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Abstract
Essential oils (EOs) have been recently emerging for their promising biological activities in preventing tumorigenesis or
progression of different tumor histotypes, including melanoma. In this study, we investigated the antitumor activity of
a panel of EOs in different tumor models. The ability of Melaleuca alternifolia (tea tree oil) and its main component,
terpinen-4-ol, to sensitize the target therapy currently used for melanoma treatment was also assessed. Our results
demonstrated that EOs differently affect the viability of human cancer cells and led us to select six EOs effective in
melanoma and lung cancer cells, without toxic effects in human fibroblasts. When combined with dabrafenib and/or
trametinib, Melaleuca alternifolia synergistically reduced the viability of melanoma cells by activating apoptosis.
Through machine learning classification modeling, α-terpineol, tepinolene, and terpinen-4-ol, three components of
Melaleuca alternifolia, were identified as the most likely relevant components responsible for the EO’s antitumor effect.
Among them, terpinen-4-ol was recognized as the Melaleuca alternifolia component responsible for its antitumor and
proapoptotic activity. Overall, our study holds promise for further analysis of EOs as new anticancer agents and
supports the rationale for their use to improve target therapy response in melanoma.

Introduction
Cutaneous melanoma is the most aggressive type of skin

cancer. BRAF represents the most common driver
mutation present in ~50% of patients and predicting a
more aggressive behavior1. Although target therapy and
immunotherapy represent a great opportunity for mela-
noma treatment, patients often face lack of clinical
response, the emergence of resistance to treatment, and
invalidating side effects2. Consequently, innovative and

combined therapies are still urgent to treat and eventually
eradicate advanced melanoma. In light of this considera-
tion, a large number of preclinical and clinical trials are
ongoing to identify new therapeutic approaches.
Over the past decades, compounds extracted from plants

have demonstrated their effectiveness in different diseases,
including melanoma3. Examples include vinblastine4, vin-
cristine5, paclitaxel6, and camptothecin7. Scientific evi-
dences have demonstrated that, among natural
compounds, essential oils (EOs) showed great potential for
the management of a number of diseases including car-
diovascular8, diabetes9, and Alzheimer10. EOs also repre-
sent a valid source to prevent the invasion of SARS-CoV-2
into the human body11, or to downregulate angiotensin-
converting enzyme 2 expression in epithelial cells12.
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Due to their minimal cytotoxicity13,14, EOs are considered
pharmaceutically safe and could represent a good alternative
natural source of anticancer agents, thus deserving further
investigations to ascertain their mechanism of action and to
validate their possible clinical uses as alternative/com-
plementary antitumor agents. In the last 20 years, preclinical
studies demonstrated anticancer activity of either some EOs
or their main components15,16 and led to case–control stu-
dies17 and clinical trials18–20. At present, EOs are used to
ameliorate cancer patients’ quality of life and clinical trials
are ongoing to evaluate their efficacy or the efficacy of their
components in cancer patients (NCT02336087, NCT03449
303, NCT04560114, NCT04449315, NCT00003219, NCT00
003238, NCT01459172, NCT01046929, NCT04296266).
From the hundreds of studies published in the last years, it is
evident that, in addition to their chemopreventive effects,
several EOs and their constituents show antioxidant, anti-
proliferative, proapoptotic, antiangiogenic, and antimeta-
static activity in melanoma models21–23. Synergistic effect of
EO components such as geraniol24,25, β-elemene26,27,
β-caryophyllene28, limonene29, eugenol30, and thymoqui-
none31,32 with cancer therapy has been also reported.
To shed light on the use of EOs as possible anticancer

agents, in this investigation we reported the in vitro
anticancer effect of a panel of EOs and investigated the
possible use of Melaleuca alternifolia (TTO, EO05 in this
investigation) as a sensitizer of targeted therapy in mela-
noma models. Furthermore, machine learning (ML)
classification models were developed and used to inves-
tigate the possible efficacy of the more important EOs’
single components.

