Table 2.
Dataset | Synthetic Vasculature |
||||||
---|---|---|---|---|---|---|---|
Network | Parameters | PSNR | SSIM | SSIM Luminance | SSIM Contrast | SSIM Structure | Exec. |
Y-Net (PI & Raw) | 37,524,210 | 23.747 ± 2.320 | 0.817 ± 0.037 | 0.912 ± 0.015 | 0.957 ± 0.009 | 0.909 ± 0.029 | 49 ms |
FD-YNet (PI & Raw) | 34,861,234 | 24.400 ± 2.167 | 0.828 ± 0.044 | 0.920 ± 0.019 | 0.954 ± 0.013 | 0.914 ± 0.029 | 76 ms |
Y-Net (PI & TR) | 32,809,717 | 25.090 ± 2.299 | 0.821 ± 0.030 | 0.906 ± 0.013 | 0.958 ± 0.012 | 0.924 ± 0.027 | 27 ms |
FD-YNet (PI & TR) | 27,790,517 | 23.800 ± 2.297 | 0.835 ± 0.043 | 0.924 ± 0.020 | 0.958 ± 0.011 | 0.912 ± 0.030 | 47 ms |
Y-Net (PI & BP) | 32,809,717 | 24.392 ± 2.481 | 0.826 ± 0.042 | 0.914 ± 0.018 | 0.963 ± 0.008 | 0.915 ± 0.030 | 27 ms |
FD-YNet (PI & BP) | 27,790,517 | 24.804 ± 2.295 | 0.812 ± 0.038 | 0.906 ± 0.019 | 0.959 ± 0.011 | 0.908 ± 0.030 | 47 ms |
UNet (PI) | 31,062,145 | 24.942 ± 2.234 | 0.831 ± 0.037 | 0.918 ± 0.014 | 0.955 ± 0.014 | 0.925 ± 0.026 | 24 ms |
Pixel-DL (PI) | 37,906,305 | 24.957 ± 2.204 | 0.815 ± 0.030 | 0.902 ± 0.011 | 0.958 ± 0.013 | 0.922 ± 0.027 | 42 ms |
PixelGAN (PI) |
G: 37,906,305 D: 1,711,041 |
24.538 ± 2.182 | 0.822 ± 0.040 | 0.917 ± 0.020 | 0.958 ± 0.011 | 0.907 ± 0.029 | 42 ms |
PixelcGAN (PI) |
G: 37,906,305 D: 1,743,809 |
24.571 ± 2.214 | 0.813 ± 0.044 | 0.907 ± 0.029 | 0.957 ± 0.011 | 0.907 ± 0.030 | 42 ms |
Model-Based Learninga | 198,565 | 29.590 ± 2.694 | 0.930 ± 0.026 | 0.971 ± 0.011 | 0.985 ± 0.006 | 0.966 ± 0.014 | ∼ 6 s |
TV | - | 23.774 ± 2.403 | 0.721 ± 0.037 | 0.869 ± 0.025 | 0.914 ± 0.023 | 0.863 ± 0.035 | 345 s |
The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. TV: total variation. Raw: measured time-series signals. PI: pixel-interpolated data. G: generator. D: discriminator. aTrained with the data evaluated by repeated forward and adjoint operators and reconstructed outputs from the previous iteration.