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Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability. Yet, despite immense research efforts, treatment

options remain elusive. Translational failures in TBI are often attributed to the heterogeneity of the TBI population and

limited methods to capture these individual variabilities. Advances in machine learning (ML) have the potential to further

personalized treatment strategies and better inform translational research. However, the use of ML has yet to be widely

assessed in pre-clinical neurotrauma research, where data are strictly limited in subject number. To better establish ML’s

feasibility, we utilized the fluid percussion injury (FPI) portion of the rich, rat data set collected by Operation Brain Trauma

Therapy (OBTT), which tested multiple pharmacological treatments. Previous work has provided confidence that both

unsupervised and supervised ML techniques can uncover useful insights from this OBTT pre-clinical research data set.

As a proof-of-concept, we aimed to better evaluate the multi-variate recovery profiles afforded by the administration of

nine different experimental therapies. We assessed supervised pairwise classifiers trained on a pre-processed data set that

incorporated metrics from four feature groups to determine their ability to correctly identify specific drug treatments. In all

but one of the possible pairwise combinations of minocycline, levetiracetam, erythropoietin, nicotinamide, and amanta-

dine, the baseline was outperformed by one or more supervised classifiers, the exception being nicotinamide versus

amantadine. Further, when the same methods were employed to assess different doses of the same treatment, the ML

classifiers had greater difficulty in understanding which treatment each sample received. Our data serve as a critical first

step toward identifying optimal treatments for specific subgroups of samples that are dependent on factors such as types

and severity of traumatic injuries, as well as informing the prediction of therapeutic combinations that may lead to greater

treatment effects than individual therapies.

Keywords: data analysis; machine learning; pharmacotherapy; traumatic brain injury

Introduction

With nearly 10 million new cases being reported annu-

ally, traumatic brain injury (TBI) is a significant health-

care concern that results in important morbidity and mortality,

along with care-associated costs surpassing billions of dollars

each year.1–3 Despite the alarming incidence, there are relatively

few effective strategies for treating patients with TBI due to

the heterogeneity in injury cause, location, severity, and comor-

bidities observed in the patient population.4–6 To address this het-

erogeneity, it must first be acknowledged that new strategies

are needed to comprehensively understand and harness the

variability that exists in TBI data.

A signature observation regarding the TBI literature is that

treatments that are effective in some cases fail in others. This is true

in both animal and clinical TBI studies and the range of efficacy can

be significant.7–10 Tools such as machine learning (ML) that are

capable of capturing non-linear dependencies, interactions across

variables, and other patterns that fail to conform to the assumptions

made by univariate analyses may be better oriented to enhance our

understanding of data sets with significant heterogeneity.11 Current

approaches often rely solely on standard univariate analytics (e.g.,

1Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
2Department of Computer Science, University of Miami College of Arts and Sciences, Miami, Florida, USA.
3Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA.

JOURNAL OF NEUROTRAUMA 38:1670–1678 (June 15, 2021)
ª Mary Ann Liebert, Inc.
DOI: 10.1089/neu.2020.7357

1670



analysis of variance [ANOVA]) that prioritize one metric at a time

and are susceptible to experimenter-imposed parameters as well as

errors in hypothesis testing. In contrast, multivariate techniques can

complement our current analytics through their ability to capture

patterns between measures that would otherwise be missed.11,12

Although promising, due to the limited availability of high-

quality data, the application of ML in the TBI field remains

underexplored.13–15 That is, important questions such as ‘‘Will the

patient live?’’ and ‘‘What variables determine whether they will

live?’’ have been addressed, but more complex queries such as the

degree of recovery and the efficacy of treatment strategies have

yet to be investigated.16,17 Furthermore, application of these

techniques in the pre-clinical arena where rodent data are generally

strictly limited in subject number is even more scarce, given that

ML systems work at maximum efficiency when given large

amounts of high-quality data.13,15 However, previous work by

Nielson and colleagues18 has demonstrated that data-driven tech-

niques able to explore the syndromic space can generate novel

insights from pre-clinical neurotrauma data sets.

