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A B S T R A C T   

Conventional reconstruction methods for photoacoustic images are not suitable for the scenario of sparse sensing 
and geometrical limitation. To overcome these challenges and enhance the quality of reconstruction, several 
learning-based methods have recently been introduced for photoacoustic tomography reconstruction. The goal of 
this study is to compare and systematically evaluate the recently proposed learning-based methods and modified 
networks for photoacoustic image reconstruction. Specifically, learning-based post-processing methods and 
model-based learned iterative reconstruction methods are investigated. In addition to comparing the differences 
inherently brought by the models, we also study the impact of different inputs on the reconstruction effect. Our 
results demonstrate that the reconstruction performance mainly stems from the effective amount of information 
carried by the input. The inherent difference of the models based on the learning-based post-processing method 
does not provide a significant difference in photoacoustic image reconstruction. Furthermore, the results indicate 
that the model-based learned iterative reconstruction method outperforms all other learning-based post-pro
cessing methods in terms of generalizability and robustness.   

1. Introduction 

Photoacoustic (PA) imaging, also termed optoacoustic imaging, is a 
non-invasive biomedical imaging technique based on the combination of 
optical imaging with ultrasound imaging [1]. Compared with the diffuse 
optical tomography (DOT) and fluorescence molecular tomography 
(FMT) techniques, PA imaging can penetrate deeper and provide images 
with higher spatial resolution. Compared with ultrasound (US) imaging, 
PA imaging has a higher contrast and is less susceptible to speckle ar
tifacts [2]. PA imaging characterizes spectroscopic-based specificity of 
endogenous chromophores in vivo. For instance, the concentration of 
hemoglobin and the level of oxygen saturation affect the absorption 
capacity of the tissue, thereby altering the PA signal. The difference in 
the absorption coefficient between oxy-hemoglobin (HbO2) and 
deoxy-hemoglobin (Hb) allows functional photoacoustic imaging to 
achieve high-resolution images of the hemodynamics [3]. Photoacoustic 
tomography (PAT) has been successfully implemented to map the 
microvasculature network in the mouse brain [4]. Furthermore, 
resting-state functional connectivity (RSFC) of a mouse brain has been 
measured between different functional regions [5]. Studies have also 
demonstrated the utility of PAT to the neonatal brain, showing its 

prospects in clinical applications [6–8]. 
In the PAT, the acoustic pressure waves are generated by tissues 

excited with electromagnetic radiation pulsed laser or a continuous 
wave (CW) on a nanosecond timescale (Fig. 1a) [9]. The laser pulse 
duration is less than both thermal confinement and stress confinement 
threshold. In other words, the thermal diffusion and volume expansion 
of the absorber during laser pulse can be neglected. Considered the 
different light absorption coefficients of varying constituents in the tis
sue, the optical spectrum should be set to specific wavelengths, so it is 
capable of visualizing the anatomical features of the region of interest 
and simultaneously providing great penetration depths. Generally, the 
most commonly used optical wavelengths to excite the hemoglobin is 
ranged between 550 and 900 nm including the visible and near-infrared 
(NIR) spectrum [1]. After optical excitation, irradiated tissue converts 
the optical energy to heat and produces a slight temperature rise. The 
thermoelastic expansion of tissues leads to an initial pressure increase 
followed by a relaxation state, which produces acoustic waves that 
subsequently propagate throughout the space. Finally, these photo
acoustic waves are recorded by either a single mechanically scanned 
detector or an array of transducers arranged in a specified geometry. The 
acoustic pressures detected by transducers are measured as 
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time-resolved signals, which are used to reconstruct the initial pressure 
distributions, i.e., the image of the light-absorbing object, using recon
struction methods such as universal backprojection [10] and 
time-reversal [11,12]. 

Currently, reconstruction methods for PA images can be classified 
into two main categories: conventional reconstruction methods and 
learning-based reconstruction methods. Conventional reconstruction 
methods can be further distinguished into two sub-classes including 
direct reconstruction (e.g., universal backprojection [10] and filtered 
backprojection [13]) and model-based iterative reconstruction [14,15]. 
Direct reconstruction involves solving a single wave equation and 
therefore computation times for PAT reconstruction are dramatically 
faster. In comparison, model-based iterative reconstruction typically 
requires several iterations to minimize the difference between measured 
time-series signals and the predicted time-series signals evaluated by the 
PA forward model, which is computationally intensive. 

More recently, PAT reconstruction based on machine learning has 
been developed. These also can be classified into two sub-classes: a di
rection reconstruction followed by learning-based post-processing 
reconstruction methods [16] and model-based learned iterative recon
struction methods [17,18]. The learning-based post-processing recon
struction method is applied after a single inversion step carried out by a 
conventional direct reconstruction. With this method, the artifacts and 
noise generated from the direct methods can be removed [19]. However, 
the performance of the learning-based post-processing reconstruction 
methods for PAT reconstruction is heavily dependent on the quality of 
the information content residing in the initial reconstruction [20]. In 

comparison, model-based learned iterative reconstruction combines the 
model-based approach with deep learning. A prior knowledge included 
in the model-based iterative reconstruction has been demonstrated its 
superior capability to reduce the artifacts and noise in the PAT recon
struction [21]. Learning-based iterative methods exploited this concept 
in the training phase; therefore, regularization term and weight origi
nally handcrafted in the conventional model-based iterative methods 
are learned by the deep learning model [17]. This method includes the 
repeated simulation of the physical model into the network and leads to 
expensive computational costs as compared to learning-based post-
processing methods. To dramatically reduce the computation times, this 
issue can be tackled by replacing the forward operator with faster 
approximate models without compromising reconstruction quality [22]. 
However, this method only addresses the high demanding computa
tional cost. The limitation of the memory footprint remains an intrac
table issue. 

To achieve a high-resolution of the initial pressure distribution of 
PAT, high spatial and temporal sampling rates are required simulta
neously [23]. In the real-world application, temporal sampling rate 
above Nyquist rate can be satisfied by current transducers; however, the 
spatial sampling rate is limited by the experimental setup as a result of 
sparse sensing or geometrical limitations (e.g., limited view) (Fig. 1b 
and 1c) [24,25]. The sparse sensing strategy is typically used to enhance 
data acquisition speeds. Circumstance leading to the geometric limita
tions is due to the spatial structure of the imaging targets. For instance, 
breast imaging through PAT only allows in some specific geometric 
configurations such as planar-view system [26] and hemispherical 

Fig. 1. Illustration of photoacoustic imaging. (a) Photoacoustic imaging process. (b) Sparse sensing. (c) Geometrical limitations (e.g., limited view).  
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array-based system [27,28]. Although high-resolution PA images can be 
obtained under the full-sampling configuration through the direct 
reconstruction methods, these methods are not optimal to account for 
the statistical characteristics of the measured data under the sparse 
sensing and geometric limitations scenario and, therefore, easily lead to 
artifacts in the PAT reconstruction. To overcome these issues, there is a 
need to develop advanced inversion algorithms. 

