010); subsequently, peptides were assembled into proteins and filtered to 

attain a 1% protein-level FDR and to account for peptide redundancy according to principles 

of parsimony. TMT quantitation of each protein was performed by summing reporter ion 

intensities across all matching peptide-spectral-matches with corresponding TMT data; only 

peptides that attained a minimum summed reporter ion signal-to-noise of at least 100 were 

retained for quantitation. TMT channels were subsequently normalized assuming equal 

protein loading. Finally, each protein’s TMT profile was scaled to sum to 100%, thus 

reporting the fractional TMT signal associated with each channel. The final dataset is 

provided in Table S4A.

C11orf49 Validation Experiments

Affinity Purification and Immunoblot analysis: 293T or HCT116 cells were transduced 

with c-terminal FLAG-HA lentiviral constructs harboring previously characterized cDNAs 

of the TTLL1 polyglutamylase complex or C11orf49, a candidate complex member 
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identified in this study. Cells were selected with puromycin as described above, expanded to 

five 10cm plates, and harvested via gentle scraping into PBS. Frozen cell pellets were lysed 

with 50mM Tris pH 7.5, 150mM NaCl, 1% NP-40, 1mM DTT), with protease inhibitors 

(Roche, Complete mini EDTA free) on ice. Lysates were cleared by centrifugation, and 

subjected to affinity purification using either HA-agarose (Sigma) or anti-FLAG magnetic 

beads (Sigma) for 2 hours at 4°C. Beads were washed 4x with lysis buffer, then complexes 

were eluted with 3xFLAG peptide or beads were boiled in 1x NuPage sample buffer 

(Invitrogen) prior to SDS-PAGE. Proteins were transferred to PVDF membranes and 

immunoblotted with the following antibodies: C11orf49 (Cat. No. 20195-1-AP, Proteintech), 

TPGS1 (ab184178, Abcam), and anti-FLAG (M2)-HRP (A8592, Sigma).

Confocal Microscopy: U2OS cells (American Type Culture Collection) were plated on 

glass coverslips (Zeiss) and transduced with lentiviral vectors expressing C-terminal Flag–

HA-tagged baits. At 48 h after infection, cells were fixed with 4% paraformaldehyde for 15 

min at room temperature. Cells were washed in PBS, then blocked for 1h with 5% normal 

goat serum (Cell Signaling Technology) in PBS containing 0.3% Triton X-100 (Sigma). 

Coverslips were incubated with anti-HA antibodies (mouse monoclonal, clone HA.11, 

BioLegend) or anti-HA plus anti-PCM1 (#5213, Cell signaling) for 2 h at room temperature. 

Anti-C11orf49 (20195-1-AP, Proteintech) and anti-γ tubulin (ab11317, Abcam) were 

utilized to visualize C11orf49 localization in proximity to centrosomes following coverslip 

permeabilization in ice cold methanol for 20 minutes. Cells were washed three times with 

PBS, then incubated for 1 h with appropriate Alexa Fluor-conjugated secondary antibodies 

(ThermoFisher). Nuclei were stained with Hoechst, and cells were washed three times with 

PBS and mounted on slides using Prolong Gold mounting media (ThermoFisher). All 

images were collected with a Yokogawa CSU-X1 spinning disk confocal with Spectral 

Applied Research Aurora Borealis modification on a Nikon Ti-E inverted microscope 

equipped with a Nikon 100 × Plan Apo numerical aperture 1.4 objective lens (Nikon 

Imaging Center, Harvard Medical School). Both confocal and widefield images were 

acquired with a Hamamatsu ORCA-ER cooled CCD (charge-coupled device) camera 

controlled with MetaMorph 7 software (Molecular Devices). Fluorophores were excited 

using a Spectral Applied Research LMM-5 laser merge module with acousto-optic tuneable 

filter (AOTF)-controlled solid-state lasers (488 nm and 561 nm). A Lumencor SOLA 

fluorescence light source was used for imaging Hoechst staining. z series optical sections 

were collected with a step size of 0.2 μm, using the internal Nikon Ti-E focus motor, and 

stacked using FIJI (Image J) to construct maximum intensity projections. Image brightness 

and contrast were adjusted for each image equally among staining conditions using FIJI 

software.

Comparison of 293T and HCT116 Phosphoproteomes—Frozen cell pellets were 

processed using the streamlined TMT labelling protocol (Navarrete-Perea et al., 2018). 

Samples were lysed in 8M urea in 200mM EPPS pH 8.5 with protease (Pierce A32953) and 

phosphatase (Pierce A32957) inhibitors, mixed with yeast disruption beads (BioSpec 

11079105z), and shaken on a bead beater (BioSpec) for 60s at 4°C three times with 60s rest 

in between. Lysates were cleared by centrifuging at 16,000g for 10 min in a 4°C centrifuge. 

Protein levels were determined by BCA assay. Samples were then reduced with 5mM TCEP, 
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alkylated with 10mM iodoacetamide, and quenched with 5mM DTT, followed by methanol/

chloroform precipitation of 1mg protein. Pellets were reconstituted in 200mM EPPS pH 8.5, 

digested overnight with LysC (Wako 129-02541) at 1:100 while shaking at room 

temperature, followed by digestion with trypsin (Pierce 90305) at 1:100 while shaking at 

37°C. Samples were de-salted using a 1g SepPak Cartridge (Waters), and dried in a rotary 

evaporator. Peptides were reconstituted in 200uL phosphopeptide binding buffer and 

enriched using the Pierce High Select Fe-NTA phosphopeptide enrichment kit (A32992) 

according to manufacturer’s specifications, except that elutions were carried out into tubes 

containing 100μL 10% formic acid before rotary evaporation. After desalting using a 

Thermo Sola cartridge and drying overnight, enriched phosphopeptides were reconstituted in 

TMT labelling buffer (200mM EPPS pH 8.5, 23% anhydrous acetonitrile) and labelled with 

TMT10-plex reagent. 1% of each labeled sample was combined and analyzed unfractionated 

to ensure labeling efficiency was >97% and that the samples are mixed at a 1:1 (total 

amount) ratio across all conditions. Samples were quenched by adding .3% v/v 

hydroxylamine. After mixing, labelled peptide samples were de-salted using a 200mg 

SepPak Cartridge (waters) and dried. Samples were reconstituted in 0.1% TFA and 

fractionated using the High pH Reversed-Phase Peptide Fractionation Kit (Pierce 84868) 

according to manufacturer’s recommendations. Eluted fractions were dried, and 

reconstituted in 5% acetonitrile, 5% formic acid for LC-MS analysis.