Results
A panel of EOs differently affects the viability of melanoma
cells
The antitumor activity of 61 EOs (Table S1) was firstly

assessed for their ability to affect the proliferation/viability
of M14 melanoma cell line (50 μg/ml, 72 h). As reported
in Fig. 1a, 18 EOs significantly reduced the proliferation/
viability of M14 cells, and 12 of them inhibited at least
50% of cell proliferation. Among the 12 EOs, EO14 and
EO40 were excluded from further investigations owing to
their low solubility. M14 cells were treated with the
remaining 10 EOs (10–50 μg/ml, 24–72 h). After 24 h
treatment, a dose-dependent reduction of cell prolifera-
tion/viability was observed for seven EOs, whereas
between 48 h and 72 h no significant differences in terms
of IC50 were observed (Fig. 1b, c, Table S2). EO22, EO32,
and EO52 were the less effective in reducing the M14
proliferation/viability and showing the highest deviation
from the median IC50 for each time point (Fig. 1b, c).
As reported in Fig. S1a, the six most effective EOs

(EO05, EO12, EO18, EO20, EO29, EO49), but not EO39,
showed no significant effect on the proliferation/viability

of normal human fibroblasts (50 μg/ml, 72 h), therefore
EO39 was not further investigated. The antitumor activity
of the final selected EOs was then explored on cell lines
with three different tumor histotypes: lung (H1299,
A549), colon (HCT116), and breast (MDA-MB-231)
carcinoma. As shown in Fig. S1b, lung cancer cells treated
with each EO (50 μg/ml, 48 h) were as sensitive as M14
cells, with cell proliferation/viability inhibition ranging
from 67% to 82% for both cell lines used. On the contrary,
the proliferation/viability of MDA-MB-231 cells was sig-
nificantly reduced only by EO12, whereas HCT116 cells
were resistant to the six EOs.
Even though at different extend, increasing concentra-

tions of each EO displayed a similar ability in significantly
reducing the viability of both BRAF wild type/NRAS
mutant (Sbcl1, ME4405), BRAF wild type/NRAS wild type
(ME1007), and BRAF mutant/NRAS wild type (M14,
A375, LOX IMVI) melanoma cells (Fig. 2a–f, Fig. S1c),
thus indicating the absence of relevance of BRAF or
NRAS status in the sensitivity to EOs.

ML binary classification algorithms identify the most likely
relevant components of EOs
To identify the most important chemical components

likely responsible for viability inhibition of M14 cells, ML
models were developed as reported in supplementary
methods. At 50% proliferation/viability inhibition
threshold, Matthews correlation coefficient and area
under the curve value were 0.604 and 0.537, respectively
(Fig. S2a). Inspection of the weighted feature importance
values revealed α-terpineol, terpinolene, and terpinen-4-ol
as those components mainly responsible for proliferation/
viability inhibition of M14 cell line (Fig. S2a). The che-
mical composition of the EOs with the higher efficacy is
reported in Table 1 and Tables S4–S8. All the three
components identified through ML analysis were evi-
denced only in EO05 and EO49, even if at different
concentrations (Table S3).

EO05 sensitizes melanoma cells to target therapy
We next combined EO05, a very well characterized EO

from Melaleuca alternifolia33 containing all the three
components identified through the ML approach, with
the targeted therapy currently used for the treatment of
advanced melanoma patients harboring BRAF muta-
tions34. Growth inhibitory curve and relative analysis of
drug interaction demonstrated that 24 h EO05 followed
by 48 h dabrafenib (BRAF inhibitor) resulted in a syner-
gistic effect on M14 proliferation/viability reduction with
combination index (CI)= 0.6 (Fig. 3a). Accordingly, this
combination produced a synergistic effect also in A375
cells (Fig. S3a).
A mean of 18.5% and 16.8% of subG1 peak, indicative of