To address this important gap, our collaborative team utilized

the fluid percussion injury (FPI) portion of the rich, rat data set

amassed by Operation Brain Trauma Therapy (OBTT). OBTT is a

consortium study that operates under a novel experimental design

for drug screening.19 Employing researchers across multiple na-

tional research centers, OBTT investigators produced a data set that

includes three injury models (i.e., diffuse, focal, and penetrating

type injuries), 12 therapies with doses determined by success-

ful reports in the literature, and diverse metrics of recovery (i.e.,

physiology, biomarkers, motor, cognition, and histopathology).19

Further, previous OBTT reports have presented the hypothesis

that pharmacotherapies afford different functional recovery effects

depending on the injury, leading us to analyze one injury type in

these proof-of-concept experiments.19 In these studies, to explore

the potential of ML we utilized nine treatments tested in the FPI

model, which represents the focal/diffuse type of injury in the

OBTT data set.20

The treatments analyzed included erythropoietin (EPO), leve-

tiracetam (LEV), minocycline (MIN), nicotinamide (NIC), and

amantadine (AMT). Two dosing regimens were evaluated by

OBTT for each of these therapies, except MIN, for which a single

treatment protocol that included bolus plus infusion was used.

OBTT selected these treatments and determined dosing regimens

by identifying reports in the literature of previous successes in

affording functional recovery and evidence that they targeted

a broad range of potential secondary injury mechanisms to treat

TBI-related deficits. From a technical perspective, these particular

treatments were chosen due to the number of features available and

completeness of their corresponding data sets. That is, because the

FPI portion was the only data set that included physiology features

and the corresponding data sets had no missing values, we chose to

begin our proof-of-concept ML experiments specifically with this

portion of the OBTT data set.

Our prior work using these data provided confidence that the

application of ML to the OBTT pre-clinical TBI data set could yield

fruitful insights.21,22 Based on these findings, both unsupervised

and supervised methods of learning were applied and assessed for

their ability to uncover informative patterns and correlations within

the data set.21 By utilizing a t-SNE visualization map followed

by the unsupervised clustering technique known as k-means, we

showed that ML has the ability to identify treatment effects.21

Further, these treatment effects were not found in the univariate

analyses performed in the original study. We also assessed the

ability of over 60 supervised learning classifiers to predict an end-

study metric of recovery (i.e., probe performance) given features

from the first 7 days post-injury (i.e., physiology, biomarkers, and

motor). Observations from these studies further corroborated the

potential effectiveness of treatments deemed as insignificant across

all metrics in the original statistical analyses.

Therefore, based on our previous findings, this study aimed to

further explore whether the administration of different pharma-

cotherapies afford different multi-variate profiles of functional re-

covery. We addressed the following questions: (1) ‘‘Can binary

classifiers significantly outperform a baseline learner to identify

which treatment each rat received given metrics from clinically

relevant feature groups?’’ (i.e. physiology, biomarkers, motor, and

cognition); (2) ‘‘Can the same classifiers discriminate between

doses of the same therapy?’’; and (3) ‘‘Does the ability to distin-

guish between treatments depend entirely upon an individual fea-

ture group?’’ Given the promising results from our prior studies,

addressing these research questions could reveal a series of novel

insights with pre-clinical, clinical, and technical implications at a

time when advancing the TBI research field beyond the current

therapeutic stalemate is imperative.

