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Abstract

Background: Genetic variation in growth over the course of the season is a major source of grain yield variation in
wheat, and for this reason variants controlling heading date and plant height are among the best-characterized in
wheat genetics. While the major variants for these traits have been cloned, the importance of these variants in
contributing to genetic variation for plant growth over time is not fully understood. Here we develop a biparental
population segregating for major variants for both plant height and flowering time to characterize the genetic
architecture of the traits and identify additional novel QTL.

Results: We find that additive genetic variation for both traits is almost entirely associated with major and
moderate-effect QTL, including four novel heading date QTL and four novel plant height QTL. FT2 and Vrn-A3 are
proposed as candidate genes underlying QTL on chromosomes 3A and 7A, while Rht8 is mapped to chromosome 2D.
These mapped QTL also underlie genetic variation in a longitudinal analysis of plant growth over time. The oligogenic
architecture of these traits is further demonstrated by the superior trait prediction accuracy of QTL-based prediction
models compared to polygenic genomic selection models.

Conclusions: In a population constructed from two modern wheat cultivars adapted to the southeast U.S., almost all
additive genetic variation in plant growth traits is associated with known major variants or novel moderate-effect QTL.
Major transgressive segregation was observed in this population despite the similar plant height and heading date
characters of the parental lines. This segregation is being driven primarily by a small number of mapped QTL, instead
of by many small-effect, undetected QTL. As most breeding populations in the southeast U.S. segregate for known
QTL for these traits, genetic variation in plant height and heading date in these populations likely emerges from
similar combinations of major and moderate effect QTL. We can make more accurate and cost-effective prediction
models by targeted genotyping of key SNPs.
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Introduction
Wheat is a major food crop, contributing nearly 20% of
human calories and protein [1]. Wheat yield is highly
polygenic, with variation in yield emerging from varia-
tion in other phenotypes each with different genetic bases.
Plant growth traits such as heading date (when the spike
emerges from the flag leaf ) and adult plant height affect
yield by both altering resource partitioning between tis-
sues and changing how plants experience environmental
factors. A plant’s height on a given date alters the physical
position of the plant within its environment, influencing
that plant’s interactions with environmental factors like
wind, weed competitors, and rain-splashed pathogens.
Differences in heading date change the temporal position
of plants at a given developmental stage, exposing them to
different weather conditions and disease pressures.Wheat
breeders typically select for optimal values of plant height
and heading date for a given environment and production
system in early generations based on unreplicated head
rows. Beyond this selection, improvements in yield result-
ing from modern plant breeding programs have largely
been generated without considering its underlying genetic
architecture, including the dependence of final plant yield
on variation in plant growth trajectories. Understanding
the plant development factors that generate genetic varia-
tion in yield is critical to increasing the rate of genetic gain
in wheat.
Allelic variation affecting core flowering time genes is

strongly associated with the geographic distribution of
wheat cultivars, and permits the cultivation of wheat in
a wide range of environments. Winter wheat is sown in
the fall, when it germinates but maintains the shoot apical
meristem beneath the ground to prevent freeze damage.
After the accumulation of signal through the vernalization
(cold hours), photoperiod (night length), and earliness-
per-se (plant age) pathways, plants release from winter
dormancy and transition to reproductive development.
Allelic series in theVernalization1 (Vrn1) loci on the three
chromosome 5 homeologues condition a spring or win-
ter growth habit by controlling the sensitivity of plants
to vernalization (Fig. 1) [2–4]. Additional alleles at these
loci, some associated with copy number variation, may
also modulate vernalization response in vernalization-
sensitive winter lines [3, 5–8]. Photoperiod1 (Ppd1) is
another core flowering time gene which integrates signals
due to length of nights and allows plants to time flowering
based on photoperiod. Variants affecting homeologous
Ppd1 loci on all three genomes lead to constitutive over-
expression of Ppd1 and a photoperiod-insensitive, earlier
flowering habit [7, 9, 10]. Breeding for an optimal heading
date for a given environment allows plants enough time to
add additional spikelets per spike prior to heading, which
increases grain number, and to accumulate carbohydrates
and fill grain, which increases grain size. Non-optimal

flowering can expose plants to temperatures below freez-
ing early in the season, or to excessive heat and drought
late in the growing season. In southern U.S. field sites,
Vrn1 and Ppd1 alleles have strong effects on final grain
yield of winter wheat [11].
Introduction of “green revolution” dwarfing genes Rht-

B1 and Rht-D1 – knock-out mutations in DELLA pro-
teins – into US and CIMMYT germplasm dramatically
improved yields by increasing wheat harvest index and
preventing lodging due to applied inorganic nitrogen fer-
tilizer [12]. The effect of the Rht1 genes is conditional on
the environment and the quantity of assimilate produced
by the variety, and has been associated with larger grain
number but smaller grain size and weight [13]. Rht1 alleles
disable plants’ ability to respond to giberellic acid (GA-
insensitivity), which may have negative effects on coleop-
tile length and early plant vigor that can decrease yield
in some environments [14]. Increase in seed number and
grain yield seems to be related not to ear development but
to the greater availability of assimilates during grain-fill
with reduced biomass partitioned into stalks [15]. Breed-
ers generally select plants near some optimal height value,
as too-short plants have a generally lower yield compared
to semi-dwarfs characteristic of having only one Rht allele
[16]. An increasing number of dwarfing genes in wheat
have been fine-mapped, and many, though not most, have
been cloned.
Genomic selection is restructuring modern wheat

breeding programs. The ability to leverage data from past
years to predict unobserved lines has tremendous poten-
tial to increase the rate of genetic gain. Beyond yield
predictions, heading date and plant height predictions
are valued by breeders, allowing them to exclude pheno-
typically extreme individuals without having to dedicate
resources to planting and phenotyping in multiple envi-
ronments. Standard GBLUP and rrBLUP models are opti-
mized for highly polygenic traits like yield, but will under-
estimate QTL effect sizes and perform poorly with traits
dominated by a smaller number of larger-effect QTL.
These models are also unable to estimate non-additive
effects generated by epistatic interactions between vari-
ants. Explicitly characterizing and taking into account
large-effect QTL in traits where these QTL explain a sub-
stantial portion of additive genetic variation can increase
prediction accuracy [17, 18]. This may have even more
promise in biparental populations where the number of
segregating causal variants is much smaller. If traits are
mostly controlled by a few major variants, models using
markers for just those variants can be predictive and more
cost-effective.
Here we set out to understand the genetic basis of plant

growth traits in a biparental common wheat population.
Parents were chosen to generate major additive genetic
variation for plant height and heading date and to char-
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Fig. 1 Overview of the wheat flowering time pathway. The gene network through which wheat plants receive and integrate signal about
environmental conditions to determine heading date are outlined. Other, intermediate genes are not shown. Genes proposed as candidate for
heading QTL in this population are highlighted in green. Other important genes in the flowering time pathway are highlighted in blue;Wheat
CONSTANS (WCO), Triticum aestivumHD1 (TaHD1), VERNALIZATION1 (VRN1), VERNALIZATION2 (VRN2), and LEAFY (LFY)