In this study, the various types of learning-based methods recently 
proposed for PAT reconstruction in the sparse sensing scenario are tested 
and evaluated, including FD-UNet, Y-Net, U-Net, Pixel-DL, and the 
model-based learning. In addition, we propose some modified deep 
learning architectures (e.g., FD-YNet, PixelGAN, and PixelcGAN) that 
combine previously published models (e.g., Y-Net, GAN, and cGAN), 
which will also be evaluated. Characteristics of each method will be 
elucidated in the following sections. Due to the extensive computation 
times and memory constraints of the deep neural network for 3D imaged 
targets, this study is limited to 2D-PAT reconstruction for examining 
various learning-based methods. All methods are tested on the same 
imaging configuration setup for a fair comparison. 

2. Background 

PAT image reconstruction aims to recover an image from the 
endogenous tissues of interest. That is, the unknown optical-absorption 
coefficient f∗ ∈ X (which determines the initial pressure distribution) is 
reconstructed from measured acoustic pressure time series g ∈ Y by 
solving the inverse problem where 

g = A(f ∗) + δg  

Here, A : X→Y is denoted as a forward operator, modeling the measured 
acoustic pressure times series g with a known defined linear operation. 
δg ∈ Y is denoted as the additional measurement error (e.g., noise). 

2.1. Signal generation in PAT 

Initial acoustic pressure wave propagates throughout the space and 
is measured by a mechanically scanned ultrasonic transducer or trans
ducer array. Mathematically, it can be defined as 

p0( r→) =
βAe

ρCvκ
= Γμa( r→)F( r→; μa, μs, g)

Here p0 is the initial acoustic pressure distribution. ρ is the mass density. 
Cv is the specific heat capacity at constant volume. Ae is the absorption 
density, which is a product of the optical absorption coefficient μa and 
local optical fluence F( r→; μa, μs, g) where μs is scattering coefficients 
and g is the anisotropy factor. κ is the isothermal compressibility. β is the 
thermal coefficient of volume expansion. Γ =

β
ρCvκ, known as the Grue

neisen parameter, is a dimensionless thermodynamic constant, deter
mining the conversion efficiency of heat energy to pressure. This 
equation depicts that initial acoustic pressure distribution p0 depends on 
the thermodynamic and optical parameters. Generally speaking, the 
thermodynamic parameter is assumed to be a spatially homogenous 
invariant in the variety of tissues and, therefore, the image contrast of p0 
is highly dominated by the product of the optical absorption coefficient 
μa and local optical fluence F( r→; μa, μs, g). 

The PAT imaging starts at irradiating the target of interest with a 
short laser pulse, and thermal diffusion can be neglected if the laser 
pulse duration is much smaller than the thermal confinement threshold. 
Then, the acoustic pressure wave p(r, t) at position r and time t satisfies 
the following equation 
(

∇2 −
1
v2

s

∂2

∂t2

)

p(r, t) = −
p0(r)

v2
s

dδ(t)
dt  

δ(t) represents a delta function. vs is the speed of sound. p0 is the initial 

acoustic pressure distribution. In this study, forward wave propagation 
of irradiated tissues is computed by the k-space pseudospectral time- 
domain method equipped in the k-Wave Toolbox [29,30]. 

2.2. Model-based reconstruction 

Model-based reconstruction aims to reconstruct the PA images by 
solving the optimization problem via an iteratively adjusting manner to 
improve the estimate where 

f̂ := argmin
f

{
1
2
‖A(f ) − g ‖2

2+λR(f )
}

Here 12‖A(f) − g ‖2
2 is the fidelity term, measuring the distance between 

the measured acoustic pressure time series g and predicted acoustic 
pressure time series estimated by the PA forward operator A. R(f), 
termed as regularization functional, represents the prior knowledge 
regarding the structure encoded in the true solution of PA images. A 
weighting parameter λ determines the amount of influence carried out 
by regularization functional against the need to data fit. While intro
ducing the regularization functional can penalize the unfeasible solu
tions and avoid over-fitting, choosing unsuitable handcrafted 
parameters will result in poor reconstruction quality and even the need 
for a large number of iterations for a model to converge. Unlike the 
direct reconstruction methods in which reconstruction quality is sus
ceptible to the imaging configuration setup, this method has been 
demonstrated to have superior reconstruction quality in terms of its 
generalizability and robustness [25]. 

2.3. Learning-based post-processing reconstruction 

Deep learning involved in the post-processing reconstruction strat
egy requires the use of direct reconstruction methods (e.g., back
projection) as a pre-processing step for the initial reconstruction. 
Mathematically, let A∗ : Y→X denotes as any direct reconstruction 
operator and g’ ∈ Y represents measured acoustic pressure time series. 
The initial PA reconstruction ̃f ∈ X via direct reconstruction can be ob
tained as 

f̃ := A∗(g’)

Then, a deep neural network as a post-processing method is intro
duced to learn the removal of artifacts arisen from the direct recon
struction methods. These artifacts are severe due to imaging 
configurations where the direct reconstruction method is not applicable 
(e.g., geometric limitations and sparse sensing). This data-driven 
method in PA image reconstruction will be implemented in a super
vised manner. Let Λθ to be the parameters of a deep neural network, the 
mathematical expression can be given as 

f̂ := Λθ

(
f̃
)

Under geometric limitations and sparse sensing scenarios, the direct 
reconstruction method easily leads to the loss of information and suffers 
with severe artifacts [20]. Therefore, the deep neural network must 
effectively use the remaining information as much as possible to learn 
the feature representations that are helpful for reconstruction. To learn 
the feature representations more effectively, several solutions based on 
deep neural networks specifically designed to eliminate artifacts in PA 
images were proposed [31,32]. Notably, these methods are established 
upon the well-known architecture, U-Net, which is a denoise algorithm 
widely used in the field of medical image reconstruction and 
segmentation. 

