
A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Machine learning–accelerated computational
fluid dynamics
Dmitrii Kochkova,1,2, Jamie A. Smitha,1,2 , Ayya Alievaa, Qing Wanga, Michael P. Brennera,b,2 , and Stephan Hoyera,2

aGoogle Research, Mountain View, CA 94043; and bSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

Edited by Andrea L. Bertozzi, University of California, Los Angeles, CA, and approved March 25, 2021 (received for review January 29, 2021)

Numerical simulation of fluids plays an essential role in modeling
many physical phenomena, such as weather, climate, aerodynam-
ics, and plasma physics. Fluids are well described by the Navier–
Stokes equations, but solving these equations at scale remains
daunting, limited by the computational cost of resolving the
smallest spatiotemporal features. This leads to unfavorable trade-
offs between accuracy and tractability. Here we use end-to-end
deep learning to improve approximations inside computational
fluid dynamics for modeling two-dimensional turbulent flows. For
both direct numerical simulation of turbulence and large-eddy
simulation, our results are as accurate as baseline solvers with
8 to 10× finer resolution in each spatial dimension, resulting in
40- to 80-fold computational speedups. Our method remains sta-
ble during long simulations and generalizes to forcing functions
and Reynolds numbers outside of the flows where it is trained, in
contrast to black-box machine-learning approaches. Our approach
exemplifies how scientific computing can leverage machine learn-
ing and hardware accelerators to improve simulations without
sacrificing accuracy or generalization.

machine learning | turbulence | computational physics | nonlinear partial
differential equations

S imulation of complex physical systems described by non-
linear partial differential equations (PDEs) is central to

engineering and physical science, with applications ranging from
weather (1, 2) and climate (3, 4) and engineering design of
vehicles or engines (5) to wildfires (6) and plasma physics (7).
Despite a direct link between the equations of motion and
the basic laws of physics, it is impossible to carry out direct
numerical simulations at the scale required for these important
problems. This fundamental issue has stymied progress in sci-
entific computation for decades and arises from the fact that
an accurate simulation must resolve the smallest spatiotemporal
scales.

A paradigmatic example is turbulent fluid flow (8), underly-
ing simulations of weather, climate, and aerodynamics. The size
of the smallest eddy is tiny: For an airplane with chord length
of 2 m, the smallest length scale (the Kolomogorov scale) (9) is
O(10−6) m. Classical methods for computational fluid dynamics
(CFD), such as finite differences, finite volumes, finite elements,
and pseudo-spectral methods, are only accurate if fields vary
smoothly on the mesh, and hence meshes must resolve the small-
est features to guarantee convergence. For a turbulent fluid flow,
the requirement to resolve the smallest flow features implies
a computational cost scaling like Re3, where Re =UL/ν, with
U and L the typical velocity and length scales and ν the kine-
matic viscosity. A 10-fold increase in Re leads to a thousandfold
increase in the computational cost. Consequently, direct numeri-
cal simulation (DNS) for, e.g., climate and weather, is impossible.
Instead, it is traditional to use smoothed versions of the Navier–
Stokes equations (10, 11) that allow coarser grids while sacrific-
ing accuracy, such as Reynolds averaged Navier–Stokes (12, 13)
and large-eddy simulation (LES) (14, 15). For example, current
state-of-the-art LES with mesh sizes of O(10) to O(100) million
has been used in the design of internal combustion engines (16),
gas turbine engines (17, 18), and turbomachinery (19). Despite

promising progress in LES over the last two decades, there are
severe limits to what can be accurately simulated. This is mainly
due to the first-order dependence of LES on the subgrid-scale
(SGS) model, especially for flows whose rate controlling scale is
unresolved (20).

Here, we introduce a method for calculating the accurate
time evolution of solutions to nonlinear PDEs, while using an
order-of-magnitude coarser grid than is traditionally required
for the same accuracy. This is a type of numerical solver that
does not average unresolved degrees of freedom but instead
uses discrete equations that give pointwise accurate solutions
on an unresolved grid. We discover these algorithms using
machine learning (ML), by replacing the components of tra-
ditional solvers most affected by the loss of resolution with
learned alternatives. As shown in Fig. 1A, for a two-dimensional
DNS of a turbulent flow our algorithm maintains accuracy while
using 10× coarser resolution in each dimension, resulting in a
∼ 80-fold improvement in computational time with respect to
an advanced numerical method of similar accuracy. The model
learns how to interpolate local features of solutions and hence
can accurately generalize to different flow conditions such as dif-
ferent forcings and even different Reynolds numbers (Fig. 1B).
We also apply the method to a high-resolution LES simulation
of a turbulent flow and show similar performance enhance-
ments, maintaining pointwise accuracy on Re =100, 000 LES
simulations using 8× coarser grids with ∼ 40-fold computational
speedup.

There has been a flurry of recent work using ML to improve
turbulence modeling. One major family of approaches uses ML

Significance

Accurate simulation of fluids is important for many sci-
ence and engineering problems but is very computationally
demanding. In contrast, machine-learning models can approx-
imate physics very quickly but at the cost of accuracy. Here
we show that using machine learning inside traditional fluid
simulations can improve both accuracy and speed, even on
examples very different from the training data. Our approach
opens the door to applying machine learning to large-scale
physical modeling tasks like airplane design and climate
prediction.