acterize novel QTL for these traits. Parent SS-MPV57 car-
ries the large-effect earliness allele Ppd-D1a as well as the
smaller-effect allele Ppd-A1a.1, but no known dwarfing
genes. Parent LA95135 caries the major dwarfing allele
Rht-D1b but no known earliness genes except the smaller-
effect Ppd-A1a.1 allele. These two parents were selected
as individuals with similar and typical heading date and
plant height phenotypes, but where we expected the vari-
ants contributing to those phenotypes to differ. In contrast
with parental selection in typical mapping studies, where
the two parents generally differ for the trait of interest,
we use prior knowledge of the genetic basis of these traits
to develop a population with the goal of generating trans-
gressive segregation from phenotypically similar parents.
A high-density sequence-based linkage map was supple-
mented with single SNP assays for putative causal variants
in order to map novel QTL and study marker-trait asso-
ciations for known variants. Phenotypic variation in each
environment was partitioned into components associated
with mapped QTL and the polygenic background in order
to assess the relative importance of identified QTL. Dif-
ferent models were tested for prediction of both traits to
determine if a simple QTL model would be sufficient in
the context of a breeding program. Finally, a longitudinal
analysis of multiple measures of plant height over time
was used to determine QTL effects over the course of
plant growth in a field season.

Materials andmethods
Population development
Soft-red winter wheat lines developed by southeastern
public-sector breeding programs were screened for
alleles at known plant height and heading date variants
using Kompetitive Allele-Specific PCR (KASP) mark-
ers. Louisiana State University forage cultivar LA95135

(CL-850643/PIONEER-2548//COKER-9877/3/FL-302/
COKER-762) was chosen as a parent lacking major
early-flowering alleles at the Ppd-D1 or Vrn-1 loci,
but with a mid-season heading date when grown in
North Carolina. Cultivar SS-MVP57 (FFR555W/3/VA89-
22-52/TYLER//REDCOAT*2/GAINES) developed at
Virginia Polytechnic Institute and State University dis-
played semi-dwarf stature but lacked dwarfing alleles
at the Rht1 loci. SS-MPV57 carries the Ppd-D1a allele
conferring photoperiod insensitivity, and LA95135 has
the Rht-D1b allele conferring semi-dwarfism. Parent lines
were crossed, and F1 plants were selfed to generate an F2
population (hereafter referred to as the LM population).
The F2 and later generations were inbred via the single-
seed descent method until the F5 generation, producing
358 F5-derived recombinant inbred lines (RILs).

Phenotyping
During the winter of 2016-2017, an experiment was
conducted in the greenhouse to evaluate heading date.
Imbibed seeds from each RIL were placed in a cold cham-
ber kept at 4°C for 8 weeks and were transplanted into
plastic cones (volume 0.7L, 6.5 cm in diameter and 25
cm depth) containing soil mix. Plants were grown in a
completely randomized design with four replications in
a greenhouse set at 16 hr photoperiod and 20°C /15°C
(day/night) temperature.
To evaluate the impact of vernalization on the genetic

architecture of heading date and on effects of individ-
ual QTL, the greenhouse experiment was repeated with
a low-vernalization treatment in the winter of 2017-2018.
This experiment was performed as above, except that
imbibed seeds were placed in the cold chamber for only
four weeks prior to transplanting. In addition, the LM RIL
population was evaluated in the field at Raleigh, NC and
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Kinston, NC during the 2017-2018 season, and in Raleigh,
Kinston, and Plains, GA in the 2018-2019 season, sown
in the fall at the locally recommended times for commer-
cial winter wheat production. The 358 RILs were grown
using an augmented set within replications design to facil-
itate planting of this large population. RIL experiments
consisted of two fully replicated blocks of all 358 lines
organized into five sets of 71 or 72 RILs. The order of
the sets within each replication and the order of the RILs
within each set were randomized at each location. Three
parental checks were planted at the beginning of each set
of RILs, along with four or five additional parental checks
randomized within each set.
Plots consisted of 1-m rows spaced 30 cm apart. Adult

plant height was measured as the distance from the
ground to the top of the spikes of a sample of tillers from
the center of each row, excluding the awns. Heading date
was measured as the day on which approximately half of
the heads in each row had fully emerged from the flag leaf,
typically a few days prior to anthesis. To study plant devel-
opment over time, three measures of plant height were
collected for each row plot in Raleigh in 2019, with two
to four blocks measured roughly every ten days starting
on March 29th and ending on April 25 (when most plants
had fully headed). In this case, plant height at each time
point was calculated as the mean of the height of three
randomly chosen primary tillers from the ground to the
base of the apical leaf sheath (Fig. 2). All measurements
were collected on an android tablet with the Fieldbook app
[19].

Analysis of phenotypes
For the greenhouse experiments where plants had been
completely randomized within greenhouses, genotype
values for RILs were calculated as the mean of the four
replications of each line. For field experiments, best lin-
ear unbiased estimates (BLUEs) were calculated adjusting
for these spatial effects. The software ASReml-R [20] was
used to calculate BLUEs with an AR1xAR1 correlated
residuals model:

Yik ∼ μ + Gi + uik + eik
Where Yik is the observed phenotype for an individ-

ual row plot, μ is the intercept, Gi is the fixed effect of
genotype i, uik is the unit or "nugget" random residual
effect for each observation k representing the compo-
nent of the variance due to observation or measurement
instead of spatial correlation, drawn from a distribution
u ∼ iidN(0, σ 2

e ), and eik is the spatially-correlated resid-
ual drawn from the distribution e ∼ N(0, σ 2

e �r(ρr) ⊗
�c(ρc)), whose variance is the direct product of an r × r
auto-correlation matrix �r(ρr) representing autoregres-
sive correlations in the row direction and c× c correlation
matrix �c(ρc) representing autoregressive correlations in

the column direction. For all environments and pheno-
types, a full model with autocorrelated columns and rows
was found to have a lower BIC and higher log likelihood
than models with just the column autocorrelation or no
spatial correction. BLUEs were calculated as the sum of
the genotype effect and the intercept for each phenotype
in each environment.

Genotyping and linkage map construction
Tissue was collected from the F5 greenhouse experi-
ment, and seeds of the four F5:6 plants from each line
were bulked. Genotyping by sequencing (GBS; [21]) was
performed according to Poland et al. 2012 [22], with
ninety-six individual samples barcoded, pooled into a sin-
gle library, and sequenced on an Illumina HiSeq 2500.
Tassel5GBSv2 pipeline version 5.2.35 [23] was used to
align raw reads to the International Wheat Genome
Sequencing Consortium (IWGSC) RefSeqv1.0 assem-
bly (https://wheat-urgi.versailles.inra.fr/Seq-Repository)
using Burrows-Wheeler aligner (BWA) version 0.7.12 to
call SNPs [24]. SNPs were filtered to retain samples with
≤20 percent missing data, ≥30 percent minor allele fre-
quency and ≤10 percent of heterozygous calls per marker.
KASP markers taken from the literature or designed

from exome capture data of the parents (triticeaetool-
box.org/wheat; Additional file 1: Table S1) were added
to the GBS SNP data for chromosome regions with low
marker density and for causal variants segregating in the
population. Filtered SNPs were separated into chromo-
somes and ordered via alignment to the reference genome,
and a custom script was run to filter out genotyping errors
that would result in a false double recombination due
to under or mis-calling of heterozygotes. The R package
ASMap was used to construct the maps as an F5 RIL
population [25].