Methods

Data source

All data were collected by the researchers carrying out the
studies using the FPI model in OBTT.19,23–25 Briefly, nine treat-
ments with 10–15 rats per group were selected for analyses based
upon their completeness and the inclusion of physiology features.
These treatments included EPO (low dose; 5000 IU/kg), EPO (high
dose; 10,000 IU/kg), LEV (low dose; 54 mg/kg), LEV (high dose;
170 mg/kg), MIN (30 mg/kg +2 mg/kg each hour for 72 h), NIC
(low dose; 50 mg/kg 15 min and 24 h post-surgery), NIC (high
dose; 500 mg/kg 15 min and 24 h post-surgery), AMT (low dose;
10 mg/kg 15 min and for 21 days post-surgery), and AMT (high
dose; 45 mg/kg 15 min and for 21 days post-surgery). These doses
were tested based on the published literature in which similar drugs
were evaluated in TBI models. All studies that generated the data
used in the current analysis were approved and supervised by
the Institutional Animal Care and Use Committee of the University
of Miami. From a computational perspective, this portion of the
OBTT data set is tabular (flat file), complete (no missing values),
and pure (minimal noise). Table 1 shows the measurements we
determined to be appropriate for use in our ML models. Although a
portion of these data are currently unpublished, the entirety of the
data set will be made available for analysis in a public reposi-
tory following the publication of the original studies by the OBTT
investigators.

Complete surgical and laboratory methods have been previously
described.19,20 Briefly, physiological metrics were recorded before
and after the administration of a moderate FPI (2.0–2.2 atm).
Biomarker assessments of UCH-L1 and glial fibrillary acidic pro-
tein (GFAP) serum levels were conducted at 4 h and 24 h post-
FPI.26 The exploratory cylinder task to assess forelimb use was
conducted 7 days after surgery. The Morris water maze task to
assess learning and memory was conducted over days 14–18 post-
FPI and was followed by a probe trial to assess memory retention.

Data pre-processing and feature engineering

The complete list of features included as well as the processing
steps that each metric underwent can be found in Table 1. Briefly,
our curated data set included a total of 92 rat subjects and nine
features across three feature groups. For all metrics, we applied
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z-score normalization to avoid introducing arbitrary weights in the
form of scaling. Feature engineering techniques included change
over time, averaging performance across trials, and assessing the
percentage of time spent successfully completing the assessment.
These processing steps were applied where appropriate with the
goal of accurately informing the machine of the relevant infor-
mation provided by each metric without imposing redundancy
(Table 1).

Machine learning

Supervised learning classifiers from the scikit-learn toolkit
in Python were trained and evaluated for their performance on
this data set.27 The techniques chosen included a baseline dummy
classifier (DUMB), classification and regression tree (CART),
random forest (RF), K-Nearest Neighbors (KNN), linear discrim-
inant analysis (LDA), multi-layer perceptron (MLP), naı̈ve-bayes
(NB), and support vector machines (SVM). The default settings
suggested by the toolkit were utilized.

In these studies, we defined our input as metrics from all feature
groups collected prior to euthanasia (i.e., physiology, biomarkers,
motor, and cognition) to define our multi-variate, recovery space.
We then aimed to understand if the administration of different
therapies resulted in different underlying profiles in this space.
Therefore, the output class is defined as administered therapy on the
premise that, if the machine can accurately predict which treatment
each sample received, identifiable patterns and correlations unique
to each treatment must exist in this space. In total, the findings from
more than 112 supervised learning classifiers are described in this
article.

Pairwise comparisons

The ML classifiers were trained on 14 separate data sets that
represent each of the potential combinations of different pharma-
cotherapies (Fig. 1). These classifiers were assessed for their ability
to learn which treatment each subject received given the defined
input metrics.

In each case where the comparison was between drugs of different
identity, the higher dose was utilized when applicable. All pairwise
comparisons of EPO, LEV, MIN, NIC, and AMT were assessed.
Further, instances where two doses were available in the original data
set were tested for their ability to be distinguished from each other.