2.4. Model-based learned iterative reconstruction 

Rather than handcrafting fixed regularization functional as in con
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ventional model-based iterative reconstruction, the penalty function is 
learned from the data in the training phase. Therefore, neural networks 
not only consider the information of PA reconstruction from each iter
ation, but the gradient information is also served as the required input 
for the model. This learning strategy is termed as deep gradient descent 
(DGD) or learned gradient scheme (LGS) originally proposed by [17] 
and defined as 

fi+1 = Λθi (fi,A∗(A(fi) − g ) ) where ⅈ = 0,⋯,N − 1  

Here Λθi denotes as the learned updating parameters at ⅈ th iteration. 
The predicted acoustic pressure time series is evaluated by the forward 
operator A. The gradient information is evaluated by the adjoint oper
ator A∗. g is the measured acoustic pressure times series. The PA 
reconstructed image f0 for the first iteration is initialized by 
A∗

(
Aftrue + δg

)
. Then, the objective function is defined as 

Lθ := ‖fN − ftrue‖
2
X  

fN represents the reconstructed PA image of the last iteration and is the 
output of the ΛθN− 1 . ftrue denotes ground truth image. Typically, the 
gradient of the objective function Lθ is computed by performing the 
back-propagation from the last iteration to the first iteration. However, 
this end-to-end supervised training strategy is not suitable for model- 
based learned iterative reconstruction as a result of limited memory 
footprint and the expensive computation cost owing to the repetitive 
evaluation of forward and its adjoint operator. The most straightforward 
approach to address this issue is applying a “greedy” strategy while 
training the deep neural network, unrolling the entire model to multiple 
iterations, which each of the unrolled iteration updates parameters 
based on the objective function of its iteration [33]. Therefore, the 
objective function of each unrolled iteration in model-based learned 
iterative reconstruction will be adjusted to the following 

Lθi = ||Λθi (fi, A∗(A(fi) − g ) ) − ftrue||
2
X where ⅈ = 0,⋯,N − 1 

The initialization of f0 is the same as the original end-to-end training 
strategy; however, rather than updating parameters of the entire model, 
each unrolled iteration updates the parameters through its objective 
function instead. 

3. Materials and methods 

All synthetic data was generated by k-Wave, which is an open-source 
toolbox for MATLAB [34]. This versatile toolbox allows users to define 
arbitrary parameters such as the computational grid, photoacoustic 
sources, properties of the medium, and sensor configuration. In this 
study, the photoacoustic sources were defined inside the computational 
grid of 160 × 160, and the distance of each grid was defined as 50 mi
crometers shown in Fig. 8. The medium was assumed as non-absorptive 

and homogeneous with the speed of sound of 1500 m/s. The configu
ration with 32 sensors at equal space on a circle of radius of 4 mm was 
evaluated and tested. This sensor configuration can be regarded as a 
sparse sensing scenario, which involves the use of a small number of 
sensors for PA imaging. In this circumstance, high spatial resolution PA 
images typically cannot be obtained by direct reconstruction methods 
and easily result in artifact-robust images. Furthermore, a homogeneous 
internal fluence rate was assumed across all datasets. The number of 
samples and the time-step for the simulations were 768 samples and 
10 ns, respectively. Here, we aimed to investigate the reconstruction 
performance in various types of learning-based reconstruction methods 
under the sparse sensing imaging strategy. Both learning-based post-
processing and model-based learned iterative methods require the initial 
reconstruction of PA images by running the forward operator and 
reconstruction operator (e.g., time-reversal) to reconstruct initial PA 
images containing artifacts from the sparsely sampled data. 

3.1. Synthetic data for training and testing 

Synthetic vasculature datasets were generated from a simple vascu
lature phantom. Augmentation techniques were used to increase the 
amount of data and diversified the complexity and trajectory of the 
vascular system. The detailed procedure of generating vasculature 
datasets is illustrated as follows. First, a simple vasculature phantom 
from the k-Wave toolbox was downsampled to the size of 128 × 128 so it 
can be fitted inside the defined computational grid. Next, the down
sampled version of simple vasculature phantom increases its complexity 
by affine transformation; randomly choosing a scaling factor (0.75 to 
1.25), rotation angle (0-359 degrees), translation factor (-10 to 10 pixels 
in the vertical and horizontal axis), and shearing factor along the hori
zontal axis. To maximize the diversity of the training dataset as much as 
possible, a generated vasculature phantom can further increase its 
complexity by superposition of a different number of transformed 
vasculature phantoms. Consequently, these richer features can be 
learned by deep neural networks, thereby improving the robustness and 
generalizability of models on the testing dataset. Here, we generated 
500 vasculature phantoms as our ground truth for the training and the 
other 500 vasculature phantoms for the testing. These datasets will be 
simulated in the k-Wave using the above-defined configuration. Then, 
the measured acoustic pressure time-series signals are added with the 
gaussian noise and result in 24 dB signals. Lastly, artifact-robust PA 
reconstruction images were collected as the inputs for the models. 

Besides, in vivo mouse cerebrovascular atlas was used to validate the 
reconstruction performance of various models in terms of their gener
alizability. This atlas, acquired by contrast-enhanced micro-CT, pro
vided high-resolution volumetric images of vascular features [35]. The 
following pre-processing steps were performed to prepare the mouse 
neurovasculature data for validation tests: First, the Frangi vesselness 

Fig. 2. Illustration of FD-UNet architecture. The number of feature maps in each spatial level is indicated above or below the corresponding cube. Hyperparameter, k, 
denotes the growth rate of the dense block in each spatial level. Feature maps learned in the encoder are concatenated to the same spatial level in the decoder. 

K.-T. Hsu et al.                                                                                                                                                                                                                                  



Photoacoustics 23 (2021) 100271

5

filter was applied to extract the vessel-like features in the volume [36], 
and the thresholding technique was used to remove the remaining 
background. Next, two hundred sub-volumes with the size of 
128 × 128 × 128 are randomly sampled and followed by maximum 
intensity projections (MIPs). To maintain realistic in vivo features, data 
augmentation was not performed on MIPs. The procedure of simulating 
the photoacoustic data acquisition was the same as those described 
above for synthetic vasculature images. 

3.2. FD-UNet architecture 

FD-UNet as shown in Fig. 2 was proposed by [19], developed mainly 
for the removal of artifacts in the PA images. This architecture was 
modified upon the well-known segmented and denoised U-Net archi
tecture [37]. Unlike the U-Net which includes a sequence of two 
convolution operations in each spatial level, FD-UNet exploits the dense 
block concept proposed in the dense convolutional network (DenseNet) 
instead [38]. In a dense block shown in Fig. 3, previous convolutional 
layers are concatenated channel-wise to all subsequent convolutional 
layers. Namely, the features extracted from the previous convolution 
operations are reused for later convolution operations. This strategy 
makes deep neural networks have the so-called memory and reduce the 
need for learning redundant features. k values, user-defined parameters, 
in Fig. 2 denote the growth rate for the dense block in each spatial level. 