QTL analysis
QTL mapping was performed in the R package r/QTL
[26]. Composite interval mapping was used for initial QTL
identification, and intervals were narrowed using a mul-
tiple QTL model (MQM) as implemented in the refineqtl
function. The addqtl function was used to identify addi-
tional QTL using identified QTL as covariates. Empirical
significance thresholds for a genome-wide α = 0.05 were
determined using 1000 permutations for each trait. QTL
effects were estimated for significant QTL in each envi-
ronment based on the estimated MQM positions using
the fitqtl functions, which fits a multiple regression where
for genotype values Yi for each individual i, and n QTL Q,

Yi ∼
n∑

h=1
Qih + ei.

Major variants Ppd-D1 and Rht-D1 alter functions
of core genes in the flowering time and giberellic-acid
response pathways, respectively, suggesting that their

https://wheat-urgi.versailles.inra.fr/Seq-Repository
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Fig. 2 Plant growth over time. For each 1-m row plot (differently colored line), a total of three plant height values was collected in Raleigh in 2019.
All plots are shown (a), as well as a random subset to better visualize plant growth (b). Mean plant growth follows a roughly linear pattern
corresponding to the date collected, with different slopes and intercepts for each plot

presence may alter the effects of other variants impact-
ing those pathways. Taking advantage of the large number
of lines in the LM population, two sub-populations of
roughly 160 lines – each divided by genotype at the major-
effect QTL –were created formapping of each phenotype.
Lines called as heterozygous for the major-effect QTL
were excluded. The QTL mapping analysis was repeated
for both of the sub-populations. Identified QTL interac-
tions discovered this way were validated by modifying
the above fitqtl model with a main effect for the identi-
fied QTL and an effect for its interaction with the major
classifying QTL.
Variance analysis was performed in the R package

lme4qtl, which allows for the fitting of random effects
with supplied covariance matrices [27]. For known vari-
ants for which KASP marker genotypes of the causal
polymorphisms were available, the genotypes were used
directly, and for novel QTL genotype probabilities from
the refineqtl object were used. For testing QTL, alleles

were encoded in terms of the allele dosage of the LA95135
allele (0, 1, 2) without estimating a dominance effect.
While BLUEs estimated using the correlated errors

model were used for QTL mapping, to estimate the rel-
ative importance of identified QTL in determining total
phenotypic variation at the level of individual plots mod-
els were re-fit in each environment using the unadjusted
phenotypes as the response. For each environment and
phenotype, QTL effects and variance components for
each the additive and non-additive effects of genotypes
were specified with the mixed model:

Yik ∼
n∑

h=1
Qih + gAi + gIi + eik

Where for each phenotype Y of genotype i in row plot k,
fixed effects for eachQTL hwere fit as regressions of allele
dosage on phenotypes. gAi represents the random addi-
tive effect of genotype i with a variance specified by the
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realized relationship matrix (gA ∼ N (0,Gσ 2
g )), calculated

using the A.mat function in the R package rrBLUP from
the scaled GBS marker matrix (G = WW′

c , whereW is the
scaled marker matrix calculated as Wik = Xik + 1 − 2pk
from the frequency of the 1 allele at marker k (pk) and the
marker matrix Xik . c is a normalization value calculated as
c = 2�kpk(1 − pk)) [28]. gIi represents the non-additive
random effect of genotype i with an independent variance
(gI ∼ N (0, Iσ 2

g )).
A modified method from Nakagawa and Schielzeth

2013 [29] was used to estimate variances associated with
QTL and variance components from the specified model.
Estimated coefficients for fixed effects are multiplied by
the value of that effect (in this case, the allele dosage),
and the variance of these values is taken as the variance
associated with that fixed effect. This R2-like estimator for
mixed models is defined as:

R2
LMM =

σ 2
f

σ 2
f + σ 2

r + σ 2
e

Where σ 2
r is the variance of the random effects and σ 2

f
is a variance of independent fixed effects calculated as

σ 2
f =

n∑

h=1
Var(βhxhk) for coefficients and effects h and

observations k. For both traits, all QTL were mapped to
separate chromosomes, satisfying the assumption of inde-
pendence. Using this approach, narrow-sense heritability
in this population with n QTL in i individuals in k head
rows is calculated as:

h2 =

n∑

h=1
Var(βhQhk) + σ 2

A

n∑

h=1
Var(βhQhk) + σ 2

A + σ 2
I + σ 2

e

Where we calculate per-observation QTL effects as the
allele dosage of QTL h in plot k (Qhk) times the estimated
coefficient of each QTL (βh), and the phenotypic vari-
ance associated with that QTL as the variance of these
estimates. The total variance associated with all QTL is
taken as the sum of these individual QTL variances, as
all mapped QTL are located on separate chromosomes
and are independent of one another. σ 2

A is the variance
component associated with the random gA genotype term
fit with the relationship matrix, and σ 2

I as the variance
component associated with the random independent gI
genotype term, which represents some combination of
epistatic effects, lack of linkage between observed mark-
ers and underlying causal variants, and deviation of the
estimated genotype values from the true genotype val-
ues. Constructing the model in this way, we estimate the
proportion of additive genetic variation associated with a
QTL h (pA) as:

pA = Var(βQk)
n∑

h=1
Var(βhQhk) + σ 2

A

Where pA is taken as the variance of the product of an
estimated QTL effect by the allele dosage of that QTL in k
rows, over the total additive genetic variation.
For investigating the effect of QTL on plant height vari-

ation over time, individual slopes of plant height over time
measured multiple times for each row were calculated
with a fixed intercept and a random intercept and time
slope for each head row. The model was used to estimate
plant height values for each row every day over the course
of the month data was collected. A linear model fitting
all relevant plant height and heading date QTL on plant
height on every day was fit, and the partial R2 values of
each QTL calculated for each day were used to estimate
the relative importance of each QTL at each time point.

Prediction of phenotypes
Different prediction models were assessed to identify an
optimal model for heading date and adult plant height.
All models except for the simple QTL multiple regres-
sion model were fit in the R package BGLR [30], which
allows for flexible fitting of a variety of Bayesian and
mixed effects models. A GBLUP model was fit solving the
equation y ∼ μ + u + e for u. y is a vector of BLUEs
across environments for all RILs, with unobserved RILs
assignedmissing values, and u is a vector of random geno-
type effects with a variance u ∼ N (0,Gσ 2

u ), where G
is the realized relationship matrix calculated previously
from GBS markers.
A simple multiple-regression QTL model based on

identified QTL was fit solving the equation y ∼ μ +
n∑

h=1
αhQh + e for n QTL, where Qh encodes the LA95135

allele dosage for each QTL h in each individual, and αh
is the allele effect of QTL h. This model was modified
to evaluate inclusion of epistatic interactions, adding an
interaction effect for any significant interactions between
QTL (p <.05) detected using the addint function from
r/QTL.
A combined model was also fit specifying both a

multiple-regression fixed-effects component for QTL
effects, and random effects for each genotype constrained

by the additive relationship matrix (y ∼ μ +
n∑

h=1
αhQh +

Iu + e, where u ∼ N (0,Gσ 2
u )).