Table 1. Comprehensive Description of the Curated Data Set

Category Metric Engineering

Physiology (15 min before and after surgery) PCO2 1. Post-surgery – pre-surgery
2. Z-score normalization

PO2 1. Post-surgery – pre-surgery
2. Z-score normalization

MAP 1. Post-surgery – pre-surgery
2. Z-score normalization

Motor, cylinder (before and 7 days post-injury) # left forelimb placements 1. Post-injury – baseline
2. Z-score normalization

# right forelimb placements 1. Post-injury – baseline
2. Z-score normalization

Biomarker (4 h and 24 h post-injury) UCH-L1 1. 24 h� 4 h
2. Z-score normalization

GFAP 1. 24 h� 4 h
2. Z-score normalization

Cognition (13–18 days post-injury) Learning and memory 1. Day 1 latency average
2. Day 4 latency average
3. Day 1 � Day 4
4. Z-score normalization

Memory retention (probe) 1. Percentage of time spent on target
2. Z-score normalization

The dataset utilized in each of the analyses includes four feature groups (column 1) and metrics (column 2) engineered from the raw data measures
(column 3).

GFAP, glial fibrillary acidic protein; MAP, mean arterial pressure.

FIG. 1. An image visualizing each of the pairwise comparisons
that were completed in the following analyses. Note that for each
of the comparisons between pharmacotherapies of separate iden-
tity, the higher dose was used. The lower-dose data sets were only
utilized for the intra-therapy comparisons where two doses were
available (EPO, LEV, NIC, and AMT). AMT, amantadine;
EPO, erythropoietin; LEV, levetiracetam; MIN, minocycline;
NIC, nicotinamide.
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Validation of models

To validate our ML classifiers, we used a stratified k-fold cross
validation approach, with k set to 10. The data set was sectioned
into 10 folds and the model was then trained with 9 of the folds and
tested with the remaining 1 fold (i.e., the model was tested on
examples it had never seen before). Further, each fold was used as
the testing fold in separate runs. This was repeated until each fold
had acted as the test fold and the mean performance – standard error
reported with a 95% confidence interval. To eliminate the chance
for model-initialization bias, cross-validation was repeated 20
times and the mean testing accuracy was reported. Estimation
statistics were used in place of standard hypothesis testing and the
subsequent generation of a p-value given that the core assumption
of independence is violated in these multivariate analyses. Ad-
ditionally, the stratified version of k-fold cross validation ensured
that the balance of each class was represented equally across all
folds, which is important when working with an imbalanced class
attribute, so the model could learn patterns of all classes that it
attempted to distinguish between.27

Principal component analysis

To reveal the internal structure of the data in a way that best
explains the variance throughout and determine the importance of
employing multivariate analyses, we utilized the principal com-
ponent analysis (PCA) algorithm from the scikit-learn library in
Python. This analysis was applied to determine whether individual
features or a combination of metrics were contributing substan-
tively to the variance in our data set.

Leave one feature group out assessment

To determine whether the classifier’s ability to distinguish be-
tween treatments was driven largely by individual feature groups,
we repeated each of the first 10 comparisons with the individual
feature groups removed and assessed the prediction accuracy of the
model.

Reporting performance

Classification accuracy. The primary form of performance
assessment reported is the classification (prediction) accuracy
achieved. This was calculated as the number of correct predictions
relative to the total number of attempts and was reported as a
percentage.

Confusion matrices. In instances where prediction accu-
racy was not notably better than the baseline classifier, we further
assessed model performance by visualizing its predictions in a
confusion matrix, which comprises a table in which each section
presents a unique value corresponding to correct positive and
negative predictions as well as false-positives and false-negatives
for each class identity (Fig. 2). This identifies whether a model is
routinely mistaking one class for another.

Precision, recall, and F1 scores. In the instances where
prediction accuracy failed to exceed baseline performance in any of
the tested models, we report the precision, recall, and corre-
sponding F1 score achieved by each classifier. The precision was
calculated as the number of positive predictions divided by the
number of predicted positive class values, thus providing a measure
of exactness (a representative sample is visualized in corresponding
confusion matrices). The recall, on the other hand, was calculated
as the number of true positives divided by the number of false-
negatives, thus providing a measure of completeness. These two
values were then used to define the balance between the two metrics
in the form of an F1 score.