Mass spectra were collected on Orbitrap Lumos mass spectrometer (ThermoFisher 

Scientific) coupled to a Proxeon EASY-nLC 1200 LC pump (ThermoFisher Scientific). 

Peptides were separated on a 35 cm column (100 μm i.d., Accucore, 2.6 μm, 150 Å, packed 

in-house) using a 180 min gradient (from 5%-30% acetonitrile with 0.1% formic acid) at 

500 nl/min. Each analysis used an SPS-MS3-based TMT method (McAlister et al., 2014; 

Ting et al., 2011), which has been shown to reduce ion interference compared to MS2-based 

quantification (Paulo et al., 2016). MS1 data were collected using the Orbitrap (120,000 

resolution; maximum injection time 50 ms; AGC 4e5, 400-1400 m/z). Determined charge 

states between 2 and 5 were required for sequencing and a 90 s dynamic exclusion window 

was used. MS2 scans consisted of collision-induced dissociation (CID), quadrupole ion trap 

analysis, automatic gain control (AGC) 2E4, NCE (normalized collision energy) 34, q-value 

0.25, maximum injection time 35 ms, and isolation window of 0.7 Da using a Top10 

method. MS3 scans were collected in the Orbitrap at a resolution of 50,000, NCE of 45%, 

maximum injection time of 100 ms, and AGC of 1.5e5.

Mass spectra were processed using a pipeline featuring the COMET search engine (Eng et 

al., 2013). Data were searched against forward and reversed sequences from the UniProt 

Human database (downloaded July 2020) with common contaminants appended, using a 20-

ppm precursor ion tolerance for total protein-level analysis and 0.9 Da product ion tolerance. 

TMT tags on lysine residues and peptide N termini (11-plex: +229.163 Da) and 

carbamidomethylation of cysteine residues (+57.021 Da) were set as static modifications, 

while oxidation of methionine residues (+15.9949 Da), deamidation on asparagine and 

glutamine (+.984016 Da), and phosphorylation with neutral loss (+79.9663 Da, −97.9769 

Da) were set as variable modifications. Peptide-spectrum matches (PSMs) were identified, 

quantified, and filtered to a 1% peptide false discovery rate (FDR) and then collapsed further 

to a final protein-level FDR of 1%. Sites were further localized using the AScore algorithm 
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(Beausoleil et al., 2006) and only localized sites (AScore > 13) were retained. 

Phosphorylation sites and site combinations were quantified by summing reporter ion counts 

across all matching PSMs. Briefly, a 0.003 Da (3 millidalton) window around the theoretical 

m/z of each reporter ion was scanned and the maximum intensity nearest the theoretical m/z 

was used. Reporter ion intensities were adjusted to correct for the isotopic impurities of the 

different TMT reagents according to manufacturer specifications and adjusted to normalize 

ratios across labelling channels (column normalized). Lastly, for each site or site 

combination, signal-to-noise (S:N) measurements of the peptides were summed and then 

normalized to 100.

Identification of Phosphopeptides in AP-MS Data—To assess phosphorylation of 

ephrin receptors and ligands in 293T and HCT116 cells, RAW files corresponding to IP’s 

where these proteins were targeted as baits were selected and re-searched allowing for an 

expanded set of modifications. Sequest (Eng et al., 1994) searches were performed as 

described above (“Identification of Peptides and Proteins”), except that variable 

modifications included phosphorylation of Ser, Thr, and Tyr (+79.96633); oxidation of Met 

and Cys (+15.99491); and N-terminal acetylation (+42.01056). Peptide-spectral matches 

were filtered to a 1% FDR using a target-decoy approach (Elias and Gygi, 2007) coupled 

with linear discriminant analysis for multivariate filtering (Huttlin et al., 2010). The database 

used for searching included all Uniprot human protein sequences (downloaded in 2019) in 

forward and reverse orientation, as well as affinity tag sequences and common contaminant 

proteins. The numbers of unique phosphopeptide sequences observed matching each ephrin 

receptor or ligand as a bait were then tallied. Only ephrin receptors and ligands that have 

been profiled as baits in both 293T and HCT116 cell lines were considered.

Identification of SV40 Large T Antigen Peptides in AP-MS Data—To assess TP53 

interactions with the SV40 Large T antigen (LgT), RAW files corresponding to technical 

duplicate analyses of TP53 pull-downs in 293T and HCT116 cells were re-searched using 

Sequest (Eng et al., 1994). Searches were performed using the standard protocol described 

above (“Identification of Peptides and Proteins”), except that the database was derived from 

Uniprot sequences downloaded in 2019 and included the SV40 Large T antigen protein. 

Peptides were filtered using the target-decoy approach (Elias and Gygi, 2007) coupled with 

linear discriminant analysis (Huttlin et al., 2010). As expected, no LgT peptides were 

detected in HCT116 cells, as LgT is not expressed in this cell line. To evaluate whether LgT 

was enriched in the TP53 pulldown, RAW files corresponding to an additional 100 randomly 

selected IP’s were likewise searched. The numbers of LgT peptides detected per run in these 

background IP’s were used to derive Z-scores for the numbers of LgT peptides observed in 

both technical replicates of LgT. Significant enrichment was observed in each case.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise indicated, all network analyses were performed in Mathematica 11.3 or 

12.0 (Wolfram Research). All statistical tests have been adjusted for multiple testing 

correction using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). All 

figures were plotted in Mathematica and assembled in Adobe Illustrator.
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BioPlex 3.0 Literature Comparison (Figure 1)

Comparison with BioGRID and PubMed: To determine the extent to which BioPlex 3.0 

interactions had been reported previously in the literature, we compared our interaction 

network against interactions compiled by BioGRID (Oughtred et al., 2018). Human 

interactions reported in BioGRID version 3.5.167 (November 2018) were downloaded and 

filtered to remove interactions from previous published and unpublished BioPlex networks. 

We then searched for each BioPlex interaction in the filtered BioGRID dataset; if a match 

was found, we next queried whether the interaction was reported in high-throughput or low-

throughput studies as recorded by BioGRID. If at least one reference pointed to a low-

throughput study, that edge was counted as reported in low-throughput; alternatively, if all 

references pointed to high-throughput studies, the edge was counted as confirmed through 

high-throughput studies; finally, if no matches were found independent of previous BioPlex 

datasets, the edge was counted as unique to BioPlex.