BayesB and Bayesian LASSO models were both fit with
the general model y ∼ μ + Xu + e, where X is a design
matrix of markers coded by allele dosage of the LA95135
allele, and u is a vector of random marker effects. In the
BayesB model, a certain proportion of markers given by
the prior probability π (ui|σ 2

i ,π ) are assumed to have an
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effect size of 0, with the remainder having effects follow-
ing a scaled-t distribution [30]. In the Bayesian LASSO,
marker effects were estimated with a double exponen-
tial prior distribution that assumes a greater frequency of
both larger marker effects and marker effects closer to
zero than a normal distribution [30]. In both models, esti-
mated genotype values are calculated as the sum ofmarker

effects Ŷi = μ̂ +
n∑

j=1
xijûj, where xij is the allele dosage

of marker j in individual i, and ûj is the estimated marker
effect.
A five-fold cross validation approach was used to com-

pare the five models. RILs were randomly assigned to
one of five folds, and genotype values from each environ-
ment from lines in four of the folds were used to predict
the values of lines in the fifth fold, repeating for each
fold in each environment for each model. Within each
fold, QTL detection was re-performed as described in the
“QTL analysis” section to identify the QTL used in the
QTL regression and combined QTL and GBLUP model.
This process was then repeated 40 times to get distri-
butions of prediction abilities, calculated as the Pearson’s
correlation between predicted and observed genotype val-
ues across all five folds.

Results
Genetic map construction
After filtering, 5691 markers were assigned to 21 link-
age groups representing 21 wheat chromosomes. Average
chromosome map length was 208.3 cM, with a maximum
individual chromosome length of 319.1 cM for chromo-
some 3B. Marker density on the D genome tended to
be much lower than marker densities on the A and B
genomes, as expected given the much lower D genome
diversity in hexaploid wheat [31].

Population characterization
Generally, wheat cultivars’ flowering habits are described
by their genotypes at major heading date loci, but
SS-MPV57 flowered later than LA95135 in all loca-
tions despite carrying the major earliness allele Ppd-D1a
(Table 1). The difference in heading date was especially
pronounced in the low-vernalization treatments both in
the greenhouse (GH 2018) and in the field (Plains 2019),
where SS-MPV57 flowered five and six days later, respec-
tively, than LA95135. A similar pattern was observed for
plant height: although LA95135 was the only parent geno-
typed for a major dwarfing allele (Rht-D1b), SS-MPV57
was substantially shorter in all locations (Table 1). For
heading date in all locations, the mean genotype value
of the RILs was approximately the mid-parent value. For
plant height in Raleigh 2018 and Kinston 2018, the mean
genotype value of the RILs was closer to the SS-MPV57
parent than the mid-parent value. The ranges of geno-

type values in Raleigh and Kinston were similar, but the
range in heading date in Plains 2019 (26 days) was much
larger. This is likely a result of the warmer winter temper-
atures at that site, delaying heading of lines with a greater
vernalization requirement.

Known variants and novel QTL impact plant growth
Genetic variation in quantitative traits like those mea-
sured in this study may result from the segregation of
an unquantifiable number of small-effect QTL. Despite
this, for both heading date and adult plant height the vast
majority of additive genetic variation was associated with
a small number of major QTL, some of which have been
previously described and some of which are novel.

Heading date
The RIL population was developed with the expecta-
tion that the major photoperiod-insensitive allele Ppd-
D1a inherited from SS-MPV57 would segregate, and that
potential novel early-flowering QTL from LA95135 could
be mapped. Two preliminary greenhouse experiments
were conducted to investigate the effect of vernalization
treatments on heading date genetic architecture, with
imbibed seeds given only four weeks of vernalization in
the first experiment and a full eight weeks in the second. In
addition, heading date notes were collected in three sep-
arate field experiments in Raleigh in 2018, and Kinston
and Plains, GA in 2019. QTL were declared significant
at α = .05 based on 1000 permutations of the scanone
function, but for all phenotypes significance values were
near a LOD of 3.5. Together, Ppd-D1, Rht-D1, and four
early-flowering alleles inherited from LA95135 were asso-
ciated with differences in heading date in this experiment
(Tables 2 and 3).
A heading date QTL on chromosome 2D co-localized

with a known major-effect variant altering expression
of the D-genome copy of pseudo-response regulator
gene Photoperiod-1 (Ppd-D1a) [9]. This was the major
QTL mapped in this experiment, associated with by
far the highest LOD score in both the field environ-
ments (Table 3) and the eight week greenhouse treatment
(Table 2). In the four week treatment the relative impor-
tance of Ppd-D1 was diminished, primarily as a result of
changes in the effects of other QTL.
A QTL in the centromeric region of chromosome 3A is

mapped with low physical resolution (>400 Mb), owing
to the low recombination rates found in these regions
in wheat (Tables 2 and 3). Contained in this interval is
FT-A2, an ortholog of FT previously described by Shaw
et al. [32] as an important component of the wheat flower-
ing time pathway (Fig. 1). A KASP assay designed from
a polymorphism within FT-A2 was the peak marker for
this QTL in both greenhouse experiments (Table 2), and
had a much greater effect in the four week vernaliza-
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Table 1 Population characteristics. Means and ranges of estimated genotype values for all RILs, as well as parental values and
plot-basis heritabilities (H), for site-year-phenotype combinations. Heading date for the GH experiments is recorded as days since
transplanting (four weeks (HD4W) or eight weeks (HD8W) after vernalization), and for the field experiments time as day of year (DOY)

Loc. Year Pheno μLA μMPV μRILs Range H

GH 2017 HD8W NA NA 45.6 32-61 0.50

GH 2018 HD4W 71.1 76.12 77.1 59-97 0.76

Ral 2018 HD 112.3 112.9 112.3 107-120 0.73

Kin 2019 HD 103.1 104.9 103.6 97-109 0.63

Pla 2019 HD 100.7 106.6 103.1 90-116 0.63

Ral 2018 PH 100.1 92.5 93.7 68-127 0.84

Kin 2018 PH 101.0 94.0 96.0 67-122 0.71

Kin 2019 PH 99.1 94.9 97.5 69-129 0.67

tion treatment than in the eight week treatment (Fig. 3).
Qncb.HD-3A was also identified as significant in all field
experiments, but with alternate peak markers in the long
arm of chromosome 3A (Table 3).
In addition, two novel early-flowering alleles were iden-

tified on chromosomes 5A and 5B (Table 3). Both QTL
are significant in all environments (Additional file 2: Table S3).
Qncb.HD-5A is the third-most important QTL in most
environments, but has an especially large effect in the
Plains, GA field experiment. The QTL is also significant
in the four week vernalization greenhouse treatment, but
not the eight week treatment. The increased QTL effect
in these two environments having shorter duration of cold
temperature exposure suggests that Qncb.HD-5A may
interact with genes involved in vernalization response.
Due to its centromeric position, the confidence inter-
val for the QTL contains 383 Mb of chromosome 5A
(Table 3). Notably, despite the response of this QTL to ver-

nalization treatment, this interval does not encompass the
Vrn-A1 locus.
Qncb.HD-5B is located in a more distal position on the

long arm of the chromosome and was mapped to an inter-
val of 61 Mb. This interval is proximal to Vrn-B1, exclud-
ing that locus as a candidate gene. Unlike Qncb.HD-5A,
significance and effect sizes of Qncb.HD-5B are similar
in both the four and eight week vernalization treatments
(Table 2).
The major plant height QTL Rht-D1 was also identified

as having a pleiotropic effect on heading date in this pop-
ulation. In most environments the effect on heading date
was minor, and not significant in the eight week green-
house treatment or in Plains in 2019. However, in the four
week greenhouse treatment Rht-D1 was a highly signifi-
cant QTL, with an average difference of over seven days
between plants homozygous for wild type or semi-dwarf
alleles (Table 2).