Results

Many models were successful in discriminating
between drugs of different identity

When comparing between drugs of different identities, we ob-

served several interesting findings. In all experiments except one

comparison, nearly all classifiers achieved high prediction accu-

racy, with the best performing classifiers for each comparison

FIG. 2. The layout of a confusion matrix as well as the values associated with the precision, recall, and F1-score metrics of model
performance.

Table 2. List of Values Corresponding to the Bar Graphs in Figures 3–6

DUMB RF MLP LDA CART NB SVM

EPO vs. LEV 0.50 – 0.21 0.88 – 0.12 0.87 – 0.14 0.92 6 0.11 0.73 – 0.21 0.87 – 0.14 0.85 – 0.15
EPO vs. MIN 0.53 – 0.28 1.0 6 0.00 0.95 – 0.10 0.90 – 0.14 0.93 – 0.9 0.92 – 0.11 0.92 – 0.11
EPO vs. NIC 0.40 – 0.24 0.70 – 0.22 0.80 – 0.16 0.70 – 0.22 0.90 6 0.13 0.65 – 0.21 0.60 – 0.20
EPO vs. AMT 0.55 – 0.23 0.82 – 0.21 0.88 6 0.12 0.78 – 0.18 0.58 – 0.18 0.68 – 0.20 0.70 – 0.20
LEV vs. MIN 0.50 – 0.19 0.93 – 0.10 1.0 6 0.00 0.92 – 0.11 0.92 – 0.11 0.95 – 0.10 0.90 – 0.20
LEV vs. NIC 0.60 – 0.20 0.92 6 0.11 0.87 – 0.14 0.85 – 0.15 0.88 – 012 0.92 6 0.11 0.90 – 0.13
LEV vs. AMT 0.53 – 0.28 0.62 – 0.21 0.83 – 0.15 0.95 6 0.10 0.67 – 0.21 0.73 – 0.15 0.81 – 0.17
MIN vs. NIC 0.53 – 0.21 0.88 – 0.12 0.90 – 0.13 0.92 6 0.11 0.85 – 0.12 0.87 – 0.14 0.90 – 0.13
MIN vs. AMT 0.53 – 0.19 0.85 – 0.13 0.88 – 0.13 0.90 – 0.13 0.83 – 0.15 0.88 – 0.13 0.98 6 0.05
NIC vs. AMT 0.58 – 0.18 0.73 – .18 0.47 – 0.19 0.72 – 0.16 0.52 – 0.26 0.52 – 0.19 0.73 6 0.15

Top performing classifiers are noted in bold for each pairwise comparison.
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ranging from 88% in the EPO versus AMT study to 100% in the

LEV versus MIN study (Table 2, Figs. 3–5). This indicates that

EPO, LEV, and MIN are all distinguishable from each of the other

drugs in our analysis. This was not observed comparing NIC versus

AMT, where the best performing classifier was the SVM with a

73% accuracy that was not notably better than the baseline (Table 2,

Fig. 6). Furthermore, the LDA model was the best performing

classifier in 3 of the 10 comparisons, making it the most successful

model of the set followed by the RF, MLP, and SVM models, which

each performed best in 2 of the 10 pairwise comparisons. Although

there were many instances where multiple classifiers were suc-

cessful in completing the assigned task, this was not always the

case. For example, in the comparison between LEV and AMT, the

LDA model appeared to perform better than the other classifiers,

thus highlighting the importance of training multiple types of

classifiers for each comparison.

Machine learning models tested experienced difficulty
in distinguishing between doses of the same drug

When comparing doses of the same drug, we noted that the

models in each study achieved lower prediction accuracies than

those observed when distinguishing between different drugs. It is

striking that these models did not outperform the baseline classifier

in terms of prediction accuracy (Fig. 7; corresponding data shown

in Supplementary Table S1).

