Skip to main content
. 2021 May 15;23:100271. doi: 10.1016/j.pacs.2021.100271

Table 3.

Comparison of reconstruction performance for mouse cerebral vasculature in different models trained with either textural images or both the textural images and measured time-series signals.

Dataset Mouse Cerebral Vasculature
Network Parameters PSNR SSIM SSIM Luminance SSIM Contrast SSIM Structure Exec.
FD-UNet (TR) 37,888,449 19.779 ± 1.116 0.599 ± 0.028 0.838 ± 0.039 0.907 ± 0.016 0.744 ± 0.044 42 ms
FD-UNet (BP) 20.808 ± 1.189 0.643 ± 0.025 0.863 ± 0.036 0.926 ± 0.012 0.771 ± 0.040
Y-Net (TR & Raw) 37,506,354 19.000 ± 1.545 0.623 ± 0.048 0.836 ± 0.029 0.900 ± 0.016 0.766 ± 0.046 48 ms
Y-Net (BP & Raw) 20.973 ± 1.246 0.667 ± 0.043 0.857 ± 0.029 0.922 ± 0.014 0.796 ± 0.041
FD-YNet (TR & Raw) 34,852,306 19.580 ± 1.376 0.621 ± 0.052 0.818 ± 0.036 0.896 ± 0.020 0.776 ± 0.044 70 ms
FD-YNet (BP & Raw) 21.222 ± 1.346 0.674 ± 0.043 0.867 ± 0.025 0.925 ± 0.014 0.796 ± 0.041

The abbreviations in parentheses represent the data form used by the models. TR: time-reversal image. BP: backprojection image. Raw: measured time-series signals. PI: pixel-interpolated data.