Table 2 Significant heading date QTL for four and eight week vernalization greenhouse experiments. The chromosome on which
each QTL is found is indicated in the QTL name. For each QTL, the average difference in phenotype between two RILs homozygous for
alternate alleles is given as twice the estimated allele effect of the LA95135 allele (2α), along with proportion of additive variation
associated with each QTL (pA). The most significant markers for each QTL with a proposed candidate gene was a KASP marker
associated with a previously identified causal polymorphism affecting that gene. Physical positions are given based on mapping of GBS
markers to the IWGSC RefSeqv1.0 assembly

Treatment QTL Name Candidate Gene Peak Marker Position CI LOD 2α (days) pA

4 Wk Qncb.HD-2D Ppd-D1 Ppd-D1 32-43 Mb 11.5 5.2 0.15

4 Wk Qncb.HD-3A FT2 FT2 118-478 Mb 21.2 -6.5 0.25

4 Wk Qncb.HD-4D Rht-D1 Rht-D1 0-352 Mb 22.2 7.2 0.39

4 Wk Qncb.HD-5A NA S5A_395681218 46-438 Mb 5.65 -3.2 0.05

4 Wk Qncb.HD-5B NA S5B_462554252 427-523 Mb 4.63 -3.6 0.08

8 Wk Qncb.HD-2D Ppd-D1 Ppd-D1 33-44 Mb 15.9 3.9 0.60

8 Wk Qncb.HD-3A FT2 FT2 71-435 Mb 6.67 -2.3 0.22

8 Wk Qncb.HD-5B NA S5B_518684640 511-537 Mb 5.17 -2.1 0.14
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Table 3 Significant heading date QTL information from best environment. For each QTL, information from the experiment where that
QTL had the largest estimated effect (Best Env) is given. The average difference in phenotype between two RILs homozygous for
alternative alleles at each QTL is given as twice the estimated allele effect of the LA95135 allele (2α), along with proportion of additive
variation associated with each QTL (pA). Vrn-A3 only has a significant effect within the half of the population homozygous Ppd-D1b

QTL Name Candidate Gene Best Env Peak Marker Position CI LOD 2α (days) pA

Qncb.HD-2D Ppd-D1 Ral 19 Ppd-D1 59-64 Mb 48.6 3.4 0.67

Qncb.HD-3A FT2 Pla 19 S3A_434822203 121-571 Mb 13.0 -2.6 0.12

Qncb.HD-4D Rht-D1 Kin 19 Rht-D1 0-352 Mb 4.85 0.9 0.06

Qncb.HD-5A NA Pla 19 S5A_169302619 51.6-435 Mb 14.1 -2.7 0.15

Qncb.HD-5B NA Kin 19 S5B_511010094 436-476 Mb 7.7 -1.3 0.08

Qncb.HD-7A Vrn-A3 Ral 18 (Ppd-D1b) S7A_72104395 57.7-85.9 Mb 4.23 NA NA

Epistatic interactions between QTL may hinder the
detection of those QTL, as effect size differences in differ-
ent backgrounds may reduce the population-wide effect
size. In the case of the Ppd-D1a insensitive allele, consti-
tutive over-expression of Ppd-D1 may obscure effects of
variation elsewhere in the flowering pathway. A benefit
of large population sizes is the ability to subset the pop-
ulation by major-effect variant allele and perform QTL
analyses on the sub-populations. After dividing the popu-
lation by Ppd-D1 allelic class and performing QTL analy-
ses on the sub-populations, an additional early-flowering
allele from LA95135 was identified on the short arm of
chromosome 7A only in a Ppd-D1b photoperiod-sensitive
background, and only in the field experiments (Table 3).

The confidence interval for this QTL contains the Vrn-
A3 locus. Vrn3 in wheat was identified as an FT ortholog
(TaFT1), and serves as the primary integrator of flower-
ing time signal, being translocated from the leaves to the
shoot apical meristem to initiate the transition to repro-
ductive growth (Fig. 1) [33]. A variant in the D-genome
copy of this gene, Vrn-D3a, was identified by [34] as a
determinant of flowering time in winter wheat. A dele-
tion of a GATA box in the promoter region of Vrn-A3 has
been recently associated with delayed flowering time in
tetraploid durum wheat [35], and an additional polymor-
phism linked to differences in heading date and spikelets-
per-spike has also been identified in common wheat [36].
Screening the population with a KASP marker developed

Fig. 3 Effect of Qncb.HD-3A and Ppd-D1 QTL on heading date in two different vernalization treatments. Density plots of BLUEs for heading date in
two experiments, with RILs grouped by their genotype at Ppd-D1 and a marker close to FT-A2. The allele effect of Ppd-D1 is larger than that of FT-A2
in the 8 week vernalization treatment (2.0 days versus 1.2), but the effect of the FT-A2marker is larger in the 4 week vernalization treatment (2.6 days
vs 3.3 days)
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Fig. 4Major variants diminish effects of other QTL. Vrn-A3 alters heading date in most environments, but only in a Ppd-D1 sensitive background. The
dwarfing effect of Qncb.PH-3D is greater in an Rht-D1a (tall) background

around the GATA box deletion (Additional file 1: Table
S1) reveals that the population segregates for the deletion,
with SS-MPV57 contributing the late-flowering deletion
allele. While Qncb.HD.7A has a relatively small addi-
tive effect, it strongly interacts with Ppd-D1a (Fig. 4). In
a background containing the insensitive over-expression
Ppd-D1 allele, there is no difference in heading date
between lines with and without the Vrn-A3 promoter
deletion. In a Ppd-D1b background, however, the GATA
box deletion is associated with significantly delayed head-
ing date of approximately one day (Fig. 4). In wheat, Ppd1
acts to trigger expression of Vrn3 through signaling inter-
mediates (Fig. 1), thus an interaction between the two fits
with our understanding of their placement in a common
pathway. This promoter deletion is a strong candidate for
the variant underlying the chromosome 7A heading date
QTL.