When analyzing the precision, recall, and F1-scores for these

comparisons, however, we noted that some models outperformed

others in terms of exactness and completeness. Specifically, in the

NIC dosing study, the MLP model achieved the highest values in

terms of precision and recall despite not achieving the highest

prediction accuracy. When comparing doses of AMT, closer ex-

amination revealed that the MLP model reported very low pre-

diction and recall values relative to the other models. Utilizing

these alternate forms of model assessment provides additional

opportunities to compare models where prediction accuracy is

relatively similar across all classifiers.

From a clinical perspective, however, we assessed our models

for instances of imbalance between metrics. For example, if a

classifier reported high precision but low recall, it could potentially

report a low global accuracy score while limiting false-negatives.

This would provide a unique advantage beyond global prediction

accuracy in the clinical application of these techniques, where it is

imperative to identify all positive cases. Of note, there were no

instances where we observed this type of imbalance.

Findings reported required the application
of multivariate techniques

The application of PCA highlighted a combination of individual

metrics in each of the first four principal components, which ac-

counted for 83.4% of the variance (Fig. 8, left panel). We further

FIG. 3. Comparisons between the high dose of EPO and each of the other drugs tested in the analyses. The leftmost panel is EPO
versus LEV. The next panel to the right is EPO versus MIN, the next panel is EPO versus NIC, and the final rightmost panel is EPO
versus AMT. Average prediction accuracy across 20 runs with a stratified 10-fold cross validation are visualized. Error bars present a
95% confidence interval. AMT, amantadine; EPO, erythropoietin; LEV, levetiracetam; MIN, minocycline; NIC, nicotinamide.

FIG. 4. Comparisons between the high dose of LEV and each of the other drugs tested in the analyses excluding the EPO comparison
shown in Figure 3. Average prediction accuracy across 20 runs with a stratified 10-fold cross validation are visualized. Error bars present
a 95% confidence interval. EPO, erythropoietin; LEV, levetiracetam.
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assessed the impact that each feature group has on model perfor-

mance, by consistently removing a set of metrics associated with

one feature group (e.g., physiology, biomarkers, motor and cog-

nition). Each time that we removed a set of metrics, there was a

notable reduction in prediction accuracy for every model included

in the study. However, these reductions were not specific to a single

feature group (Fig. 8, right panel). Figure 8 shows a representative

image of these observations for the EPO versus LEV comparison.

Discussion

The research teams involved in the original OBTT consortium

continue to report novel findings and amass a rich, rat data set.19

Here, we utilized a portion of these previously collected data to

explore functional recovery following TBI from a multi-variate

perspective and assess what impacts the administration of several

pharmacotherapies had on the patterns and correlations present

within this high-dimensional space. The results presented here

demonstrate promise from two major viewpoints. First, from a

technical standpoint, and given our previously reported findings,

we have demonstrated with confidence that ML methods typically

reserved for data sets much larger than those seen in rat research

can uncover fruitful insights in this setting. Further, our data have

strong biological and potential clinical implications in their ability

to highlight that different pharmacotherapies result in identifiably

separate profiles. Whether the profiles identified by this exciting

new approach reflect clinically meaningful differences in outcome

clearly merits further exploration.

With technical implications in mind, to better understand the

importance of their integration it is important to note how the

methods we employed differ from and complement the conven-

tional univariate analyses. Although TBI researchers are often well-

trained in statistical applications, the field has lagged behind in its

incorporation of new analytical methodologies developed in other

data-driven fields such as ML. Briefly, ML and typical statistics

feature considerable overlap in their goal of providing a mathe-

matical description of a data set and its underlying implications.

However, the two approaches differ in their incorporation of hy-

potheses.11 Where statistics are hypothesis-driven, ML models tend

to learn their hypotheses from the data during the training process.

That is, statistical modeling begins with a series of assumptions

regarding the distribution of the data and the parameters that likely

gave rise to the observations. These hypotheses are then accepted or

rejected in a predefined manner.