dead cells, was detected after treatment with dabrafenib or
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Fig. 1 M14 cells are differentially sensitive to a panel of EOs. a Analysis of cell proliferation/viability by MTT assay of M14 cells treated with 61
essential oils (EOs, EO01-EO61, 50 μg/ml, 72 h). p-values were calculated between control (Ctrl) and EO-treated cells. *p < 0.05; **p < 0.01; #p < 0.001
after applying Student’s t test. Dotted columns represent the six EOs further investigated in this study. b MTT assay of M14 cells treated with the
indicated EOs (10–50 μg/ml, 24–72 h). a, b Results are reported as “cell proliferation-viability of treated cells/cell proliferation-viability of control cells ×
100” and represent the average±standard deviation of at least three independent experiments. c Quantification of 50% inhibition of cell proliferation/
viability (IC50) of the indicated EOs calculated for M14 cells treated as reported in b. The median of IC50 is shown. ***p < 0.001; ****p < 0.0001 after
applying one-way ANOVA test.
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EO05, respectively. Interestingly, in cells treated with
EO05 followed by dabrafenib, the subG1 population sig-
nificantly increased up to 40.2% (Fig. 3b, c). In addition,
treatment with the caspase inhibitor zVAD-FMK (zVAD)
significantly reduced the subG1 peak in cells treated with
EO05 alone (4.9%) or in combination with dabrafenib (8%),
thus demonstrating apoptotic cell death. Apoptosis induc-
tion was also confirmed by the increase of active caspase 3
and cleaved PARP in cells treated with the combination
when compared to single treatments (Fig. 3d, e).

Similar to what observed for dabrafenib, administration
of 24 h EO05 followed by 48 h trametinib (MEK inhibitor)
showed a synergistic effect strongly reducing M14 cell
proliferation/viability (CI= 0.5) (Fig. 4a). Accordingly,
treatment of EO05 followed by trametinib increased the
percentage of subG1 peak, caspase 3, and PARP cleavage
(Fig. 4b–e) when compared with trametinib or EO05
alone. Moreover, the addition of zVAD significantly
decreased the subG1 peak in cells treated with EO05
alone or in combination (Fig. 4b, c). A synergistic effect of

Fig. 2 Six selected EOs affect melanoma cell proliferation/viability. a–f Analysis of cell viability by MTT assay of six melanoma cell lines treated
with the indicated EOs (10–35 μg/ml, 48 h). The results are reported as “cell proliferation-viability of treated cells/cell proliferation-viability of control
cells (Ctrl) × 100” and represent the average±standard deviation of at least three independent experiments. p-values were calculated between
control and EOs treated cells. *p < 0.05; **p < 0.01 after applying Student’s t test.
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EO05 followed by trametinib was also obtained in
the BRAF wild type melanoma cells, ME4405 (CI= 0.6)
(Fig. S3b). Next, the effect of EO05 in combination with
dabrafenib and trametinib, the current standard treatment
for BRAF mutant melanoma patients, was also assessed.
Interestingly, 24 h EO05 followed by 48 h of dabrafenib/
trametinib treatment strongly reduced the proliferation/
viability of M14 cells compared with exposure to EO05
alone or to dabrafenib/trametinib (Fig. 4f).

Terpinen-4-ol is responsible for EO05 antitumor activity
Four among the most abundant components of EO05,

identified by gas chromatography mass spectroscopy (GC/
MS) analysis (Table 1) were tested for their ability to affect
M14 and A375 cell proliferation/viability at the con-
centration contained in 50 μg/ml of EO05. Terpinen-4-ol
(18.5 μg/ml, 48 h), was the only component that sig-
nificantly reduced M14 (Fig. 5a) and A375 (Fig. S4a)
proliferation/viability of ~70% and 60%, respectively, an
effect similiar to that exerted by EO05 at 50 μg/ml. On the
contrary, eucalyptol (7 μg/ml), γ-terpinene (6 μg/ml), and
α-terpineol (4 μg/ml) had no significant effect on M14
and A375 cell proliferation/viability (Fig. 5a, Fig. S4a).