Adult plant height
Major QTL for plant height were initially mapped to chro-
mosomes 4D, 2D, and 3D (Table 4). Using the MQM
model, additional adult plant height QTL on chromo-
somes 1A, 2B, and 5B were also identified (Table 4).
As expected, known variant Rht-D1b inherited from
LA95135 was by far the largest-effect QTL across envi-
ronments. Except forQncb.PH-5B, all other reduced plant
height alleles were inherited from SS-MPV57.
The mapped position of the plant height QTL located

on chromosome 2D is consistent with reported positions
for Rht8 [37]. After the two major gibberellic-acid insen-
sitive dwarfing genes Rht-D1b and Rht-B1b, the most
commonly used gene is Rht8, which is tightly linked to
Ppd-D1 [38]. In most environments, the marker most
closely associated with QPH.ncb-2D is mapped closely
distal to Ppd-D1. In an effort to tease apart the effects

Table 4 Significant plant height QTL information from best environment. For each QTL, information from the experiment where that
QTL had the largest estimated effect (Best Env) is given. The average difference in phenotype between two RILs homozygous for each
QTL is given as twice the estimated allele effect of the LA95135 allele (2α), along with proportion of additive variation associated with
each QTL (pA). The confidence interval for Rht8 is consistent with prior studies placing the QTL distal to Ppd-D1

QTL Name Candidate Gene Best Env Peak Marker Position CI LOD 2α (cm) pA

Qncb.PH-1A NA Kin 19 S1A_517409836 513-533 mb 4.01 3.6 0.03

Qncb.PH-2B NA Kin 18 S2B_662556874 530-691 mb 3.41 2.9 0.05

Qncb.PH-2D Rht8 Kin 18 S2D_32151744 23.3-32.2 mb 27.9 9.4 0.32

Qncb.PH-3D NA Ral 18 S3D_476608044 477-527 mb 10.0 5.4 0.08

Qncb.PH-4D Rht-D1 Kin 19 Rht-D1 0-352 mb 71.9 -19.6 0.68

Qncb.PH-5B NA Kin 18 S5B_511010094 463-524 mb 7.51 -5.6 0.05
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of photoperiod insensitivity and Rht8 on plant height, we
evaluated a terminal spike-compaction phenotype often
associated with Rht8 segregating in the LM population.
This trait was rated in the field in Raleigh in 2019, and
the major QTL was co-located with the plant height locus
on the short arm of chromosome 2D (Additional file 1:
Figure S1). We did not observe any significant interaction
between Rht8 and Rht-D1.
We identified Qncb.PH-3D as a novel plant height QTL,

with a smaller effect than either Rht-D1 or Rht8 (Table 4).
Despite the low marker density on chromosome 3D,
Qncb.PH-3D was consistently localized to a 50-Mb inter-
val on the long arm. Rht-D1b alters the function of an
important component of the giberellic acid response path-
way, so we may expect differential QTL effects in different
Rht-D1 backgrounds.We find that whileQncb.PH-3Dwas
identified in all environments, the effect on plant height is
much greater in a Rht-D1a (tall) background (Fig. 4). As

SS-MPV57 is responsive to giberellic acid, the observed
interaction between Rht-D1 and Qncb.PH-3D will require
further study, and may point to the identification of can-
didate genes for this QTL.
Three additional QTL (Qncb.PH-1A, Qncb.PH-2B, and

Qncb.PH-5B) were also identified in one environment
each, but when fit in the combined multiple QTL model
all were significant with p < .001 in all environments
(Additional file 2: Table S4).

QTL with major andmoderate effects explain most of
additive genetic variation and generate transgressive
segregation
Within-field phenotypic variance was partitioned in order
to assess the genetic architecture of plant growth traits in
this population and the relative importance of different
mapped QTL in explaining observed differences (Fig. 5).
For both heading date and adult plant height, major effect

Fig. 5 Variance associated with QTL and variance components for heading date and plant height in multiple environments. Non-additive genetic
variation may be a result of epistatic interactions between QTL or mis-estimation of genotype values. Ppd-D1 and Rht-D1 dominate additive genetic
variation for their respective phenotypes, but other mapped QTL explain a substantial portion of genetic variation. The scaling of total additive
genetic variation is in large part due to the expression of Ppd-D1 or Rht-D1 effects
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QTL dominate additive genetic variation in most environ-
ments. Major-effect variant Ppd-D1 was associated with
a majority of additive genetic variation for heading date,
except in the southern-most location of Plains, GA in
2019 (Fig. 5). In this environment, the polygenic addi-
tive genetic variation for heading date was similar to that
associated with Ppd-D1. The modified architecture in a
distinct environment suggests the presence of QTL with
smaller effects conditional on photoperiod and vernaliza-
tion signal. FT2 andQncb.HD-5A also increased in impor-
tance in the Plains 2019 environment, indicating that the
effects of these moderate-effect QTL may also vary based
on environmental conditions.Major-effect variant Rht-D1
explained a majority of the additive genetic variation for
plant height except in Kinston, NC in 2018 where Rht8
explained a similarly sized proportion of variation (Fig. 5).
The relative expression of these QTL in specific envi-
ronments plays a large role in determining the observed
variation both in genotype values and in phenotypes.
A central question of this study is if variation in these

plant growth traits is largely attributable to segregation of
large-effect variants, or if identified variants are instead
only contributing to largely polygenic differences in head-
ing date and plant height. The plant height and head-
ing date characters of the parental lines were found to
be almost entirely determined by either major Ppd-D1

and Rht-D1 alleles, or cumulative effects of the stable,
moderate-effect QTL identified in this study (Fig. 6). The
transgressive segregation observed in this study, where
both parents are phenotypically similar in terms of head-
ing date and plant height, is being driven primarily by
segregation of these major and moderate-effect QTL.
For heading date, the effects of Ppd-D1 and Rht-D1were

mostly sufficient to explain the observed phenotypes of
SS-MPV57, and the phenotypes of LA95135 were mostly
explained by the QTL effects of earliness alleles inherited
from that parent (Fig. 6). In Raleigh in 2018, Ppd-D1 has
the largest effect, visible in the apparent bimodal distribu-
tion of genotype values. Plants in this environment expe-
rienced the coolest winter temperatures and had the latest
mean heading dates (Table 1). The differences between
the two parents is greatest in Plains in 2019, where the
effect of Ppd-D1 is relatively reduced and larger effects
are observed for earliness alleles inherited from LA95135.
Plants in this environment experienced the warmest win-
ter temperatures and had the greatest range in heading
dates.
For plant height, the effect of Rht-D1b largely deter-

mines the semi-dwarf character of LA95135, along with
some contribution from novel plant height QTL on chro-
mosome 5B. The semi-dwarf character of parent SS-
MPV57 is largely generated by known dwarfing QTL

Fig. 6 Heading date and plant height characters of parental lines are mostly determined by major QTL. For both heading date and plant height, the
most phenotypically extreme individual was considered as the baseline for each environment and compared to both the distribution of genotype
values and estimated QTL effects for the difference between two inbred lines (2α). Observed genotype values for the parental lines in each
environment (dashed lines) are compared to the cumulative effects of their alleles
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Rht8 and the novel QTL on chromosome 3D, with some
contribution from novel QTL on chromosomes 1A and
2B.

QTLmodels out-perform genomic selection for oligogenic
traits
To assess the implications of the apparent oligogenic
architecture of plant growth traits, a five-fold cross vali-
dation approach was used comparing a standard GBLUP
model using genome-wide GBS markers to a simple
multiple-regression QTL model based on previously esti-
mated QTL effects (Tables 5 and 6).
Across all environments for both phenotypes, the sim-

ple QTL regression model is nearly as predictive as
the top-performing model incorporating genome-wide
marker information. The GBLUP model commonly used
in applied wheat breeding is comparatively ineffective in
predicting heading date and especially plant height within
the biparental population. Incorporation of genomic rela-
tionship information into the QTL regression model
only offers slight performance increases compared to the
base model, suggesting the genomic relationships do not
add much additional information. The Bayes B model,
designed to allow for marker effects of zero, performs
the best for heading date (Table 5). For plant height, the
GBLUPmodel withQTL fixed effects is superior (Table 6).
In general, the Bayesian Lasso model is superior to the
GBLUP model but inferior to the other models, except
for heading date in Plains in 2019 where the relative
proportion of additive genetic variation associated with
the polygenic background was the highest. Given pre-
viously identified epistatic interactions between mapped
QTL, a modification of the QTL regression models fit-
ting epistatic interactions was tested. The modified QTL
regression model fit significant interaction terms within
each training population, but did not improve prediction
accuracies (Additional file 1: Tables S2 and S3).