In ML, ‘‘hypothesis-free’’ testing focuses on prediction of new

instances following a training period on past data without imposing

experimenter-defined hypotheses or parameters.11 Given the

complexity of identifying patterns between metrics in a high-

dimensional data set, however, these methods often fall short in that

there is no direct explanation of what variables impacted the pre-

dictive capabilities gained during the training process. In this way,

univariate statistics are strong in their ability to provide a clear

picture of how subject groups differ from one another in each data

FIG. 5. Comparisons between the high dose MIN and each of the other drugs tested in the analyses excluding comparisons shown in
earlier figures. The top row of figures visualizes average prediction accuracy across 20 runs with a stratified 10-fold cross validation.
Error bars present a 95% confidence interval. MIN, minocycline.

FIG 6. Comparisons between high-dose NIC and high-dose
AMT. Average prediction accuracy across 20 runs with a stratified
10-fold cross validation are visualized. Error bars present a 95%
confidence interval. AMT, amantadine; NIC, nicotinamide.
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metric. Both multivariate and univariate metrics have the potential

to provide useful insights in the TBI field and, when integrated, may

better orient researchers to highlight the individual variabilities that

will forge a path toward defining efficacious and/or optimal treat-

ment strategies for each subject. This claim is supported by our

findings, given the premise that exploring the high-dimensional

functional recovery space yielded novel insights that would have

not been discoverable without the application of multivariate

analytics.

Regarding biological implications, the findings detailed above

lead us to conclude that different therapies have distinct recovery

profiles in the form of underlying, multivariate patterns and cor-

relations that allow for supervised classification models to identify

which treatment each subject received. In the case of pairwise

comparisons between drugs of completely different identity (e.g.,

EPO vs. LEV), these findings support our hypotheses.

Based on pathobiology, TBI presents a very complex combi-

nation of multiple underlying pathomechanisms that give rise to the

observed deficits.28 The multitude of mechanisms at work present

many potential therapeutic targets and thus the literature reporting

efficacious treatments includes many types of therapies. This lays

the foundation of our hypothesis that addressing separate patho-

mechanisms may give rise to differential effects in the functional

recovery space.

FIG. 7. Comparisons between the high and low dose of the same drug therapy for each treatment included in the analyses, excluding
MIN. The top row of figures visualizes average prediction accuracy across 20 runs with a stratified 10-fold cross validation. Error bars
present a 95% confidence interval. Bottom rows show a representative confusion matrix visualized with a heat map that corresponds to
how many subjects fell into each category. MIN, minocycline.

FIG. 8. The left panel visualizes a representative principal component analysis (PCA) showing the first four principle components
(PCs) in our data set, which account for 83.4% of the variance. PCA gives rise to a complex mixture of original features and the heat
map pictured corresponds to the relative impact of each feature in giving rise to the PC. The right panel shows a representative example
of the impact on classification accuracy following the removal of individual feature groups. EPO, erythropoietin; GFAP, glial fibrillary
acidic protein; LEV, levetiracetam; MAP, mean arterial pressure.
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It is notable that our findings were less robust in the case of NIC