PubMed publication counts associated with each human gene were obtained via FTP from 

NCBI in December 2018. Proteins in the BioPlex 3.0 network were then assigned to 100 

bins corresponding to percentiles based on their associated citation counts. Each interaction 

in BioPlex was then categorized based on whether it was confirmed in low- or high-

throughput or novel to BioPlex and binned according to the percentiles of its two associated 

proteins, producing the density plots displayed.

BioPlex Network Validation (Figure S1)

Interaction Enrichment among CORUM Complexes: CORUM (Giurgiu et al., 2018) is a 

manually curated database that reports core protein complexes that is frequently used as a 

gold standard. Each complex is reported as a list of proteins that assemble to form each 

complex. We employed a statistical approach to measure the extent to which each CORUM 

complex was reflected in the architecture of BioPlex and other human interaction networks. 

The basic assumption of our analysis is that the proteins within a CORUM complex will 

interact with each other with a frequency that significantly exceeds global connectivity of 

the network.

For this analysis, each human complex in CORUM’s core complex list (coreComplexes.txt; 

downloaded in September 2018) was mapped to the interaction network individually. To be 

eligible for scoring, CORUM complexes were required to have at least 3 members, one or 

more of which were targeted as baits in BioPlex 3.0. For each complex, the subnetwork 

defined by its members was extracted and the interactions within were counted. The 

enrichment of interactions among complex members was calculated using a one-sided 

binomial test assuming a background probability of interaction equal to the interaction 

density of the interaction network. This analysis returned p-values that were adjusted for 

multiple testing (Benjamini and Hochberg, 1995). A complex was considered enriched with 

interactions when the p-value was less than 0.01 after multiple testing correction.

In addition to BioPlex 3.0, we used this method to assess CORUM complex enrichment in 

the BioPlex HCT116 network and several published datasets, including BioPlex 1.0 (Huttlin 

et al., 2015) and BioPlex 2.0 (Huttlin et al., 2017), along with other datasets acquired via 
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AP-MS (Hein et al., 2015), yeast-two-hybrid (Luck et al., 2020; Rolland et al., 2014; Rual et 

al., 2005), and correlation profiling (Havugimana et al., 2012; Wan et al., 2015). In addition, 

we scored two versions of HuMAP (Drew et al., 2017, 2020). HuMAP 1.0 was derived from 

re-analysis of data combined from several of these other studies (Hein et al., 2015; Huttlin et 

al., 2015; Wan et al., 2015) while HuMAP 2.0 additionally incorporates data from BioPlex 

2.0 (Huttlin et al., 2017) and other datasets (Boldt et al., 2016; Gupta et al., 2015; Treiber et 

al., 2017; Youn et al., 2018). Importantly, to enable comparisons across datasets, identical 

complexes were scored in each. This means sometimes complexes were scored in a 

relatively small network even when its constituent proteins were not detected or when none 

of its member proteins had been targeted for AP-MS analysis. The CORUM coverages 

reported thus both reflect the scope of each network as well as the extent to which each 

complex was found to be highly interactive.

Randomization of the BioPlex Network: Several analyses described below use randomized 

interaction networks to define null distributions against which score distributions derived 

from BioPlex 3.0 may be compared. One important consideration in randomizing the 

BioPlex network is that it contains nodes of two types – baits and preys – with slightly 

different properties. Most significantly, baits have greater numbers of interactions on 

average, compared to proteins detected only as preys. This feature must thus be maintained 

within the randomized network. During network randomization, total numbers of edges and 

nodes were maintained, and vertex degree was conserved for every protein. We further 

ensured randomized edges still connected baits (i.e. proteins targeted for AP-MS in BioPlex 

3.0) with proteins in fact detected as preys. In other words, randomized edges were not 

allowed to connect pairs of proteins for which neither had been targeted for affinity 

purification. Furthermore, randomized edges were only allowed to connect pairs of baits if at 

least one of them was detected as a prey as well.

Subcellular Fractionation Correlation among BioPlex Interacting Proteins: Because 

proteins must at least partially co-localize to interact, we used subcellular fractionation 

profiles (‘Subcell Bar Codes’) for human proteins taken from a previously published study 

(Orre et al., 2019). Within each network (293T and HCT116), every protein was matched 

with its subcellular fractionation profile. Then each edge was scored by calculating the 

Pearson correlation coefficient for the subcellular fractionation profiles of its constituent 

proteins. If one or both proteins could not be matched with its subcellular fractionation 

profile, then that interaction was skipped. In parallel, edges of an equivalent randomized 

network were also scored. Because separate ‘Subcell Bar Codes’ were reported for four 

different cell lines – A431, H322, MCF7, and HCC827 – this entire procedure was repeated 

four times and Pearson correlation coefficients were averaged across cell lines for each edge 

in the real and randomized BioPlex networks. Distributions of real and random correlation 

coefficients were compared using a Cramér-von Mises test.

Size-exclusion Chromatography Elution Profile Correlation among Interacting 
Proteins: To evaluate the tendency of interacting proteins pairs in the BioPlex to co-

fractionate during size-exclusion chromatography, we mapped previously published profiles 

(Heusel et al., 2019) obtained from fractionation of 293T lysate to proteins in the BioPlex 
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networks (293T and HCT116). Each interaction was scored by calculating the Pearson 

correlation coefficient between co-elution profiles of its two constituent proteins. If one or 

both proteins did not have associated co-fractionation data, that interaction was skipped. In 

parallel, edges of a randomized network were also scored. Distributions of correlation 

coefficients were compared with a Cramér-von Mises test.

Analysis of BioPlex Reciprocal Interactions: Rates of reciprocal interaction within the 

BioPlex 293T and HCT116 networks were determined according to the following procedure. 

Reciprocal interactions were tallied within the target network and 1.0 randomized versions. 

Counts calculated from randomized networks were used to determine a mean and standard 

deviation for the null distribution and convert the reciprocal count observed into a Z-score. A 

Z-test was subsequently performed to derive an associated p-value.

To determine the reciprocal rate observed in each BioPlex network, the total number of 

reciprocal interactions was compared against the number of edges that were eligible for 

reciprocal detection. To be eligible for reciprocal detection, an edge had to connect two 

proteins both of whom 1) were targeted for AP-MS as a bait; and 2) were detected as a prey 

in 293T cells.

Analysis of BioPlex Cliques: Cliques of three mutually interacting proteins (3-cliques) 

were tallied in the BioPlex networks (293T and HCT116) using Mathematica. This process 

was repeated in 1,000 randomized networks as well. After calculating a mean and standard 

deviation for the resulting null distribution, a z-score was calculated for the observed 3-

clique count in each network and a Z-test was performed to determine its associated p-value.