To avoid the vanishing gradient problem and make networks learn 
more efficiently, an identity mapping strategy is introduced. Mathe
matically, FD-UNet can be expressed as 

y = Λθ(x) + x  

Here x is the input, and y is the reconstructed output of the deep neural 
network. Λθ denotes the network parameters. FD-UNet aims to remove 
the artifacts in PA images by learning the residual function Aθ(x) with a 
shortcut connection. This element-by-element addition neither in
troduces additional parameters for the model nor does it increase 
computational cost [39]. 

3.3. Y-Net and FD-YNet architecture 

Most proposed CNN architectures for denoising and artifacts removal 
of PA imaging are based either using the measured signals or textural 
images as the only input [40]. In the case of measured signals as the only 
input, learning-based models do not rely on the knowledge of the 
physical model for reconstruction. Conversely, learning-based models 
based on the direct reconstruction methods are typically compromised 
by severe artifacts, particularly, when the number of sensors is not 
enough to sample the whole information in the imaged target. To solve 
the drawbacks of these two methods respectively, [41] developed the 
hybrid processing network, termed as Y-Net, devoted to reducing arti
facts in the PA images and is built upon the U-Net as well. 

Unlike the U-Net which has one contracting path, Y-Net has two 
contracting paths instead. It requires inputs of a training pair, 
comprising of the measured acoustic pressure time-series signals and its 
corresponding rough PA solution reconstructed by direct methods (e.g., 
backprojection and time-reversal). Features extracted by both con
tracting paths will later be concatenated and served as the inputs for a 

Fig. 3. Illustration of four layers of a dense block. Here, the growth rate, k, is set to 8, and the initial number of feature maps is 32. Each black-dashed box represents 
one layer in the dense block. After going through the operation of four layers of a dense block, 64 feature maps are generated. 

Fig. 4. Illustration of Y-Net architecture. 
Resizing operations are performed in the con
tracting path which is responsible for learning 
the feature representation in measured data. 
Then, the feature maps in each spatial level of 
the two contracting paths are concatenated to 
their respective spatial levels in the decoder. 
Furthermore, an auxiliary loss is included at the 
bottom of the contracting path responsible for 
learning the texture information. The spatial 
dimension of feature maps is indicated above 
the corresponding cube.   
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symmetric expanding path. Mathematically, the parameter update of the 
Y-Net can be solved by 

argminE
(̃f
, g’

)
, f = ||Λθ

(
f̃ , g’

)
− f ||2X  

Here, f ∈ X is the ground truth images. f̃ ∈ X is the initial PA recon
struction via a direct reconstruction method. g’ ∈ Y represents measured 
acoustic pressure time-series signals. Λθ denotes the model parameters. 
The auxiliary loss is also included to penalize the encoder which is 
responsible for learning the features of textural information. This can be 
written as 

Laux(z) =
1
2

⃦
⃦
⃦z
(

f̃
)
− R(f )

⃦
⃦
⃦

2

X  

Here, z represents the encoder for learning the features from the textural 
images. R is a resizing operation. Consequently, Y-Net is trained by 
minimizing the total loss described as 

Ltotal = Lrec + λLaux  

λ is a hyper-parameter, determining the weight of the auxiliary loss. Lrec 
denotes the reconstruction loss. 

To implement Y-Net according to our sensor configuration settings, 
the original framework is needed to be modified and its entire network is 
shown in Fig. 4. In addition to the difference in spatial dimensions of the 
encoder for measured time-series signals, all the above-mentioned 
conceptual elements remain the same in the modified framework. In 
our implementation, the dimension of measured pressure acoustic time- 
series signals is 32 × 768 pixels where each row represents a sensor 
channel, and each column corresponds to the signal measured in that 
specific timestep. The number of sensors is 32 in our configuration 
settings; therefore, there are 32 rows in the measured data. On the other 
hand, the input to the other contracting path is an approximate recon
struction image that has dimensions 128 × 128. The dimension 
mismatch in the inputs of the two contracting paths is addressed by zero- 
padding the time-series data in the row dimension to achieve a time- 
series input that is 128 × 768 in dimension. Besides, an extra 3 × 6 
convolution operation is inserted in the middle of the lowest spatial 
level, transforming the spatial size of 8 × 48 feature maps to 8 × 8 
feature maps. Similar to the U-Net, feature maps of each spatial level in 
the encoder are concatenated to the decoder of the same spatial level. 
Furthermore, because of the asymmetry in the dimension of measured 
data, a resizing operation is performed before the concatenated 
connection. For the λ, we choose 0.5 to be the same as the originally 
proposed research. 

In addition to evaluating the original Y-Net architecture, the modi
fied network, termed as FD-YNet, is proposed. This proposed network is 
built upon the Y-Net and incorporates the dense blocks used in the FD- 
UNet. Namely, in each spatial level, a sequence of two convolution 

operations is replaced with a dense block. 

3.4. Pixel-DL architecture 

Initial inversion through the direct reconstruction methods suffers 
from severe artifacts and loss of information when mapping the 
measured time-series signals to image space. Similar to Y-Net, authors 
who developed the Pixel-DL shown in Fig. 5 aims at making more 
effective use of measured time-series signals in the PA image recon
struction [42]. 

Unlike the Y-Net, which directly introduces the measured time-series 
signals into the model, the initial inversion originally performed by the 
direct reconstruction methods is replaced with a technique termed pixel- 
wise interpolation. To use this technique, assumptions must be made for 
acoustic wave propagation: (1) defined computational grid is an 
acoustic homogeneous medium (2) the acoustic waves propagate 
spherically at a constant speed of sound. If the medium is heterogeneous, 
the modified pixel-wise interpolation is necessary. Under these as
sumptions, the acoustic pressure time-series signals recorded by a spe
cific sensor will be mapped to each pixel position in the defined 
computational grid. Consequently, the total number of mappings cor
responds to the number of sensors. Notably, pixel-wise interpolation 
does not introduce the artifacts as such in direct reconstruction methods; 
hence, the deep neural network does not need to learn the extra task for 
removing artifacts. The only task for the model is to learn to map the 
pixel-interpolated data to the original image space. Besides, the archi
tecture of the Pixel-DL is essentially an FD-UNet. However, the only 
difference is that the identity mapping is removed due to the asymmetric 
dimension of the input-output pair. 

3.5. PixelGAN and PixelcGAN architecture 

Recently, an increasing number of medical imaging fields have used 
generative adversarial networks (GANs) for solutions, especially in the 
fields of reconstruction [32], medical image synthesis [43], segmenta
tion [44], classification [45], and detection [46]. While GANs are 
applied in a wide variety of fields, each field has its domain-specific 
framework applicable to a specific task. For instance, in the field of 
medical image reconstruction, the fundamental of image-to-image 
translation is dominated in all medical tomography modalities [47]. 
Therefore, we build networks based on this concept. 