versus AMT. Although each of the tested therapies in OBTT were

carefully selected through a comprehensive literature search based

on the quality of study design, methods of scientific rigor, and

clinical relevance, the effective doses across models were not al-

ways consistent. That is, the mechanisms of action for the two

therapies are purported to be vastly different. AMT therapy has

been shown to augment dopamine systems and serve as a partial

N-Methyl-D-aspartate (NMDA) receptor antagonist, whereas NIC

acts on a number of core cellular processes such as the inhibition

of poly adenosine diphosphate ribose (ADP-ribose) polymerase-1,

the depletion of nicotinamide adenine dinucleotide phosphate

(NADPH), and the potential amelioration of oxidative stress.9,29

However, in the case of FPI, both NIC and AMT have shown efficacy

at doses higher than those used by OBTT—given that the dosing

protocols were crafted prior to a more recent report.29 Benefits were

not observed post-FPI from AMT until a dose of 135 mg/kg was

reached. However, the maximum dose in our data set was

45 mg/kg.19 Furthermore, similar findings are suggested for NIC.29

Although many positive results have been achieved in the frame

of the focal, controlled cortical impact (CCI) injury with the doses

tested in OBTT, in FPI, there is only one study that reported modest

functional benefits from the 500 mg/kg dosing regimen.30,31 Given

these results, it is possible that NIC and AMT could not be dis-

tinguished from one another in our studies. Our ML studies thus

support the likelihood that unique dosing regimens are needed

to confer efficacy across models in pre-clinical studies, mirroring

emerging approaches guiding precision medicine.31,32 Ongoing

studies are exploring whether similar experiments using data from

the CCI portion of the OBTT data set will echo what we have seen

in the FPI data set or if new patterns will be observed with changing

the injury model and severity.

In the experiments where we assessed the machine’s ability

to discriminate between two doses of the same drug, the classifi-

ers exhibited difficulty with the task. Originally, we expected the

machine to be successful in discriminating doses due to the fact that

dosing is a critical component of optimal treatment administra-

tion.32,33 We expected the machine to identify the intricacies of

dose-response better than typical univariate studies, given that ML

methodologies have been previously applied to accomplish this

task.34 That is, in our studies, the effects afforded by different doses

of the same drug do not appear to create differences in the multi-

variate space as distinguishable from one another, as do two

completely different drugs. It is important to note that, although this

is true for the therapies we examined, it may not be universally true

in that certain drugs generate very different responses at different

levels, which may lead to more robust multivariate pattern differ-

ences.32 A potential reason for the lack of differences observed in

these experiments is that OBTT selected doses to maximize the

chance of success, rather than examine the full spectrum of efficacy

and toxicity.

Additionally, another limitation of our approach was that we did

not include the results of histology in our analyses. It is possible that

the inclusion of these data could enhance the capabilities of

our approach; however, following this successful proof-of-concept

study, ongoing work is assessing the impact of these pharma-

cotherapies in the other injury models. Given that experimental

injury types are often classified by their histological phenotypes

(e.g., focal vs. focal/diffuse vs. penetrating) and our team had al-

ready separated rats by specific injury type, we felt the addition of

histology would introduce redundancy and make the interpretation

of multivariate models less clear in the setting where the research

question is focused on assessing functional improvements. Lastly,

we did not include all 12 therapies tested by OBTT, given that some

therapies were missing values due to an inability to complete the

biomarker analyses and also because entire data features were

missing for some groups. In our ongoing studies assessing the other

injury types in the OBTT data set and for other groups employing

these metrics, however, missing values are an important topic of

concern, and methods for handling deletions must be carefully

selected in ways that minimize loss. Our group is currently asses-

sing a multitude of ways to handle these instances to better inform

which may be best suited for application in similar data sets.

In conclusion, ML methods demonstrate vast potential for their

ability to provide fruitful insights on multiple fronts from rodent

data sets. The current studies have the ability to serve as an infor-

mative initial step toward identifying optimal treatments for spe-

cific TBI subgroups of samples as well as informing the prediction

of therapeutic combinations that may lead to additive and/or syn-

ergistic benefits. Furthermore, in ongoing work, we are devising

ways to incorporate a larger number of therapies into a single model

to transpose the architecture to a clinical setting. This study pres-

ents important proof-of-concept findings that can encourage other

groups to incorporate these techniques into their studies as a

complement to the typical univariate analyses. In the future, we will

expand upon the impact of these techniques by comparing the re-

sults presented here to the application of the same methodologies

on a second, unique data set. Our group has found success in the

application of both unsupervised and supervised modeling sup-

porting the effectiveness of these methods for the neurotrauma

setting. The integration of these techniques into the TBI field is

both timely given recent advances in ML and necessary given the

lack of translational success achieved to date.
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