Furthermore, treatment with terpinen-4-ol for 48 h sig-
nificantly decreased M14 (Fig. 5b) and A375 (Fig. S4b) cell
proliferation/viability in a dose-dependent manner, up to
64% and 56%, respectively, likewise EO05 (64.3% for M14
and 51% for A375, respectively).
Interestingly, as determined for EO05, terpinen-4-ol

pre-treatment synergistically reduced cell viability of M14
cell line when associated with dabrafenib (CI= 0.44)
(Fig. 5c) or trametinib (CI= 0.7) (Fig. 5d). Accordingly, an
increased subG1 peak, reduced by the addition of zVAD,
was observed in cells treated with combinations with
respect to single treatments (Fig. 6a, b). The apoptotic
induction of the combinations was confirmed by the
increase of PARP and caspase 3 cleavage (Fig. 6c, d).
Analogous results were obtained for A375 when terpinen-
4-ol was followed by dabrafenib (CI= 0.5) or trametinib
(CI= 0.47) (Fig. S4c, d). Interestingly, the terpinen-4-ol
pre-treatment strongly synergized the effect of dabrafe-
nib/trametinib treatment (Fig. 6e).

Discussion
In this study, we provided evidence about the anti-

proliferative effect of a panel of EOs in melanoma and
lung carcinoma cells. More importantly, we determined
the ability of TTO to synergize with target therapy in
melanoma models. In particular, an initial screening of 61
EOs led to select six of them (TTO, Pinus Sylvestris,
Lavandula Angustifolia, Citrus Paradisi, Pinus Sibirica,
Cupressus Sempervirens) as the most efficacious in terms
of reduction of tumor cell proliferation/viability, without
affecting normal fibroblasts viability. We also found that
the efficacy of EOs depends on the tumor histotype
examined. In fact, the treatment with the six EOs reduced
cell proliferation of melanoma and lung carcinoma cells in
a dose-dependent manner, whereas they were ineffective
in breast and colon carcinoma cells. The mechanism that
renders the different histotypes differently sensitive to the
six EOs is not yet clear. No reports have been yet pub-
lished about the six EOs used in colon cancer models.
Nevertheless, TTO has been reported to induce apoptosis
in breast cancer cells at concentration six times higher
than those we used in our study35, whereas Pinus Syl-
vestris EO (EO29) exhibited some potential as an anti-
proliferative agent in the same cellular model (i.e., MDA-
MB-231)36, thus suggesting a different composition of EO
used. In fact, we and other authors previously reported
that multiple factors affect EO composition37–40.
A panel of melanoma cell lines, harboring wild type or

mutant BRAF and NRAS, showed sensitivity to the six
EOs, even if at a different extend, thus indicating that the
effect of EOs was not related to BRAF or NRAS status.
All the six selected EOs, except for Pinus Sibirica (EO20),

were investigated for their effect on cancer41–45 but only
TTO (EO05) showed antitumor efficacy in preclinical

Table 1 Chemical composition of EO05.