GANs aim to approximate the data distribution of generated output 
to the real data without the need to explicitly model the underlying 
probability density function [48]. It comprises two networks including a 
generative model and a discriminative model. In our implementation, 
the generative model, essentially a Pixel-DL, takes the pixel-interpolated 
data x as the input, and the corresponding distribution of input data 
denotes as p(x). The ouput of generative model G(x) is expected to 
approximate the real data y that is sampled from the real data 

Fig. 5. Illustration of Pixel-DL. Unlike the FD-UNet, which requires a direct reconstruction method as the initial inversion for the input, Pixel-DL replaces the poor 
solution of the PA images with pixel-wise interpolated channel maps. N denotes the number of sensors or the number of pixel-wise interpolated channels. 

K.-T. Hsu et al.                                                                                                                                                                                                                                  



Photoacoustics 23 (2021) 100271

7

Fig. 6. Illustration of PixelGAN and PixelcGAN. (a) PixelGAN: pixel-interpolated data is served as the input of the generator (Pixel-DL), and the discriminator 
(PatchGAN) classifies input as real or fake. (b) PixelcGAN: pixel-interpolated data is simultaneously served as the input of generator and discriminator, and 
discriminator classifies the output based on the concatenation of condition and generated output. 

Fig. 7. Illustration of model-based learned iterative reconstruction method. Except for the first iteration, each following iteration (black-dashed box) requires the 
output of the previous iteration as the input; furthermore, gradient information is computed by running the forward and its adjoint operator. N-1 determines the 
number of iterations. The number of feature maps is presented at the bottom of the corresponding cube. 
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distribution p(y). The goal of the generative model is to approximate the 
generated data distribution as close as possible to the real data distri
bution. For the discriminative model, PatchGAN developed by [49] is 
introduced. This network takes the generated data or real data as the 
input and outputs a N x N patch in an image, indicating the probability 
that the input to the discriminative model is the generated data or real 
data. Here, we term this modified network as PixelGAN, and its entire 
network is illustrated in Fig. 6a. The objective of PixelGAN can be 
expressed as 

LPixelGAN(G,D) = Ep(y)[logD(y) ] + Ep(x)
[
log(1 − D(G(x))

]

In the training phase, the L1 distance is included in the generative 
model. Therefore, the generative model not only learns to fool the 
discriminative model but manages to approximate the real data as close 
as possible. Consequently, the total loss of PixelGAN can be written as 

Ltotal = argmin
G

max
D

LPixelGAN(G,D) + λL(G)

For the λ, we choose 100 as suggested in [49]. Besides, conditional 
GAN is tested and evaluated. The architecture of the network and 
parameter λ remain the same as the PixelGAN. The only difference is that 
the pixel-interpolated data not only serves as the input of the generative 
model but as the condition for the discriminative model. Here, we term 
this modified conditional GAN as PixelcGAN, and its entire network is 
illustrated in Fig. 6b. The objective of PixelcGAN can be given as 

LPixelcGAN(G,D) = Ep(x),p(y)[logD(x, y) ] + Ep(x)
[
log(1 − D(x,G(x))

]

Similar to PixelGAN, L1 distance also includes when training the 
generative model. Ultimately, the total loss of PixelcGAN can be defined 
as 

Ltotal = argmin
G

max
D

LPixelcGAN(G,D) + λL(G)

3.6. Model-based learned iterative reconstruction 

Model-based learned iterative reconstruction shown in Fig. 7 was 
proposed by [17]. This method is characterized as the repetitive use of 
physical models and deep neural networks to enhance the reconstruc
tion performance. In the original study, this method was implemented 
for 3D imaged targets. Therefore, there is a need for calibrating some 
parameters in accordance with our configuration settings, such as 

replacing the 3D convolutional operation with the 2D convolutional 
operation. Besides, forward operation and reconstruction operation is 
performed through a 2D forward operator and its adjoint operator. 
Except for the above modifications, the model architecture and 
hyper-parameters are exactly the same. The technical details regarding 
model-based learned iterative reconstruction are elaborated in the 
background section. 

To initialize the first iteration of the model-based learned iterative 
reconstruction, initial reconstruction and gradient information are 
required. First, forward operator was used to simulate measured time- 
series signals. Next, the simulated measured time-series signals were 
added with the gaussian noise resulting in 24-dB peak signal-to-noise 
ratio. Subsequently, noised data was applied with the adjoint operator 
to obtain the initial reconstructed photoacoustic images. To prepare the 
gradient information, the initial reconstructed photoacoustic images 
were applied with the forward operator and newly measure time-series 
signals were simulated. The gradient information was produced by 
running the adjoint operator on the difference between the initial 
measured time-series signals and newly measure time-series signals. 
After the training for the first iteration, the second iteration can be 
initialized by the predicted outputs from the first iteration, serving as 
one of the required inputs for the second model. In addition, the gradient 
information for the second iteration was prepared by running the adjoint 
operator on the difference between the initial measured time-series 
signals and the predicted measure time-series signals. This process re
mains the same for the subsequent iterations. In our implementation, the 
final reconstructed photoacoustic images were obtained at the fifth 
iteration. 

3.7. Deep learning implementation 

The experimental platform is based on Windows 10 64-bit operating 
system, Intel i7-10750H CPU, 16 G memory, and a single RTX 2070 
SUPER GPU (8 GB). All proposed and modified deep neural networks are 
then implemented in Python 3.6 with an open-source deep-learning li
brary (e.g., Tensorflow v2.0). Here, Adam, an algorithm for first-order 
gradient-based optimization, with a learning rate of 1e-4 is selected. 
The mini-batch size is set as four images, and all models are trained with 
1,000 epochs. The training loss shown in Fig. A9 indicates that all the 
models converge with minimal changes in training loss by 1,000 epochs. 

4. Experiments and results 

To determine the PA image reconstruction performance of the 
models, evaluation methods such as qualitative and quantitative mea
surements are used. For qualitative measurement, not only the recon
struction results are visualized, error distributions between the reference 
and results of models’ reconstruction are also displayed. For the quan
titative measurement, structural similarity index (SSIM) [50] and its 
decomposed components (e.g., luminance, contrast, and structure) and 
peak signal-to-noise ratio (PSNR) are used as metrics to measure the 
quality of PA image reconstruction. To have a fair comparison, the 
complexity of the models is matched as much as possible without 
modifying the architecture of the originally proposed models. Besides, 
we also investigate the impact of different forms of input on the models’ 
reconstruction performance. 