Analysis of AP-MS Replicates within and between Cell Lines: To evaluate 

reproducibility of AP-MS in 293T cells, selected baits were targeted a second time for AP-

MS. These replicate IP’s were performed under identical conditions and were scored against 

the same “stats” table used for generation of the 293T network with identical filtering to 

identify interacting proteins.

To determine the replication rate, each replicate IP was matched with the original pull-down 

of the same clone in the BioPlex 3.0 network (Table S2A). Those interactions resulting from 

pull-down of the target clone in the original BioPlex 3.0 network were extracted and each 

edge was labeled according to whether that interaction was also observed in the replicate IP. 

An interaction was considered replicated if it was 1) detected in the original BioPlex 3.0 IP 

among the top 2% of all bait-prey pairs in all 293T IP’s; and 2) was detected in the replicate 

IP with a score high enough to rank in the top 5% of all bait-prey pairs in all 293T IP’s. See 

Table S2B for a summary of interaction replication.

The same basic procedure was repeated to assess the replication rate between 293T and 

HCT116 cells. First, IP’s performed in both cell lines were aligned according to the specific 

clone used for AP-MS analysis. Then for each shared clone, interactions were extracted 

from the BioPlex 3.0 network that resulted from its pulldown. Each interaction was 

considered replicated if it was 1) detected in the original BioPlex 3.0 IP among the top 2% 
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of all bait-prey pairs in all 293T IP’s; and 2) it was detected in the HCT116 IP with a score 

high enough to rank in the top 5% of all bait-prey pairs in all HCT116 IP’s.

In total, 72 replicate IP’s were also performed in HCT116 cells as part of normal AP-MS 

pipeline operation. Replication rates were calculated essentially as described above. One 

complication of this is that when the final HCT116 network was assembled and more than 

one IP was available for a given clone, we systematically chose to include the IP with the 

larger number of interacting proteins in the final network. Thus, to avoid bias when 

calculating the HCT116 replication rates displayed in Figure S1M, we randomly selected 

which replicate would be used as the basis for comparison for each clone. See Table S2.

Comparison of 293T and HCT116 Networks (Figure S3)

Quantitative Analysis of HCT116 and 293T Proteomes: Following normalization and 

scaling to report each protein’s TMT expression profile as a fraction of total observed signal, 

unpaired T-Tests were performed assuming unequal variance for each quantified protein. 

Differentially expressed proteins were defined based on an absolute log2 fold change greater 

than 0.5 coupled with a p-value smaller than 0.01 following multiple testing correction 

(Benjamini and Hochberg, 1995). Differentially expressed proteins were further grouped 

according to whether they were elevated in 293T or HCT116 cells and GO enrichment 

analysis was performed. GO enrichments were calculated using GO classifications 

downloaded from www.geneontology.org in November 2018 and used as background the set 

of all proteins quantified via TMT. Enrichment was calculated based on a one-sided 

hypergeometric test with subsequent multiple testing correction (Benjamini and Hochberg, 

1995). See Table S4A.

Comparison of Bait Expression Levels: Relative bait expression levels were approximated 

in 293T and HCT116 cells by comparing numbers of spectral counts observed matching 

each bait in paired IP’s. For this comparison, 293T and HCT116 IP’s were aligned 

according to the precise clone used for AP-MS. A sign test was used to determine whether 

the median PSM difference (PSM293T – PSMHCT116) across baits is zero or not.

Quantifying Effects of Bait Expression on Interaction Replication Rates: To assess the 

effects of bait expression on interaction replication across 293T and HCT116 cells, IP’s 

were aligned according to the specific clone used for bait expression and the replication of 

each interaction was assessed as described above (Analysis of AP-MS Replicates within and 

between Cell Lines). Baits were then binned by relative expression ratio along with their 

associated interactions. Interactions in each bin were subsequently tallied to determine the 

fraction of interactions confirmed across cell lines.

Quantifying Effects of Prey Expression on Interaction Replication Rates: To assess the 

effects of bait expression on interaction replication across 293T and HCT116 cells, IP’s 

were aligned according to the clone used for bait expression. Those successfully targeted in 

both 293T and HCT116 cells were identified and their resulting interactions extracted from 

the larger networks. Replication of each interaction was assessed as described above 

(Analysis of AP-MS Replicates within and between Cell Lines). Preys associated with these 
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selected interactions were then matched with their relative expression levels in 293T versus 

HCT116 cells as measured via TMT (see Quantitative Analysis of HCT116 and 293T 

Proteomes). Interactions were binned according to each prey’s expression ratio and then the 

rate of replication was determined within each bin.

Analysis of BioPlex Interactions in a Structural Context (Figure 2)

Converting PDB Structures to Interaction Networks: Proteins in the BioPlex networks 

were linked to specific PDB structures via Uniprot ID via the SIFTS project (Dana et al., 

2018). PDB structures were filtered to consider only those that i) contained at least 3 human 

proteins; ii) contained at least 3 proteins present in the combined BioPlex network; iii) 
included at least two BioPlex baits; iv) included at least two proteins matching chains in the 

PDB structure with minimum length 25 amino acids; and v) for which at least one 

interaction was detected in the BioPlex network among its constituent proteins. In cases 

where multiple structures corresponded to the same protein complex, the most recent 

structure was selected and other redundant structures were set aside. Structures were drawn 

from the RCSB PDB website (www.rcsb.org) (Berman et al., 2000). Images of structures 

shown in Figure 2A, F–H were produced using Mol* (Sehnal et al., 2018).

Interactions among proteins in each PDB structure were inferred by calculating the 

minimum distance separating atoms belonging to each protein. If the minimum distance 

separating atoms matching two proteins was 6 A or less, these proteins were defined to 

interact directly; all other pairs of proteins that occurred in the same structure were assumed 

to interact indirectly. Using these rules, three-dimensional structures of each protein 

complex were converted into network representations (Figure 2A, F–H).

Mapping BioPlex Interactions onto PDB Structures: Once network representations of 

each structure were created, BioPlex interactions were superimposed by mapping Entrez 

Gene ID’s to Uniprot ID’s. When assessing the fraction of PDB interactions detected by 

BioPlex (Figure 2B), PDB interactions were filtered to include only those edges that would 

be detectable in BioPlex. To meet this requirement, at least one member of each interacting 

protein pair had to be targeted as a bait in at least one cell line (293T or HCT116) and both 

proteins had to match chains with minimum length 25 amino acids in the PDB structure. 

