Skip to main content
. 2021 May 15;23:100271. doi: 10.1016/j.pacs.2021.100271

Table 1.

Comparison of reconstruction performance for synthetic vasculature in different models trained with either textural images or both the textural images and measured time-series signals.

Dataset Synthetic Vasculature
Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec.
FD-UNet (TR) 37,888,449 20.802 ± 1.835 0.584 ± 0.053 0.741 ± 0.074 0.907 ± 0.021 0.832 ± 0.047 42 ms
FD-UNet (BP) 21.923 ± 1.959 0.637 ± 0.052 0.779 ± 0.069 0.928 ± 0.017 0.852 ± 0.043
Y-Net (TR & Raw) 37,506,354 20.778 ± 2.233 0.713 ± 0.064 0.850 ± 0.034 0.913 ± 0.017 0.851 ± 0.049 48 ms
Y-Net (BP & Raw) 21.856 ± 2.159 0.736 ± 0.065 0.868 ± 0.031 0.920 ± 0.020 0.863 ± 0.045
FD-YNet (TR & Raw) 34,852,306 21.064 ± 2.150 0.722 ± 0.060 0.853 ± 0.031 0.910 ± 0.019 0.855 ± 0.047 70 ms
FD-YNet (BP & Raw) 22.204 ± 2.209 0.739 ± 0.061 0.868 ± 0.034 0.927 ± 0.018 0.865 ± 0.043

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. Raw: measured time-series signals. PI: pixel-interpolated data.