Variation in plant growth is generated by major QTL
Plant height variation before maturity is caused in part by
differences in development related to heading date varia-
tion, and thus may be controlled by QTL for both mature

plant height and heading date. Multiple measures of plant
height were collected from the RIL population planted
in Raleigh during the 2019 field season, and a longitu-
dinal model was used to estimate plant height over the
measured time window. Identified heading date and adult
plant height QTL were fit in a multiple regression model
to estimate the proportion of phenotypic variation in plant
height on a given day associated with each QTL. Variation
in simulated genotype values were normalized by total
QTL variation explained, and plotted over time to assess
the relative importance of QTL in variation in plant height
over time (Fig. 7).
As expected, the proportion of variation explained by

the three adult plant height QTL (Rht-D1, Rht8, and
Qncb.PH-3D) increases towards the end of the date range
(March 29 to April 29, from near winter dormancy release
to heading). Heading date QTL are more important than
adult plant height QTL for early season plant height, when
plants transition from vegetative to reproductive growth.
The four heading date loci (Ppd-D1,Qncb.HD-5A, FT-A2,
and Vrn-A3) continue to explain a large portion of varia-
tion in plant height as plants near heading, although their
contribution diminishes as plants mature. Interestingly,
the proportion of variation explained by QTL associated
with Vrn-A3 and Rht8 were relatively consistent through-
out development. Rht-D1, mapped as both a heading date
and adult plant height QTL in this population, is asso-
ciated with a large proportion of phenotypic variation
throughout the date range.

Discussion
Unexplained parental phenotypes result from novel QTL
Understanding the genetic basis of plant development is
critical for understanding genetic variation for yield. In
wheat, early flowering and plant height are understood to
be largely determined by known large-effect variants; the
mutations in the DELLA protein RHT1 (reduced height
1) on chromosomes 4B and 4D for plant height, and vari-
ation in vernalization-response Vrn1 and photoperiod-
response Ppd1 genes for flowering time. Breeders gener-
ally select plants with plant heights and heading dates near
some optimal values for their target environments, so that

Table 5 Prediction accuracies for heading date. Mean prediction abilities and their standard deviations estimated from 40 replications
of five-fold cross validations using QTL regression, GBLUP, QTL fixed effects plus GBLUP, Bayes B, and Bayesian Lasso models

Model Ral18 Kin19 Pla19

μ sd μ sd μ sd

QTL Regres. 0.67 0.017 0.64 0.013 0.60 0.005

GBLUP 0.39 0.029 0.39 0.024 0.53 0.017

QTL/GBLUP 0.70 0.010 0.66 0.008 0.64 0.009

Bayes B 0.71 0.015 0.69 0.011 0.63 0.014

Bayes Lasso 0.63 0.026 0.58 0.019 0.57 0.018
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Table 6 Prediction accuracies for plant height. Mean prediction abilities and their standard deviations estimated from 40 replications
of five-fold cross validations using QTL regression, GBLUP, QTL fixed effects plus GBLUP, Bayes B, and Bayesian Lasso models

Model Ral18 Kin18 Kin19

μ sd μ sd μ sd

QTL Regres. 0.78 0.003 0.69 0.004 0.79 0.006

GBLUP 0.23 0.026 0.37 0.019 0.27 0.030

QTL/GBLUP 0.80 0.003 0.74 0.005 0.81 0.004

Bayes B 0.79 0.007 0.71 0.009 0.80 0.009

Bayes Lasso 0.67 0.014 0.50 0.027 0.70 0.017

most cultivars have one of Rht-B1b or Rht-D1b but not
both. In the southeastern US, most cultivars have some
combination of early-flowering winter alleles of the Vrn1
loci and one or more insensitive alleles of the Ppd1 loci.
Despite this, some cultivars with near-optimal values for
heading date and plant height do not carry any known
early flowering time or dwarfism alleles (for example, the
two parents used in this study), and the relative impor-
tance of these major QTL versus other, smaller effect
QTL in generating genetic variation for plant height and
heading date is not known.
In other crop species such as maize, the majority

of additive genetic variation in heading date and adult
plant height is generated in a polygenic manner through
the combination of many small-effect, unmapped QTL
[39, 40]. The importance of major-effect QTL in wheat
(and other selfing species such as rice [41]) suggests

that these traits may have a less polygenic basis in these
species. Here we developed a biparental population by
crossing cultivar LA95135, a cultivar with a normal flow-
ering time but no early-flowering variants other than
the weak photoperiod insensitive allele Ppd-A1a.1, to SS-
MPV57, a cultivar with a normal height but no known
Rht1 variants. Within this population, additive genetic
variation for plant growth phenotypes emerges from
known major-effect QTL and multiple novel moderate-
effect QTL, instead of primarily from polygenic back-
ground effects of many small-effect QTL.
We find one plant height QTL on chromosome 2D,

mapped distal to Ppd-D1, that likely represents Rht8. Cul-
tivars having the Rht8 dwarfing allele are responsive to
gibberrellic-acid [42], and the gene has a smaller effect
on plant height than reported effects of Rht-B1 and Rht-
D1, in agreement with the allele effects estimated in this

Fig. 7 Relative importance of QTL for plant height over time. QTL associated with heading date (blue and green; Ppd-D1, Qncb.HD-5A, FT2, and
Vrn-A3) explain over half of plant height variation associated with QTL at the beginning of data collection, but explain only approximately a quarter
thirty days after data collecting began. The relative importance of plant height QTL (orange; Rht-D1, Rht8, and Qncb.PH-3D) increases over time
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study [43]. Additionally, we propose newly characterized
variants in genes FT2 and Vrn-A3 as candidates under-
lying QTL on chromosomes 3A and 7A, respectively.
Additional novel plant height QTL were mapped to chro-
mosomes 3D, 1A, 2B, and 5B, and additional heading
date QTL to chromosomes 5A and 5B. When consid-
ered jointly, the effects of these QTL and Ppd-D1 and
Rht-D1 are mostly sufficient to explain the phenotypes
of the parental lines. Our ability to identify these novel
QTL despite their comparatively small effect size may
be attributable to the large population size, twice that of
many winter wheat RIL populations.
Combining these moderate-effect QTL can produce