This latter condition was necessary to avoid PDB structures involving synthetic peptides and 

protein fragments (e.g. HLA complexes). Those BioPlex interactions that mapped to PDB 

structures were subsequently partitioned according to whether those interactions were 

classified as ‘direct’ or ‘indirect’ interactions in the PDB structure according to the 

definitions defined above. See Table S3.

Analysis of Interaction Replication versus Distance: The relationship between an 

interaction’s likelihood of detection in both cell lines and the observed distance between 

interacting proteins within the protein structure was examined in multiple ways. First, all 

2,594 BioPlex interactions mapped to 309 PDB structures via the process described above 

were partitioned according to the intra-structure distance separating each interacting protein 

pair. These interactions were then divided into eight equally-sized bins according to distance 

and the fraction of edges in each bin shared between cell lines was calculated. This fraction 
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was then expressed as the odds of replication, defined as the ratio of shared to cell-line-

specific edges (Figure 2C).

Separately, PDB structures for which at least one direct interaction was identified in BioPlex 

were identified. Within each of these 306 PDB structures the fraction of direct edges that 

were 293T-specific, HCT116-specific, or detected in both cell lines was determined and 

plotted in a ternary diagram (Figure 2D). Likewise, the 132 PDB structures containing at 

least one indirect interaction detected in BioPlex were identified, and the indirect edges were 

subdivided according to whether they were 293T-specific, HCT116-specific, or detected 

equally in both cell lines (Figure 2E).

Plotting of Specific Protein Complexes: The structure of the U1 snRNP shown in Figure 

2A corresponds to PDB structure 3pgw (Weber et al., 2010). Similarly, the structures of 

TFIIH, Ribonuclease P, and CDC45-MCM-GINS Helicase shown in Figure 2F–H 

correspond to PDB structures 6nmi (Greber et al., 2019), 6ahr (Wu et al., 2018), and 6xtx 

(Rzechorzek et al., 2020), respectively.

Analysis of Protein Expression among BioPlex Subnetworks (Figure S4)—
Protein expression within complexes displayed in Figure S4 was assessed by retrieving 

relative protein expression data for each complex member from the TMT dataset described 

above (“Quantitative Proteomic Comparison of 293T and HCT116 Cells”). The average and 

standard deviation were calculated for all matching Log2 ratios and reported. To evaluate 

significance of these values, empirical p-values were determined by randomly drawing equal 

numbers of quantified proteins from the total set of TMT-quantified proteins and calculating 

their means and standard deviations. This process was repeated 10,000 times and empirical 

p-values were determined by calculating the fraction of random samples with mean or 

standard deviation at least as extreme as those observed.

Analysis of Shared and Cell-specific Interactions (Figure S5)

Quantification of Overlap among Edges Eligible for Detection in both Cell 
Lines: Because fewer AP-MS experiments have been completed in HCT116 cells, a 

significant fraction of interactions in the 293T network are unique to that network simply 

because the appropriate IP’s have not yet been performed in HCT116 cells. Such 

interactions that could only be detected in a single cell line were excluded by filtering 

interactions to include only those for which at least one constituent protein was targeted as a 

bait in both 293T and HCT116 cells. Note that the definition used here is less stringent than 

that described for Figure S1. In Figure S1 we required matched clones targeting the same 

bait protein to pull down the same prey in each cell line. Here we do not necessarily require 

the same protein to have been targeted as a bait in both cell lines. For example, a 

hypothetical interaction between two proteins A and B would be considered eligible for 

detection in both cell lines when protein A was a bait in 293T cells only and protein B was a 

bait in HCT116 cells only; moreover, this interaction could be replicated in both cell lines if 

we detected the directed interaction A → B in 293T cells and the complementary directed 

interaction B → A in HCT116 cells. This relaxed definition allowed us to retain a larger 

fraction of the overall interaction space for the comparative analyses presented below.
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Comparison of Network Properties for Shared and Cell-line-specific Edges: To 

determine whether interactions shared across cell lines were likely to reside in more central 

network locations, edge betweenness centrality was calculated for all edges in the combined 

293T/HCT116 network using Mathematica 12.0. Edges were subsequently filtered to 

include edges detectable in both cell lines as described above and partitioned into 10 equal 

bins according to their betweenness centrality. Within each bin the fraction of edges 

observed in both cell lines was determined. Error bars represent bootstrapped 95% 

confidence intervals.

Similarly, local clustering coefficients were calculated for each interaction observed in the 

combined 293T/HCT116 network by extracting the subnetwork bounded by the first-degree 

neighbors of both constituent proteins and calculating its clustering coefficient. As before, 

edges detectable in both cell lines were partitioned into 10 equal bins according to these 

clustering coefficients and within each bin the fraction of edges observed in both cell lines 

was determined. Error bars represent bootstrapped 95% confidence intervals.

Essentiality and Interaction Overlap Between Cell Lines: To evaluate any relationship 

between protein essentiality and interaction overlap between cell lines, proteins in the 

combined 293T/HCT116 network were labeled as either ‘essential’ or ‘not essential’ 

according to specific definitions described below. Interactions eligible for detection in both 

cell lines were then extracted from the combined network and binned according to whether 

0, 1, or 2 of their constituent proteins met the indicated definition for essentiality. Finally, 

edges in each bin were labeled as ‘shared’ or ‘cell-line specific’ and the fraction of edges 

shared was calculated. Bootstrapped 95% confidence intervals were calculated as well.

This analysis was repeated three times, each time defining ‘essential’ genes according to 

separate datasets. First, we followed the criteria described by Wang et al. and deemed 

proteins with gene-based CRISPR scores < 0.1 and corrected p-value < 0.05 in KBM7 cells 

as ‘essential’ (Wang et al., 2015). Second, we counted as ‘essential’ all genes identified by 

Blomen et al. as fitness-associated in either KBM7 or HAP1 cells (Blomen et al., 2015). 

Third, we used ‘common essential’ genes as derived previously (Dempster et al., 2019) from 

Achilles data (Meyers et al., 2017; Tsherniak et al., 2017).

Interaction Overlap and Protein Expression Variability: In Figure S3, we observed that 

differential protein expression contributes to cell-line specificity among protein interactions. 