4.1. Validation on synthetic and in vivo mouse cerebral vasculature 
dataset 

In this experiment, the synthetic vasculature and in vivo mouse ce
rebral vasculature are simulated by 32 equidistant sensors on a circle of 
radius of 4000 micrometers. While different forms of input are required 
according to the characteristics of the model, all models are trained with 
the dataset simulated from the same synthetic vasculature dataset. 
Training and testing on the synthetic vasculature provide us with the 

Fig. 8. Sensor configuration with the imaged object. White dots represent 
sensors. Thirty-two sensors are evenly spaced on a circle with the radius 
of 4 mm. 
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reconstruction performance of the models in a scenario when the image 
domain is well-matched. On the other hand, training with synthetic 
vasculature but testing on in vivo mouse cerebral vasculature evaluate 
the reconstruction performance of the models in a scenario when the 
image domain is mismatched, and more importantly, determining the 
generalizability of the models. 

The visual comparison of reconstruction performance for synthetic 
vasculature in different models is shown in Fig. 9. Here, only the results 
reconstructed from the models with around 30 million parameters are 
shown: the appendix provides the results reconstructed from the other 
complexities of the model. Besides, error maps are displayed in Fig. 10. 
Positive values (red) shown in error maps represent that pixel intensity 
is less than reference. Conversely, negative values (blue) indicate that 
pixel intensity is greater than a reference and should not be located at 
that specific pixel location. We also investigate the impact of different 
forms of inputs on the PA image reconstruction. Four different inputs are 
evaluated: measured raw PA signals, time reversal, backprojection, and 
pixel-interpolated data. Notably, the backprojection images are gener
ated from the pixel-interpolated data by summing along the channel 
axis. Compared to time-reversal reconstruction which requires solving 
the inverse wave equation, backprojection operation greatly reduces the 
computation times. Furthermore, the quantitative results tested on the 

synthetic vasculature are shown in Table 1 and Table 2. To evaluate the 
generalizability of the models, visual comparisons of the reconstruction 
performance for the mouse cerebral vasculature are shown in Fig. 11, 
and error maps are displayed in Fig. 12. Additionally, the quantitative 
results of the mouse cerebral vasculature are shown in Table 3 and 
Table 4. 

The error maps in Fig. 10 and Fig. 12 indicate that the direct 
reconstruction methods (e.g., time reversal and backprojection) suffer 
from severe artifacts in the background. Comparing these two recon
structed images, the time-reversal image has more severe artifacts than 
the backprojection image, which can be seen because of the darker blue 
background. Then, we compare the reconstruction performance of the 
FD-UNet and Y-Net on the synthetic vasculature and mouse cerebral 
vasculature. To conduct a fair comparison, the number of parameters is 
matched in two different neural networks, and the form of the input data 
(e.g., time-reversal or backprojection) is the same for both models. Be
sides, Y-Net requires measured PA time-series signals as an additional 
input. In terms of reconstruction performance, Y-Net provides greater 
reconstruction performance than the FD-UNet when the domain of 
training and testing sets are well-matched. In terms of generalizability, 
the reconstruction performance of the FD-UNet is more stable than the 
Y-Net when the domain of training and testing sets are not well- 

Fig. 9. Visualization of PA image reconstruction for synthetic vasculature in different models. The reconstruction results are ordered from the worst to the best (left 
to right and top to bottom) according to the SSIM metric. The abbreviations in parentheses represent the form of the data as the inputs to the models. TR: time- 
reversal image. BP: backprojection image. TV: total variation. Raw: measured time-series signals. PI: pixel-interpolated data. MBLr: model-based learning. 
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matched. The quantitative results of these two models performed on 
synthetic vasculature and mouse cerebral vasculature are shown in 
Table 1 and Table 3, respectively. Furthermore, we compare the Y-Net 
with the FD-YNet, which replaces the sequence of two convolution op
erations with a dense block in each spatial level. The quantitative results 
shown in Table 1 and Table 3 suggest that including the dense blocks in 

the originally proposed Y-Net does not significantly increase the 
reconstruction performance of the model. 

Next, pixel-interpolated data is served as the input for Y-Net, FD- 
YNet, U-Net, Pixel-DL, pixelGAN, and pixelcGAN. Although Y-Net and 
FD-YNet allow another form of input data such as time-reversal and 
backprojection images to provide texture information, the 

Fig. 10. Error maps of PA image reconstruction 
for synthetic vasculature in different models. 
The reconstruction results are ordered from the 
worst to the best (left to right and top to bot
tom) according to the SSIM metric. Positive 
values (red) represent that pixel intensity is less 
than reference. Negative values (blue) represent 
that pixel intensity is larger than the reference. 
The abbreviations in parentheses represent the 
form of the data as the inputs to the models. TR: 
time-reversal image. BP: backprojection image. 
TV: total variation. Raw: measured time-series 
signals. PI: pixel-interpolated data. MBLr: 
model-based learning.   

Table 1 
Comparison of reconstruction performance for synthetic vasculature in different models trained with either textural images or both the textural images and measured 
time-series signals.  

Dataset Synthetic Vasculature 

Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec. 

FD-UNet (TR) 
37,888,449 

20.802 ± 1.835 0.584 ± 0.053 0.741 ± 0.074 0.907 ± 0.021 0.832 ± 0.047 
42 ms FD-UNet (BP) 21.923 ± 1.959 0.637 ± 0.052 0.779 ± 0.069 0.928 ± 0.017 0.852 ± 0.043 

Y-Net (TR & Raw) 
37,506,354 

20.778 ± 2.233 0.713 ± 0.064 0.850 ± 0.034 0.913 ± 0.017 0.851 ± 0.049 
48 ms Y-Net (BP & Raw) 21.856 ± 2.159 0.736 ± 0.065 0.868 ± 0.031 0.920 ± 0.020 0.863 ± 0.045 

FD-YNet (TR & Raw) 
34,852,306 

21.064 ± 2.150 0.722 ± 0.060 0.853 ± 0.031 0.910 ± 0.019 0.855 ± 0.047 
70 ms 

FD-YNet (BP & Raw) 22.204 ± 2.209 0.739 ± 0.061 0.868 ± 0.034 0.927 ± 0.018 0.865 ± 0.043 

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. Raw: measured time-series signals. 
PI: pixel-interpolated data. 
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Table 2 
Comparison of reconstruction performance for synthetic vasculature in different models trained with either the pixel-interpolated data or the combination of pixel- 
interpolated data with another form of input.  

Dataset Synthetic Vasculature 

Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec. 

