Skip to main content
. 2021 May 15;23:100271. doi: 10.1016/j.pacs.2021.100271

Table 2.

Comparison of reconstruction performance for synthetic vasculature in different models trained with either the pixel-interpolated data or the combination of pixel-interpolated data with another form of input.

Dataset Synthetic Vasculature
Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec.
Y-Net (PI & Raw) 37,524,210 23.747 ± 2.320 0.817 ± 0.037 0.912 ± 0.015 0.957 ± 0.009 0.909 ± 0.029 49 ms
FD-YNet (PI & Raw) 34,861,234 24.400 ± 2.167 0.828 ± 0.044 0.920 ± 0.019 0.954 ± 0.013 0.914 ± 0.029 76 ms
Y-Net (PI & TR) 32,809,717 25.090 ± 2.299 0.821 ± 0.030 0.906 ± 0.013 0.958 ± 0.012 0.924 ± 0.027 27 ms
FD-YNet (PI & TR) 27,790,517 23.800 ± 2.297 0.835 ± 0.043 0.924 ± 0.020 0.958 ± 0.011 0.912 ± 0.030 47 ms
Y-Net (PI & BP) 32,809,717 24.392 ± 2.481 0.826 ± 0.042 0.914 ± 0.018 0.963 ± 0.008 0.915 ± 0.030 27 ms
FD-YNet (PI & BP) 27,790,517 24.804 ± 2.295 0.812 ± 0.038 0.906 ± 0.019 0.959 ± 0.011 0.908 ± 0.030 47 ms
UNet (PI) 31,062,145 24.942 ± 2.234 0.831 ± 0.037 0.918 ± 0.014 0.955 ± 0.014 0.925 ± 0.026 24 ms
Pixel-DL (PI) 37,906,305 24.957 ± 2.204 0.815 ± 0.030 0.902 ± 0.011 0.958 ± 0.013 0.922 ± 0.027 42 ms
PixelGAN (PI) G: 37,906,305
D: 1,711,041
24.538 ± 2.182 0.822 ± 0.040 0.917 ± 0.020 0.958 ± 0.011 0.907 ± 0.029 42 ms
PixelcGAN (PI) G: 37,906,305
D: 1,743,809
24.571 ± 2.214 0.813 ± 0.044 0.907 ± 0.029 0.957 ± 0.011 0.907 ± 0.030 42 ms
Model-Based Learninga 198,565 29.590 ± 2.694 0.930 ± 0.026 0.971 ± 0.011 0.985 ± 0.006 0.966 ± 0.014 ∼ 6 s
TV - 23.774 ± 2.403 0.721 ± 0.037 0.869 ± 0.025 0.914 ± 0.023 0.863 ± 0.035 345 s

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. TV: total variation. Raw: measured time-series signals. PI: pixel-interpolated data. G: generator. D: discriminator. aTrained with the data evaluated by repeated forward and adjoint operators and reconstructed outputs from the previous iteration.