plants with a short enough height and an early enough
heading date. Like other non-Rht1 dwarfing genes, Rht8
and Qncb.PH-3D do not confer GA-insensitivity to SS-
MPV57 (data not shown). A major limitation of the
GA-insensitive Rht1 genes is a reduced coleoptile length,
which can lead to poor emergence and weak competi-
tion. While lines carrying Rht8 alone are often too tall,
semi-dwarf lines like SS-MPV57 produced by stacking
Rht8 with Qncb.PH-3D may perform better than Rht1
semi-dwarfs in certain environments [38]. The insignifi-
cant effect on plant height of Qncb.PH-3D in an Rht-D1b
(semi-dwarf ) background also reduces the potential of
producing transgressive segregants that are too short from
crosses between Rht-D1b and Qncb.PH-3D-dwarf culti-
vars. The position ofQncb.PH-3D distally on the long arm
facilitates its fine-mapping, and identification of a pre-
dictive marker or the underlying causal polymorphisms
will facilitate marker-assisted selection of this QTL in
developing GA-sensitive semi-dwarf cultivars.
The use of major Ppd1 and Vrn1 variants in cultivar

development also has associated drawbacks. In both cases,
the early-heading character is a result of the plant los-
ing its ability to receive signal from its environment –
in wild-type photoperiod-sensitive genotypes, plants use
information about changing night lengths to flower at an
appropriate time, whereas photoperiod-insensitivity acti-
vates this pathway constitutively. Losing the ability to
respond to environmental cues may incur yield penal-
ties in some situations. For example, autumn sown wheat
lines with little or no vernalization requirement that are
insensitive to photoperiod are susceptible to late spring
freeze. However, requiring a long period of cold to poten-
tiate flowering in environments with warm winters can
result in delayed heading, even in lines having photope-
riod insensitive alleles. This effect was observed in this
study with the proportionally decreased effect of Ppd-D1
in the Plains environment, which is farther south than the
other locations and has shorter nights during the wheat
growing season. A set of early flowering QTL with differ-
ent environmental triggers or of more moderate effects,
like those mapped here, provide breeders with additional

tools to develop appropriate cultivars for various tar-
get environments. Fine-mapping and characterization of
Qncb.HD-3A,Qncb.HD-5A, andQncb.HD-5Bwill expand
the flowering time toolbox for wheat breeders.

The oligogenic trait architecture of plant growth traits in
wheat
In wheat, genetic variation in yield is dependent on yield
components (e.g. kernel weight, kernel number per spike,
spikelets per spike) that can be influenced by disease
resistance, plant height, and heading date, among other
traits. While yield variation itself is complex, this com-
plexity may arise through a combination of variation in
other traits which may not necessarily have a polygenic
architecture. We observe only a small fraction of the total
genetic variation for heading date and plant height in this
population associated with lines’ polygenic background.
Even when not considering major-effect alleles Rht-D1
and Ppd-D1, the remaining moderate-effect QTL explain
more than twice the additive genetic variation as the poly-
genic background. While it is impossible to extend the
results of this biparental study to wheat generally, the vari-
ation in heading date and plant height observed in this
population is similar to the range of values observed in
preliminary yield trials in breeding populations. It is likely
the case that, while the particular variants differ from
population to population, that the genetic architecture of
plant height and heading date are similar across breeding
populations in wheat.

Challenges and opportunities for genotype-based
prediction of plant growth traits
The genetic architecture of plant growth has important
implications for modern wheat breeding programs. Yield
is the primary target of wheat breeders, and standard
genomic selection models perform well for this trait in
southeast U.S. wheat breeding programs [18, 44]. Stan-
dard models shrink estimated effects of large-effect vari-
ants closer to zero, which will reduce accuracy of models
for traits mostly conditioned by relatively few large-effect
variants [17]. Given the effects of heading date and plant
height variation on generating yield variation in wheat, if
a handful of major QTL dominate these traits they may
also have large effects on yield, complicating assumptions
of these models. At the same time, heading date and plant
height are themselves traits of interests to breeders, who
screen biparental populations to remove transgressive
segregants for these traits.
We show that the majority of additive genetic varia-

tion for heading date and plant height is controlled by
large-effect QTL, such that a simple QTL model is suffi-
cient for accurate prediction of phenotypes. In this case
given marker information for major and moderate-effect
QTL and a genotyped training population, a simple QTL
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model is likely to be effective for eliminating transgres-
sive segregants for heading date and plant height. This
model has the added benefit of being much cheaper than
genomic selection if markers for polymorphisms linked to
variants are available. Instead of genotyping a population
of a set size with genome-wide markers, making predic-
tions with genomic selection models, and then removing
transgressive segregants for plant height and heading date,
breeders can instead screen larger populations initially
with simple makers for major QTL, and focus genotyp-
ing resources on lines predicted to be near optimal values
for those secondary phenotypes.While QTLmapping was
necessary to identify many important QTL for predic-
tion in the QTL regression model in this population, this
population was constructed specifically to segregate for
novel heading date and plant height QTL. Our expanding
knowledge of variants underlying these oligogenic traits
results in the development of breeding populations where
the major QTL will be known and predictions for heading
date and plant height can be made. If we have genotypes
for the causal polymorphisms underlying these QTL, we
can make predictions in new populations regardless of
their relationship to the training population lines. Fine-
mapping and marker development for these and further
novel QTL will then improve prediction models.

Plant growth QTL and variation for source traits
In the past few years, a number of variants impacting
yield component traits that generate variation in sink tis-
sues have been identified and cloned [45–48]. However,
increasing the frequency of variants associated with larger
grain size and number will only increase yields if plants
produce sufficient carbohydrates ("source") to fill those
grains. Similar characterization of important QTL under-
lying variation in physiological source traits will therefore
also be critical to understand the components of yield
variation. Variation in NDVI (normalized difference veg-
etation index) measurements or direct biomass samples,
taken as proxies for source availability, is related to varia-
tion in the plant growth traits studied here. Both heading
date and adult plant height can be viewed as components
of the continuous phenotype of plant growth over time.
While adult plant height is controlled by what are termed
plant height QTL, juvenile plant height is often under-
stood as winter dormancy release and is largely under the
same genetic control as heading date [6]. To understand
the genetic basis of plant growth in this population, we
measured plant height over multiple days during devel-
opment. We showed that variation in plant growth is
influenced by a combination of heading date and plant
height QTL. Studies of plant source traits may find it use-
ful to consider phenotyping experiments for plant height
and heading date as well to distinguish between QTL for
heading date and plant height, and true source or biomass

QTL. Understanding how plant height and heading date
QTL interact to generate variation in plant growth over
time will be critical to understanding how they impact
source traits and in characterizing novel plant source QTL
that can be deployed for higher yielding genotypes.

Conclusions
The polygenic nature of wheat yield results in part from
major and moderate QTL for adaptation traits and other
phenotypes that influence yield. It is therefore useful to
consider and select for component phenotypes like dis-
ease resistance and plant growth traits that can influ-
ence yield separately, and to properly model these traits
we need to first understand their genetic architectures.
Already the simple genetic basis of many disease resis-
tance genes has madeMAS for disease resistance in wheat
very useful to breeders, a success story that could be
replicated with plant growth traits given cost-effective
predictions. Here, we show that component phenotypes
of plant growth over time have an oligogenic basis dom-
inated by QTL of major and moderate effect that allows
for their prediction with simple QTL regression mod-
els. The movement towards genomic selection has called
into question the utility of fine-mapping and positional
cloning studies. We demonstrate the importance of major
QTL and the poor performance of standard models in this
study, illustrating the utility of understanding the impor-
tant variants underlying these traits and others to crop
improvement.
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