Y-Net (PI & Raw) 37,524,210 23.747 ± 2.320 0.817 ± 0.037 0.912 ± 0.015 0.957 ± 0.009 0.909 ± 0.029 49 ms 
FD-YNet (PI & Raw) 34,861,234 24.400 ± 2.167 0.828 ± 0.044 0.920 ± 0.019 0.954 ± 0.013 0.914 ± 0.029 76 ms 
Y-Net (PI & TR) 32,809,717 25.090 ± 2.299 0.821 ± 0.030 0.906 ± 0.013 0.958 ± 0.012 0.924 ± 0.027 27 ms 
FD-YNet (PI & TR) 27,790,517 23.800 ± 2.297 0.835 ± 0.043 0.924 ± 0.020 0.958 ± 0.011 0.912 ± 0.030 47 ms 
Y-Net (PI & BP) 32,809,717 24.392 ± 2.481 0.826 ± 0.042 0.914 ± 0.018 0.963 ± 0.008 0.915 ± 0.030 27 ms 
FD-YNet (PI & BP) 27,790,517 24.804 ± 2.295 0.812 ± 0.038 0.906 ± 0.019 0.959 ± 0.011 0.908 ± 0.030 47 ms 
UNet (PI) 31,062,145 24.942 ± 2.234 0.831 ± 0.037 0.918 ± 0.014 0.955 ± 0.014 0.925 ± 0.026 24 ms 
Pixel-DL (PI) 37,906,305 24.957 ± 2.204 0.815 ± 0.030 0.902 ± 0.011 0.958 ± 0.013 0.922 ± 0.027 42 ms 
PixelGAN (PI) G: 37,906,305 

D: 1,711,041 
24.538 ± 2.182 0.822 ± 0.040 0.917 ± 0.020 0.958 ± 0.011 0.907 ± 0.029 42 ms 

PixelcGAN (PI) G: 37,906,305 
D: 1,743,809 

24.571 ± 2.214 0.813 ± 0.044 0.907 ± 0.029 0.957 ± 0.011 0.907 ± 0.030 42 ms 

Model-Based Learninga 198,565 29.590 ± 2.694 0.930 ± 0.026 0.971 ± 0.011 0.985 ± 0.006 0.966 ± 0.014 ~ 6 s 
TV - 23.774 ± 2.403 0.721 ± 0.037 0.869 ± 0.025 0.914 ± 0.023 0.863 ± 0.035 345 s 

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. TV: total variation. Raw: measured 
time-series signals. PI: pixel-interpolated data. G: generator. D: discriminator. aTrained with the data evaluated by repeated forward and adjoint operators and 
reconstructed outputs from the previous iteration. 

Fig. 11. Visualization of PA image reconstruction for mouse cerebral vasculature in different models. The reconstruction results are ordered from the worst to the 
best (left to right and top to bottom) according to the SSIM metric. The abbreviations in parentheses represent the form of the data as the inputs to the models. TR: 
time-reversal image. BP: backprojection image. TV: total variation. Raw: measured time-series signals. PI: pixel-interpolated data. MBLr: model-based learning. 
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reconstruction performance of the models apparently does not benefit 
from this additional information. Error maps in Fig. 10 and Fig. 12 and 
quantitative results in Table 2 and Table 4 demonstrate that there is no 
significant difference between models when they are all trained with the 
pixel-interpolated data. Interestingly, amongst all post-processing 
methods, U-Net with the fewest parameters has the best 

reconstruction performance when testing on the mouse cerebral vascu
lature, indicating that intricate model architecture and additional in
formation (e.g., measured time-series signals and textural images) are 
not as necessary when pixel-interpolated data is used for training. In 
terms of generalizability, the reconstruction performance of the models 
trained with the pixel-interpolated data decreases when the domain of 

Fig. 12. Error maps of PA image reconstruction 
for mouse cerebral vasculature in different 
models. The reconstruction results are ordered 
from the worst to the best (left to right and top 
to bottom) according to the SSIM metric. Posi
tive values (red) represent that pixel intensity is 
less than reference. Negative values (blue) 
represent that pixel intensity is larger than the 
reference. The abbreviations in parentheses 
represent the form of the data as the inputs to 
the models. TR: time-reversal image. BP: back
projection image. TV: total variation. Raw: 
measured time-series signals. PI: pixel- 
interpolated data. MBLr: model-based learning.   

Table 3 
Comparison of reconstruction performance for mouse cerebral vasculature in different models trained with either textural images or both the textural images and 
measured time-series signals.  

Dataset Mouse Cerebral Vasculature 

Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec. 

FD-UNet (TR) 37,888,449 19.779 ± 1.116 0.599 ± 0.028 0.838 ± 0.039 0.907 ± 0.016 0.744 ± 0.044 42 ms 
FD-UNet (BP) 20.808 ± 1.189 0.643 ± 0.025 0.863 ± 0.036 0.926 ± 0.012 0.771 ± 0.040 
Y-Net (TR & Raw) 

37,506,354 
19.000 ± 1.545 0.623 ± 0.048 0.836 ± 0.029 0.900 ± 0.016 0.766 ± 0.046 

48 ms Y-Net (BP & Raw) 20.973 ± 1.246 0.667 ± 0.043 0.857 ± 0.029 0.922 ± 0.014 0.796 ± 0.041 
FD-YNet (TR & Raw) 

34,852,306 
19.580 ± 1.376 0.621 ± 0.052 0.818 ± 0.036 0.896 ± 0.020 0.776 ± 0.044 

70 ms FD-YNet (BP & Raw) 21.222 ± 1.346 0.674 ± 0.043 0.867 ± 0.025 0.925 ± 0.014 0.796 ± 0.041 

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. Raw: measured time-series signals. 
PI: pixel-interpolated data. 
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training and testing sets are not well-matched. However, compared to 
the models trained with either textural images or the combination of 
textural images and measured time-series signals, pixel-interpolated 
data as an only input for the models significantly improves the PA 
image reconstruction in both synthetic vasculature and mouse cerebral 
vasculature. 

4.2. Model robustness on synthetic and in vivo mouse cerebral vasculature 
dataset 

In this experiment, the robustness of the models is tested by different 

levels of noise (12 to 40 dB PSNR with the step size of 4) included in the 
synthetic and mouse cerebral vasculature datasets. All the models are 
trained with the 24 dB PSNR synthetic vasculature. Fig. 13 and Fig. 14 
demonstrate that model-based learning has the best reconstruction 
performance at all different levels of noise. Besides, models trained with 
pixel-interpolated data have a greater performance at all levels of noise 
compared to the models trained with either the textural images or the 
combination of textural images and measured PA time-series signals. 
Furthermore, models trained with pixel-interpolated data have less 
variability in SSIM at different levels of noise, implying that different 
models have no significant difference in reconstruction performance. 