Expanding on this point, we wanted to see whether proteins involved in cell-line-specific 

interactions are variably expressed more generally across other biological contexts. For this 

purpose, we obtained datasets reporting protein expression across 378 human cancer cell 

lines (Nusinow et al., 2020) and gene and protein expression across 29 human tissues (Wang 

et al., 2019). Proteins in the cancer cell line dataset were ranked according to expression 

variability as measured by each protein’s standard deviation across cell lines; similarly, 

proteins and genes in the human tissue datasets were ranked according to relative standard 

deviations observed across tissues. In each case, proteins or genes were partitioned into 10 

equal bins. Interactions eligible for detection in both cell lines were then extracted from the 

combined 293T/HCT116 network and binned according to the ranked expression variability 
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of each constituent protein. Finally, within each bin the fraction of edges observed in both 

cell lines was determined.

Evolutionary Analysis of BioPlex Edges (Figure S6)—To assess the evolutionary 

context of shared and cell-line-specific interactions, proteins within the combined 293T/

HCT116 network were matched with protein evolutionary age data as published previously 

(Liebeskind et al., 2016). Following the authors’ guidelines, we only accepted protein age 

estimates with the following parameters: entropy < 1.0, hgt_flag = false, 

numDBsContributing > 3, and Bimodality < 5. Proteins without evolutionary ages from this 

study meeting these criteria were excluded from this analysis. Each evolutionary split was 

assigned with an approximate date using TimeTree.org. The category Eukaryota + Bacteria 

was assigned the midpoint between dates associated with the emergence of Eukaryotes and 

Opisthokonts.

In some contexts (e.g. Figure S6D), interactions were binned according to the evolutionary 

ages assigned to both of their constituent proteins; however, in other situations (e.g. Figure 

S6A/C) it was necessary to assign a single evolutionary age to each edge. In these cases, 

edges were assigned the age of their younger constituent protein. Edges for which one or 

more proteins could not be assigned ages were excluded from this analysis.

In these analyses, edges were deemed eligible for detection in both cell lines according to 

the same criteria described above for Figure S5 (Quantification of Overlap among Edges 

Eligible for Detection in both Cell Lines).

Analysis of Functionally Defined Subnetworks (Figure 1G–K/3)—To determine 

the extent to which functionally defined subnetworks of the human interactome were 

conserved across 293T and HCT116 cell lines, we extracted subnetworks corresponding to a 

wide range of functionally defined categories. These include CORUM (Giurgiu et al., 2018) 

complexes (coreComplexes.txt; downloaded from https://mips.helmholtz-muenchen.de/

corum/ in September 2018); Reactome (Fabregat et al., 2017) pathways (downloaded via 

www.uniprot.org in January 2019); GO Biological Process, Cellular Component, and 

Molecular Function (Ashburner et al., 2000) categories (www.geneontology.org; November 

2018); and DisGeNET (Piñero et al., 2017) disease associations (www.disgenet.org; May 

2019).

When calculating overlap of interactions within subnetworks for this analysis, interactions 

were only counted if at least one of their constituent proteins was targeted for AP-MS 

analysis in both cell types. This corrects for the fact that some interactions are not detectable 

in one cell line or the other simply based on the baits targeted in each. However, when 

subgraphs were plotted in the figures, all matching proteins and interactions were displayed 

including edges that could only be detected in a single cell line. Results are summarized in 

Table S5.

Discovery of Shared and Cell-line-specific Network Communities (Figure 4)—
The combined 293T/HCT116 interaction network was partitioned into communities as 

described previously (Huttlin et al., 2017). Briefly, MCL clustering (Enright et al., 2002) 
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was used to subdivide the network into communities using an inflation parameter of 2.25 

and setting the ‘force-connected’ option to yes. Communities with fewer than 3 members 

were discarded, leaving 1,423 communities overall (Table S6A–B).

After subdividing the combined 293T/HCT116 interaction network into communities, we 

next sought pairs of communities whose members were found to interact with unusually 

high frequency, as described previously (Huttlin et al., 2017). First, the full set of 

interactions was trimmed to include only those interactions connecting one community to 

another. For each pair of communities connected by one or more edges, the numbers of 

edges emanating from each were determined, as were the number of edges connecting the 

two. Fisher’s Exact Test was then used to assess whether edges connecting the two were 

enriched beyond random chance, followed by multiple testing correction (Benjamini and 

Hochberg, 1995). A total of 1,736 statistical associations were detected between 

communities at a 1% FDR (Table S6C).

Having identified communities and community associations in the combined 293T/HCT116 

network, we next wanted to quantify the level of overlap observed for each among cell lines. 

To do this, we first filtered our list of communities down to 761 that contained at least one 

protein which had served as an AP-MS bait in both cell lines. Within each of these we 

assessed the overlap as discussed below (Table S6D). Similarly, we filtered 1,736 

interactions down to a subset of 988 community-community associations ensuring that at 

least three interactions bridging these communities were detectable in both cell lines (Table 

S6E).

When calculating overlap within communities or between communities, interactions were 

only counted if at least one of their constituent proteins was targeted for AP-MS in both cell 

types. This accounts for interactions detectable in only a single cell line simply due to the 

specific AP-MS experiments completed in each. However, Figure 5E–G include all 

matching proteins and interactions, including those only eligible for detection in a single cell 

line.

Analysis of Consistency of Function among Interactors (Figure S7)—
Enrichment analysis was performed to assess consistency of function among each protein’s 

first-degree neighbors. For each protein in the combined 293T/HCT116 network, we 

extracted all first-degree neighbors. Functional categories including GO-SLIM Biological 

Process, Molecular Function, and Cellular Component categories (www.geneontology.org; 

November 2018), PFAM domains and Reactome pathways (downloaded via 

www.uniprot.org; January 2019) were superimposed. Enrichment of each term within a 

protein’s first-degree neighbors was calculated using a one-sided hypergeometric test with 

multiple testing correction (Benjamini and Hochberg, 1995). Those significant at an FDR 

less than 1% were retained.

For every functional category deemed significant after enrichment analysis, those first-

degree neighbors matching the category were assessed to determine what fraction were 

significant to 293T cells, significant to HCT116 cells, or common to both. At least five 
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neighboring proteins were required to match a given functional category to be included in 

Figure S7B. Results are provided in Table S7C.

Domain-domain Associations across Cell Lines (Figure 6)—First, the complete 

set of interactions in the combined 293T/HCT116 network was extracted and mined for 

associations among protein domains as described previously (Huttlin et al., 2015). To start, 

all proteins in the network were linked to PFAM domains (El-Gebali et al., 2018) as 

recorded in Uniprot (downloaded in January 2019). Domain pairs connected by two or more 

interactions were assessed for significance using Fisher’s Exact Test after accounting for 1) 

the number of interactions connecting both domains; 2) the numbers of interactions 

involving either domain individually; and 3) the number of interactions not involving either 

domain. After multiple correction (Benjamini and Hochberg, 1995), those domain-domain 

associations significant at a 1% FDR were identified (Table S7A).