No. Componenta LRIb LRIc EO05 (%)d

1 α-pinene 1019 1021 11.1

2 β-pinene 1100 1105 2.5

3 β-myrcene 1157 1157 0.2

4 α-terpinene 1180 1186 4.6

5 Limonene 1195 1198 2.0

6 Eucalyptol 1201 1209 14.9

7 γ-terpinene 1236 1241 11.8

8 Terpinolene 1281 1282 1.7

9 o-cymene 1283 1287 3.5

10 Linalool oxide 1420 1423 0.2

11 α-gurjunene 1529 1527 0.2

12 Longifolene 1579 1583 0.2

13 Terpinen-4-ol 1599 1603 37.5

14 α-terpineol 1677 1675 8.1

15 Viridiflorene 1699 1695 1.1

16 Globulol 2092 2086 0.4

Total identified 100.0

The chemical composition of EO05 was identified by GC-MS analysis.
aThe components are reported according to their elution order on polar column.
bLinear Retention indices (LRI) measured on polar column.
cLRI from literature.
dPercentage mean values of EO05 components.
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melanoma models. In particular, through its most abundant
component, terpinen-4-ol, TTO has been reported to reduce
cell proliferation46–48, cause cell cycle perturbation47,48,
induce necrosis47 or apoptosis46,48, and interfere with in vitro
invasive/migratory capability49 of melanoma models. More-
over, a topical formulation of TTO retarded the in vivo
growth of subcutaneous melanoma and evidenced immune
effector cell recruitment on the treated region50. Considering
all these effects, the EOs lipophilicity, the fact that EOs are
well absorbed through the skin51, as well as the fact that
chemoprevention is an essential approach for cancer

control52, TTO has been suggested as a possible chemo-
preventive candidate to be used in topical formulations
against melanoma and other types of skin cancer48,53.
Despite the great interest in TTO reported in the last

years54,55, the contribution of TTO as a sensitizer of
cancer, and in particular, of melanoma therapy56,57, is
unknown. We demonstrated that TTO synergized with
dabrafenib and trametinib, when administered either as
single agents or in combination, in terms of apoptosis
induction, when TTO treatment was followed by expo-
sure to one of the two drugs. However, we cannot exclude

Fig. 3 EO05 sensitizes M14 melanoma cells to dabrafenib treatment. a Analysis of cell proliferation/viability by MTT assay (left) and relative
isobologram (right) of M14 cells after treatment with dabrafenib (DAB) or EO05 alone or 24 h EO05 followed by 48 h dabrafenib (EO05-> DAB). The
results are reported as “cell proliferation-viability of treated cells/cell proliferation-viability of control cells (Ctrl) × 100”. b Quantification and
c representative images of subG1 peak by propidium iodide staining of M14 cells treated with DAB (48 h, 0.2 μM), EO05 (24 h, 20 μg/ml) or with 24 h
EO05 followed by 48 h dabrafenib (EO05- > DAB) in the presence or absence of zVAD (50 μM). The percentage of cells in the subG1 peak is reported.
a, b The results represent the average±standard deviation of three independent experiments. Experiments with zVAD were repeated twice.
b p-values were calculated between cells treated with combination and cells treated with single drugs, or between cells treated or not treated with
zVAD. *p < 0.05; **p < 0.01 after applying Student’s t test. d Flow cytometric analysis of active caspase 3-PE staining in cells treated with DAB (48 h,
0.2 μM), EO05 (24 h, 20 μg/ml), or with 24 h EO05 followed by 48 h dabrafenib (EO05- > DAB). e Western Blot analysis of PARP cleavage in M14 cells
treated as reported in d. HSP72/73 was used as loading and transferring control. Western blot representative of two blots with similar results
is shown.
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Fig. 4 EO05 sensitizes M14 melanoma cells to trametinib treatment. a Analysis of cell proliferation/viability by MTT assay (left) and relative
isobologram (right) of M14 cells treated with 48 h trametinib (TRAM) or 24 h EO05 alone or 24 h EO05 followed by 48 h trametinib (EO05- > TRAM).
b Quantification and c representative images relative of subG1 peak by propidium iodide staining of M14 cells control (Ctrl) or treated with TRAM
(48 h, 10 nM), EO05 (24 h, 20 μg/ml) or with 24 h EO05 followed by 48 h TRAM (EO05- > TRAM), in the presence or absence of zVAD (50 μM). The
percentage of cells in the subG1 peak is reported. d Flow cytometric analysis of active caspase 3-PE staining in cells treated with TRAM (48 h, 10 nM),
EO05 (24 h, 20 μg/ml), or with 24 h EO05 followed by 48 h TRAM (EO05- > TRAM). e Western blot analysis of PARP cleavage in M14 cells treated as
reported in d. HSP72/73 was used as loading and transferring control. Western blot representative of two blots with similar results is shown. f MTT
assay of M14 cells treated with dabrafenib (0.001 μM)+trametinib (0.1 nM) for 48 h, EO05 (20 μg/ml) for 24 h alone or 24 h EO05 followed by 48 h
DAB+ TRAM (EO05- > DAB+ TRAM). a, f The results are reported as “cell proliferation-viability of treated cells/cell proliferation-viability of control
cells × 100”. a, b, f The results represent the average ± standard deviation of three independent experiments. Experiments with zVAD were repeated
twice. b, f p-values were calculated between cells treated in combination and cells treated with single drugs, or between cells treated or not treated
with zVAD. *p < 0.05; **p < 0.01 after applying Student’s t test.
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that TTO alone and in combination with targeted therapy
may activate other forms of cell death.
In agreement with studies demonstrating that among