Table 4 
Comparison of reconstruction performance for mouse cerebral vasculature in different models trained with either pixel-interpolated data or the combination of pixel- 
interpolated data with another form of input.  

Dataset Mouse Cerebral Vasculature 

Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec. 

Y-Net (PI & Raw) 37,524,210 21.953 ± 1.633 0.746 ± 0.031 0.904 ± 0.014 0.948 ± 0.007 0.841 ± 0.030 49 ms 
FD-YNet (PI & Raw) 34,861,234 23.190 ± 1.301 0.753 ± 0.036 0.904 ± 0.019 0.947 ± 0.009 0.849 ± 0.031 76 ms 
Y-Net (PI & TR) 32,809,717 23.809 ± 1.423 0.767 ± 0.025 0.908 ± 0.014 0.949 ± 0.009 0.863 ± 0.028 27 ms 
FD-YNet (PI & TR) 27,790,517 21.983 ± 1.593 0.738 ± 0.039 0.891 ± 0.020 0.944 ± 0.009 0.844 ± 0.031 47 ms 
Y-Net (PI & BP) 32,809,717 22.432 ± 1.641 0.754 ± 0.033 0.911 ± 0.012 0.953 ± 0.006 0.843 ± 0.031 27 ms 
FD-YNet (PI & BP) 27,790,517 23.544 ± 1.376 0.752 ± 0.033 0.911 ± 0.015 0.954 ± 0.006 0.839 ± 0.030 47 ms 
UNet (PI) 31,062,145 23.676 ± 1.379 0.770 ± 0.033 0.915 ± 0.014 0.948 ± 0.010 0.863 ± 0.028 24 ms 
Pixel-DL (PI) 37,906,305 23.653 ± 1.351 0.767 ± 0.026 0.912 ± 0.011 0.948 ± 0.009 0.862 ± 0.028 42 ms 

PixelGAN (PI) 
G: 37,906,305 

23.285 ± 1.339 0.747 ± 0.035 0.906 ± 0.016 0.951 ± 0.007 0.837 ± 0.029 42 ms D: 1,711,041 

PixelcGAN (PI) 
G: 37,906,305 

23.303 ± 1.369 0.744 ± 0.033 0.902 ± 0.020 0.950 ± 0.007 0.838 ± 0.030 42 ms 
D: 1,743,809 

Model-Based Learninga 198,565 27.960 ± 1.708 0.872 ± 0.026 0.953 ± 0.011 0.979 ± 0.005 0.925 ± 0.020 ~ 6 s 
TV - 23.327 ± 1.404 0.719 ± 0.031 0.915 ± 0.020 0.948 ± 0.016 0.802 ± 0.036 345 s 

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. TV: total variation. Raw: measured 
time-series signals. PI: pixel-interpolated data. G: generator. D: discriminator. aTrained with the data evaluated by repeated forward and adjoint operators and 
reconstructed outputs from the previous iteration. 

Fig. 13. Model performance under synthetic vasculature with different levels of noise. Left panel: PSNR is used as a metric for different levels of noise. Right panel: 
SSIM is used as a metric for different levels of noise. 

Fig. 14. Model performance under mouse cerebral vasculature with different levels of noise. Left panel: PSNR is used as a metric for different levels of noise. Right 
panel: SSIM is used as a metric for different levels of noise. 
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Interestingly, the robustness test shows that the learning-based post- 
processing models tested on the data where the noise is less than the 
training dataset stagnate or only slight increase in the reconstruction 
performance. Furthermore, none of these models exhibited significant 
improvement in image-reconstruction performance when the PSNR of 
the data gradually increases from 24 dB to 40 dB. In comparison, model- 
based learning results in a continuous, albeit slower, increase in image 
reconstruction as the PSNR of the time-domain signal incrementally 
increases from 24 dB to 40 dB. Consequently, the robustness test in
dicates that model-based learning is more adept at generalizing when 
reconstructing PA images from data acquired at different PSNRs. 

5. Discussion and conclusion 

In this study, we present a comprehensive study to compare the 
recently proposed learning-based PA image reconstruction methods in 
the scenario of sparse sensing. The results show that including the 
measured time-series signals as an additional input to the neural 
network indeed enhances the reconstruction performance of the models 
when the domain of training and testing sets are well-matched. Prior 
work indicated that models trained with the measured time-series sig
nals prone to overfit on the training set [42]. Including textural infor
mation with the measured time-series signals greatly reduces the 
overfitting of the training set. However, the measured time-series signals 
as an additional input do not significantly improve the reconstruction 
performance of the models when the training and testing domains are 
mismatched. Moreover, our results show that introducing the dense 
blocks into the Y-Net does not significantly increase the reconstruction 
performance. 

Interestingly, we demonstrate that models trained with pixel- 
interpolated data significantly outperform the models trained with 
either the textural images or the combination of textural images and 
measured time-series signals. In other words, the reconstruction per
formance of the models depends on the form of input data. Compared to 
the textural images (e.g., time-reversal and backprojection), pixel- 
interpolated data contains high-quality information and does not suf
fer from the artifacts. Compared to the measured time-series signals, 
pixel-interpolated data provides an efficient approach for the model to 
learn the projection from channel maps to image space since the con
volutional operation can be fundamentally recognized as the projection 
operation. Furthermore, we suggest that the pixel-interpolated data can 
be applied to a simplified model (e.g., U-Net), implying that the richness 
of information it carries does not require an intricate model for 
reconstruction. 

Among these PA image reconstruction methods, model-based 
learning outperforms all other learning-based post-processing 
methods. Limited by repeated simulations, the reconstruction time of 
the model-based learning takes longer than the learning-based post- 
processing methods. To address this problem, some solutions have 
recently been proposed to reduce the training and reconstruction time of 
model-based learning methods, for instance, replacing the forward 
operator with an approximate model [22] and exploiting multi-scale 
learned iterative reconstruction methods [51]. These methods greatly 
reduce the computation times without compromising the reconstruction 
performance of the models under the scenario of sparse sensing and 
limited view. 

On the whole, the learning-based post-processing methods that we 
investigate in this study indicate different model architectures have no 
significant difference in the PA image reconstruction. The reconstruc
tion performance and generalizability of the model are essentially 
attributed to the richness of information residing in the input data. 
Therefore, the post-processing method has great potential to be applied 
clinically if the sensor configuration is sufficient to allow direct recon
struction methods to retain a certain amount of useful information. 
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