It is important to note that though our domain analysis identifies pairs of PFAM domains 

whose parent proteins interact preferentially across the network, this does not necessarily 

mean that these domains themselves are responsible for the interaction. Many may simply be 

passengers that associate thanks to interactions mediated by contacts elsewhere in the 

protein sequence. Examples of this latter case include associations among zf-C2H2 and 

SCAN domains as well as zf-C2H2 and BTB domains. Examples of direct and indirect 

domain associations relating to Cullin E3 ubiquitin ligase complexes were also described in 

detail following analysis of BioPlex 2.0 (Huttlin et al., 2017).

Second, each statistically significant PFAM domain association was assessed for overlap 

between cell lines (Table S7B). For each pair of associated domains, all corresponding 

interactions were identified. This list of interactions was then filtered to include only 

interactions detectable in both cell lines, in the sense that at least one member of each 

interacting protein pair must be a bait in both cell types. If at least five edges remained, these 

were then tallied in both cell lines to determine the proportions specific to a single cell type 

or shared across both. These 3,249 domain-domain associations were also assembled into a 

network whose nodes corresponded to PFAM domains and whose edges linked statistically 

associated PFAM domain pairs.

Identification of Functional Associations using Achilles Data (Figure 7)—To 

map functional relationships onto the combined BioPlex network, gene fitness profiles 

defined via CRISPR knockout or RNAi knockdown across hundreds of cell lines were 

superimposed onto the network. Fitness profiles were originally collected through Project 

Achilles (Meyers et al., 2017; Tsherniak et al., 2017) and were downloaded through their 

public data portal in May 2019. For every pair of interacting proteins in the combined 

BioPlex network, fitness profiles were sought. If fitness profiles were available for both 

interacting proteins, their functional similarity was assessed using Spearman’s Correlation; 

statistical significance was assessed using the CorrelationTest function in Mathematica 12.0 
with subsequent multiple testing correction (Benjamini and Hochberg, 1995). Those BioPlex 

interactions found to match correlated fitness profiles at a 5% FDR are listed in Table S7D 

and were split into groups according to whether the observed correlation was positive or 

negative. Edges were also labeled to indicate whether they were observed in 293T cells, 
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HCT116 cells, or both. Subnetworks corresponding to BioPlex interactions with either 

positive or negative fitness correlations were extracted and plotted using Gravity 

Embedding.

ADDITIONAL RESOURCES

In addition to the numerous resources described previously, we have also developed a full-

featured web-based viewer, BioPlexExplorer, as a companion to this paper. For best results, 

we recommend using this tool in Chrome, though the full range of browsers are supported, 

including mobile browsers. This tool, available at bioplex.hms.harvard.edu/bioPlexExplorer, 

provides numerous features.

1. An integrated search engine for locating and viewing shared and cell-specific 

networks centered on one or more user-selected proteins. All interactions are 

displayed as a fully interactive network diagram. Additional data, including 

evolutionary age, protein expression levels, and GO category membership may 

be superimposed onto the networks. These networks may be downloaded as 

images (png) or as Cytoscape networks (json). All interactions are also displayed 

in sortable tabular format and may be exported in Excel, CSV, or PDF formats. 

The resulting network viewer also performs GO enrichment analysis on-the-fly. 

Finally, these network views may be shared with colleagues and collaborators via 

custom URLs.

2. A custom ternary plot viewer that enables the user to view interactive versions of 

the ternary diagrams shown in Figure 1G, Figure 3A, and Figure 5C. Through a 

drop-down menu the user may select specific annotation sets of interest, 

including GO Cellular Component, Molecular Function, and Biological Process, 

Reactome Pathways, CORUM Complexes, DisGeNET diseases, and BioPlex 

communities. By zooming in on these ternary plots and clicking on specific 

points, the user may see cell-line-specific interaction data for thousands of 

complexes, communities, and functional categories. Links also enable the user to 

easily open a network view corresponding to each category of interest as well.

3. A fully interactive version of Figure 5B, which depicts the full set of 

communities observed in the combined BioPlex network. Statistically significant 

associations among BioPlex communities are displayed as well. This interface is 

fully searchable, enabling a user to quickly and easily locate proteins of interest; 

moreover, upon selecting a node, a link is available to easily view the underlying 

interaction data in both 293T and HCT116 networks.

4. A fully interactive version of the PFAM Domain Association Network depicted 

in Figure 6A. Nodes correspond to specific PFAM domains while edges 

correspond to pairs of domains that associate statistically. The color of each edge 

indicates the extent that each domain association is reflected in 293T and 

HCT116 cells individually or in common. Clicking on individual nodes reveals 

lists of proteins that possess each domain; in addition, a link is provided to view 

the interaction subnetwork defined by proteins with the indicated domain.
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5. Fully interactive versions of Figure 7B/C, depicting BioPlex subnetworks that 

exhibit either positive or negative fitness correlations. Again, these networks are 

fully searchable and interactive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

Two protein interaction networks built from 15,650 pull-downs in two human cell lines

Extensive network remodeling reflects specialized biology of each cell line

Shared interactions form core complexes with essential, conserved functions

Networks reveal biological context for thousands of uncharacterized proteins
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Figure 1: Interactome Profiling in Multiple Human Cell Lines
(A) Our ongoing effort to map the human interactome has culminated in BioPlex 3.0, which 

builds upon two prior versions and incorporates AP-MS experiments targeting 10,128 bait 

proteins in 293T cells. Bars beneath each network reflect the fraction of proteins targeted as 

baits.

(B) We have repeated AP-MS analysis of 5,522 baits in HCT116 cells to produce a second 

proteome-scale interaction network. Bars beneath each network reflect the fraction of 

proteins targeted as baits.
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(C) Our latest networks in 293T and HCT116 cells expand coverage beyond previous 

attempts. Y2H: yeast-two-hybrid. Circle size is proportional to interaction count.

(D) Comparison with BioGRID reveals that most BioPlex 3.0 interactions have not been 

previously reported. Incorporating PubMed citation counts for individual proteins suggests 

that much of the increased coverage comes from interactions among poorly studied proteins.

(E) Overlap among proteins in 293T and HCT116 networks.

(F) Overlap among interactions in 293T and HCT116 networks. A dashed box depicts the 

subset of 293T interactions matching those baits also targeted in HCT116 cells.