TTO components, terpinen-4-ol is responsible of TTO
efficacy46,47,49, we demonstrated the relevance of
terpinen-4-ol the main component present in TTO
(37.5%), in the antiproliferative effect and in the sensiti-
zation to target therapy. In mouse or human melanoma
cells, TTO and terpinen-4-ol elicited G1 cell cycle arrest,
showed an antiproliferative effect, antimigratory/anti-
invasive ability against cells resistant to chemotherapy,
and induced necrotic and apoptotic cell death46,47,49. We
and other authors also reported terpinen-4-ol ability to
affect in vitro and in vivo growth of tumors with different
origin58–62, and to enhance the effect of several che-
motherapeutic or biological agents in cancers not
including melanoma61. Results from ML analysis

performed on the M14 screening were in good agreement
with experimental data effectively indicating terpinen-4-ol
as one of the components mainly responsible for viability
inhibition of melanoma cells. Indeed, among the final
selected six EOs, EO05 did contain terpinen-4-ol at the
highest percentage. The antiproliferative effect of EO12,
EO18, EO20, EO29, and EO49, showing low or non-
detectable levels of terpinen-4-ol could be due to other
components present in their composition and reported to
affect proliferation of melanoma cells, such as linalool63,
limonene64, camphene65, α-, and β-pinene66.
In agreement with studies demonstrating (i) the nature

of terpenes as lipophilic molecules able to disrupt normal
structure and function of cell membranes46, and (ii) the
ability of TTO and terpinen-4-ol to interact with the lipid
bilayer of cellular membranes and to inhibit the intra-
cellular signaling induced by p170 glycoprotein49,67, we

Fig. 5 Terpinen-4-ol is responsible for EO05 antitumor activity in M14 cells. a MTT assay of M14 cells treated for 72 h with eucalyptol (7 μg/ml),
γ-terpinene (6 μg/ml), α-terpineol (4 μg/ml), terpinen-4-ol (18.5 μg/ml) or EO05 (50 μg/ml). b MTT assay of M14 cells treated with the indicated
concentrations of EO05 or of terpinen-4-ol. c, d MTT assay (left) and relative isobologram (right) of M14 cells treated with c dabrafenib (DAB),
d trametinib (TRAM), or terpinen-4-ol alone or in combination (24 h terpinen-4-ol followed by 48 h DAB or TRAM). a–d The results are reported as
“cell proliferation-viability of treated cells/cell proliferation-viability of control cells × 100”. The results represent the average±standard deviation of at
least three independent experiments. p-values were calculated between control (Ctrl) and treated cells or cells treated in combination and cells
treated with single drugs. *p < 0.05; **p < 0.01, after applying Student’s t test.
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Fig. 6 Terpinen-4-ol induces apoptosis in combination with targeted therapy. a Quantification and b representative images relative of subG1
peak by propidium iodide staining of M14 cells treated with 48 h dabrafenib (DAB, 0.2 μM) or trametinib (TRAM, 10 nM), 24 h terpinen-4-ol (7.4 μg/ml)
alone or in combination (24 h terpinen-4ol->48 h DAB/TRAM), in the presence or absence of zVAD (50 μM). c Flow cytometric analysis of active
caspase 3-PE staining in cells treated with 48 h dabrafenib (0.2 μM) or trametinib (10 nM), 24 h terpinen-4-ol (7.4 μg/ml) alone or in combination (24 h
terpinen-4ol->48 h DAB/TRAM). d Western blot analysis of PARP cleavage in M14 cells treated as reported in c. HSP72/73 was used as loading and
transferring control. Western blot representative of two blots is shown. e MTT assay of M14 cells treated with dabrafenib (0.001 μM)+trametinib
(0.1 nM) for 48 h, terpinen-4-ol (7.4 μg/ml) for 24 h alone or 24 h terpinen-4-ol followed by 48 h DAB+ TRAM (terpinen-4-ol->DAB+ TRAM).
The results are reported as “cell proliferation-viability of treated cells/cell proliferation-viability of control cells × 100”. a, e The results represent the
average±standard deviation of three independent experiments. Experiments with zVAD were repeated twice. p-values were calculated between
control (Ctrl) and treated cells, cells treated in combination and cells treated with single drugs, or between cells treated or not treated with zVAD.
*p < 0.05; **p < 0.01, ***p < 0.001 after applying Student’s t test.
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suggest that the synergistic effect of TTO or terpinen-4-ol
with target therapy could be related to their effect on
plasma membrane, i.e., reorganization of lipid archi-
tecture, thus favoring the entrance of drug in the cell.
Our data are in agreement with previous studies

reporting the ability of EOs such as Cymbopogon citratus,
or EO components, such as β-elemene and thymoqui-
none, to increase the efficacy of radiation in melanoma
models68,69, or curcumol, β-caryophyllene, citral, or
valencene to enhance the sensitivity of tumors from dif-
ferent origin to antineoplastic treatment70–72.
To the best of our knowledge, this is the first study

examining the ability of TTO, and in particular, terpinen-4-
ol, to potentiate the targeted therapy of melanoma, high-
lighting the importance of our investigation. The efficacy of
the combination TTO/target therapy could be of relevant
importance as it can lead to the use of a lower concentration
of drugs commonly used for the management of melanoma
patients and consequently lower toxic treatments in terms
of side-effect and more efficacious. The potential use of
TTO is further supported by its non-toxicity in normal
cells35 and by its penetrability in the skin73.
Supported by low toxicity and side-effect of EOs, as well

as their good tolerance by patients, our study hold pro-
mise for further analysis of EOs as new anticancer drugs
and/or as a source of potential anticancer supplement
against melanoma. The effect of TTO on melanoma cells
and the analysis of its main components are worthy of
further investigation.

Materials and methods
Cell cultures
Human melanoma (M14, A375, LOX IMVI, Sbcl1,

ME4405, and ME1007) and lung cancer (H1299, A549)
cell lines were cultured in Roswell Park Memorial Insti-
tute 1640 medium (Euroclone, Milan, IT). Colon cancer
(HCT116), breast cancer (MDA-MB-231) cells, and
human telomerase reverse transcriptase immortalized
fibroblasts (BJ-hTERT) were cultured in Dulbecco’s
Modified Eagle’s medium (Lonza, Basilea, CH) supple-
mented with 10% inactivated bovine serum (Gibco,
Thermo Fisher Scientific, MA, USA). ME4405 and
ME1007 cell lines were established as reported74. Sbcl1
cell line was provided by Beppino G Giovannella75. All the
other cell lines were purchased from American Type
Culture Collection (Manassas, VA). Cells were routinely
tested for mycoplasma contamination and were recently
authenticated.