(G) Ternary diagram depicting the proportions of edges shared or unique to either 293T or 

HCT116 cells for subnetworks defined by 912 CORUM complexes. Interactions observed 

among proteins in each complex were extracted from the combined 293T/HCT116 network 

and tallied to determine numbers of edges shared or specific to each cell line. Four 

individual complexes are displayed as Venn diagrams; each is also represented as a point 

within the ternary diagram whose location reflects the relative proportions of shared and 

cell-specific edges. Points near the corners indicate that most edges are either shared 

(“Both”) or cell-specific; points near the center of the triangle indicate edges evenly 

distributed across shared and cell-specific categories. The ternary diagram thus summarizes 

Venn diagrams for 912 complexes. A box-whisker plot depicts the edge overlap across 

complexes.

(H) – (K) Subnetworks corresponding to four CORUM complexes highlighted in panel G.
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Figure 2: Structural Context Drives Interaction Replication in Protein Complexes
(A) Method for overlaying BioPlex interactions onto 3D structures and assessing detection 

and cellline specificity. See text for details.

(B) The fraction of observable interactions detected in BioPlex networks and the fraction of 

BioPlex interactions that match direct interactions. Results aggregated across 309 PDB 

structures.

(C) Relative odds that interactions are shared in 293T and HCT116 cells, versus cell-line-

specific, as a function of inter-protein distance.
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(D) Ternary diagram depicts sharing of direct interactions in 293T and HCT116 networks 

across 306 PDB structures.

(E) Ternary diagram depicts sharing of indirect interactions in 293T and HCT116 networks 

across 132 PDB structures with at least one indirect interaction.

(F) – (H) Selected complexes. Each structure is displayed (Column 1) along with a network 

visualization of all direct interactions in the structure (Column 2). BioPlex edges are then 

overlayed to show which direct interactions were detected (Column 3) and to show direct 

and indirect edges colored according to whether they were detected in 293T, HCT116, or 

both (Column 4).
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Figure 3: Interactions within Complexes and Pathways Covary according to Shared Function 
and Cellular Phenotype
(A) Ternary diagrams depict edge sharing across cell lines for subnetworks defined by 

protein functional classes. Plots are shown for CORUM complexes, Reactome pathways, 

GO ontologies, and DisGeNET disease associations, ordered by edge sharing among 

constituent protein classes. Venn diagrams match assemblies shown in panels B, C, D, F, and 

H.

(B) Glycolysis subnetwork (Reactome).

(C) RNA Polymerase II Transcription Initiation subnetwork (Reactome).

Huttlin et al. Page 52

Cell. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) EPH-Ephrin Signaling subnetwork (Reactome).

(E) Phosphopeptides detected for ephrin receptors and ligands expressed as baits in each cell 

line.

(F) “TGF-β Receptor Signaling Activates SMAD’s” subnetwork (Reactome).

(G) Expression of epithelial and mesenchymal markers regulated by Snail, ZEB, and bHLH 

transcription factor family members downstream of TGF-β signaling.

(H) Post-synaptic Membrane subnetwork (GO Cellular Component).
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Figure 4: Linking Differential TP53 Signaling to Cell-specific Interactions
(A) Cell cycle regulation: TP53 and the DREAM Complex.

(B) Selected interactions of TP53 in 293T and HCT116 cells.

(C) Enrichment of SV40 Large T Antigen in TP53 IP’s.

(D) Expression of TP53 and related proteins in 293T and HCT116 cells.

(E) HCT116-specific interactions involving proteins whose expression is regulated by TP53.

(F) RBL1/2 abundance and phosphorylation in 293T and HCT116 cells.

(G) CDK4, Cyclin-D, and CDKN1A-C: expression and interactions in 293T and HCT116 

cells.

(H) DREAM Complex interactions in 293T and HCT116 cells.

(I) 293T-specific interactions involving proteins whose expression is regulated by the 

DREAM complex.
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Figure 5: Data-driven Discovery of Shared and Cell-line-specific Network Communities
(A) 293T and HCT116 networks were combined and partitioned via MCL clustering to 

identify 1,423 communities with 3+ members. Interactions connecting community pairs 

were then tallied to identify 1,736 statistically enriched associations. Interaction overlap 

across cell lines was then tallied within each community and along edges that connect 

associated community pairs.

(B) Network of communities detected in the combined 293T/HCT116 network. Every 

network community with at least 3 members is represented as a node of size proportional to 
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the number of proteins it contains. Edges connect communities that were statistically 

associated. Node and edge colors reflect overlap among cell lines.

(C) Ternary diagram depicting the overlap observed within each community. Only 

communities for which at least one member has been a bait in both cell lines are included.

(D) Ternary diagram depicting the overlap observed for edges that connect communities. 

Edges were only included if they were supported by 3+ edges detectable in both cell lines 

given the baits targeted in each.

(E) – (G) Selected Network Communities.
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Figure 6. Cell Line Specificity among Domain Associations
(A) PFAM domains were mapped to proteins in the combined HCT116/293T network and 

domain pairs connected by unusually high edge counts identified. The overlap of edges 

connecting each statistically associated domain pair was then determined across cell lines. 

These domain associations form a network with edge colors that reflect sharing of 

interactions across cell lines. A ternary plot depicts sharing of edges matching each domain 

association across cell lines. The box-whisker plot shows the fraction of interactions shared 
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among cell lines; a histogram highlights the fraction of domain associations that are shared 

or cell-line-specific.

(B) – (E) Subnetworks of PFAM domain pairs. P-values reflect enrichment of interactions 

among the indicated domain pair with multiple testing correction. Only edges eligible for 

detection in both cell lines are shown.
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Figure 7. Linking Physical and Functional Associations for Biological Discovery
(A) For each interacting protein pair in the combined 293T/HCT116 network, cellular fitness 

profiles from Project Achilles were correlated and assessed for statistical significance. 

Following multiple testing correction, edges with positive or negative fitness correlations 

were extracted and assigned as either shared or cell-specific. Only edges detectable in both 

cell lines are shown.

(B) – (C) BioPlex subnetworks with positive (B) or negative (C) fitness correlations. Edges 

connect proteins that interact in BioPlex and whose fitness profiles correlate (5% FDR).

(D) – (F) Subnetworks of panel B. Green labels summarize common biological themes in 

each subnetwork.

Huttlin et al. Page 59

Cell. Author manuscript; available in PMC 2022 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(G) – (I) Subnetworks of panel C. Green labels summarize common biological themes in 

each subnetwork.
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