Reagents preparation and treatment
EOs (Farmalabor srl, Assago, IT), dabrafenib, trametinib

(Selleckchem Chemicals, Houston, TX, USA) and zVAD
(abcam, Cambridge, UK) were dissolved in dimethyl
sulfoxide (DMSO, Sigma Aldrich, St. Louis, MO, USA)

and further diluted in complete medium. Cells were
treated up to 0.001% DMSO as vehicle control. Euca-
lyptol, γ-terpinene, α-terpineol, and terpinen-4-ol were
diluted in complete medium. Methanol (Sigma Aldrich)
was used to dilute EOs for GC-MS analysis.

Analysis of cell proliferation/viability
In all, 3 × 103 cells/well were seeded in 96-well plates and

treated for 24–72 h. Cell proliferation/viability was eval-
uated by measuring 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide inner salt (MTT, Sigma
Aldrich) dye absorbance as previously reported76. The
concentration of drug that reduces 50% of cell viability
(IC50) and CI were analyzed by using median-effect
method (Calcusyn software, Biosoft). CI values of
<1, =1, and >1 indicate, respectively, synergistic, additive,
and antagonistic effects.

Western blot and flow cytometric analyses
Western blot analyses were performed as previously

reported77 using primary antibodies directed to PARP
(cod. 51-6639GR, BD Bioscience, San Jose, CA) or
HSP72/73 (cod. D00175805, Calbiochem, Saint Diego,
CA, USA,) as control of loading and transfer. Anti-mouse
immunoglobulin G-horseradish peroxidase-conjugated
antibody (cod. 1858413, Amersham Biosciences, Freiburg,
Germany) was used as a secondary antibody.
Cell cycle distribution by propidium iodide staining was

performed as previously described78. Caspase 3 activation
was evaluated using an active caspase 3-PE antibody (cat.
559565, BD Bioscience, San Jose, CA), following the
manufacturer’s instructions. All the cytofluorimetric
analyses were performed using BD AccuriTM C6 flow
cytometer.

GC-MS analysis
GC-MS analyses were carried out using a Perkin Elmer

Clarus 500 GC equipped with a flame ionization detector
and coupled with a Clarus 500 mass spectrometer. A
Stabilwax capillary column (Restek, Bellefonte, PA, USA)
was used with helium as carrier gas (1.0 mL/min). GC
oven temperature was kept at 60°C for 5 min and pro-
grammed to 220°C at a rate of 5°C/min, and kept constant
at 220°C for 30min. Mass spectra were acquired over
40–500 amu with ionizing electron energy 70 eV. In all,
1 μL of the EO was diluted in 1mL of methanol and 1 μL
of the solution was injected into the GC injector at 280°C.
The identification of compounds of EOs was performed
by comparing mass spectra with those reported in Nist
and Wiley libraries. Linear retention indices were calcu-
lated after injection of C8–C30 aliphatic hydrocarbons
mixture under the same conditions described above and
compared with available linear retention indices data in
the literature.
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ML binary classification
All calculations were performed using the Python pro-

gramming language (version 3.7, https://www.python.org/)
by executing in-house code in the Jupyter Notebook
platform, as previously reported79,80. For details see sup-
plementary material and Table S9, 10.

Statistics
Unless otherwise indicated, at least three independent

experiments have been performed. Six technical points for
each experimental group were used for MTT assay. The
data were expressed as mean ± standard deviation or ±
standard error of the mean. For continuous variables, dif-
ferences between two groups were analyzed with Student’s t
test (unpaired, two-sided). One-way ANOVA test was used
to analyze differences between the three groups. P < 0.05
was considered statistically significant. All statistical tests
and the estimation of variation between groups were per-
formed with GraphPad Prism 6 (GraphPad Software, Inc.,
La Jolla, CA, USA). All data were included in the analyses.
Based on the variation shown in our preliminary results, we
determined the sample sizes by using power analysis.
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