Author contributions: D.K., J.A.S., M.P.B., and S.H. designed research; D.K., J.A.S., A.A.,
Q.W., M.P.B., and S.H. performed research; D.K., J.A.S., A.A., Q.W., M.P.B., and S.H.
analyzed data; and D.K., J.A.S., M.P.B., and S.H. wrote the paper.y

Competing interest statement: The authors are employees of Google, which sells hard-
ware and software for machine learning. A patent filing has been submitted based on
this work.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 D.K. and J.A.S. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: dkochkov@google.com, jamieas@
google.com, brenner@seas.harvard.edu, or shoyer@google.com. y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2101784118/-/DCSupplemental.y

Published May 18, 2021.

PNAS 2021 Vol. 118 No. 21 e2101784118 https://doi.org/10.1073/pnas.2101784118 | 1 of 8

http://orcid.org/0000-0003-2281-4681
http://orcid.org/0000-0002-5673-7947
http://orcid.org/0000-0002-5207-0380
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dkochkov@google.com
mailto:jamieas@google.com
mailto:jamieas@google.com
mailto:brenner@seas.harvard.edu
mailto:shoyer@google.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1073/pnas.2101784118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2101784118&domain=pdf

Training dataset

Forced turbulence
More turbulentDecayingLarger domain

Generalization tests

A

B

Time until correlation < 0.95

R
un

tim
e

pe
r t

im
e

un
it

(s
)

512
× 512

Direct simulation

Learned interpolation
86x speedup

1024
× 1024

2048
× 2048

4096
× 4096

8192
× 8192

1024
× 1024

512
× 512

256
× 256

C

Convective flux

 interpolation

 interpolation

External forcing

D
iv

er
ge

nc
e

Ex
pl

ic
it

tim
es

te
p

Pr
es

su
re

 p
ro

je
ct

io
n

C
on

vo
lu

tio
na

l
ne

ur
al

 n
et

w
or

k

N
ew

 v
el

oc
ity

Fi
lte

r
co

ns
tra

in
ts

O
ld

 v
el

oc
ity

Fig. 1. Overview of our approach and results. (A) Accuracy versus computational cost with our baseline (direct simulation) and ML-accelerated [learned
interpolation (LI)] solvers. The x axis corresponds to pointwise accuracy, showing how long the simulation is highly correlated with the ground truth,
whereas the y axis shows the computational time needed to carry out one simulation time unit on a single Tensor Processing Unit (TPU) core. Each
point is annotated by the size of the corresponding spatial grid; for details see SI Appendix. (B) Illustrative training and validation examples, showing
the strong generalization capabilities of our model. (C) Structure of a single time step for our LI model, with a convolutional neural net controlling
learned approximations inside the convection calculation of a standard numerical solver. ψ and u refer to advected and advecting velocity components.
For d spatial dimensions there are d2 replicates of the convective flux module, corresponding to the flux of each velocity component in each spatial
direction.

to fit closures to classical turbulence models based on agreement
with high-resolution DNSs (21–24). While potentially more accu-
rate than traditional turbulence models, these new models have
not achieved reduced computational expense. Another major
thrust uses “pure” ML, aiming to replace the entire Navier–
Stokes simulation with approximations based on deep neural
networks (25–30). A pure ML approach can be extremely effi-
cient, avoiding the severe time-step constraints required for
stability with traditional approaches. Because these models do
not include the underlying physics, they often cannot enforce
hard constraints, such as conservation of momentum and incom-
pressibility. While these models often perform well on data from
the training distribution, they often struggle with generalization.
For example, they perform worse when exposed to novel forcing
terms. We believe “hybrid” approaches that combine the best of
ML and traditional numerical methods are more promising. For
example, ML can replace (31) or accelerate (32) iterative solves
used inside some simulation methods without reducing accuracy.
Here we focus on hybrid models that use ML to correct errors in
cheap, underresolved simulations (33–35). These models borrow
strength from the coarse-grained simulations and are potentially

much faster than pure numerical simulations due to the reduced
grid size.

In this work we design algorithms that accurately solve the
equations on coarser grids by replacing the components most
affected by the resolution loss with better-performing learned
alternatives. We use data-driven discretizations (36, 37) to inter-
polate differential operators onto a coarse mesh with high
accuracy (Fig. 1C). We train the model inside a standard numer-
ical method for solving the underlying PDEs as a differentiable
program, with the neural networks and the numerical method
written in a framework [JAX (38)] supporting reverse-mode
automatic differentiation. This allows for end-to-end gradient-
based optimization of the entire algorithm, similar to prior work
on density functional theory (39), molecular dynamics (40), and
fluids (33, 34). The methods we derive are equation-specific
and require high-resolution ground-truth simulations for training
data. Since the dynamics of a PDE are local, the high-resolution
simulations can be carried out on a small domain. The models
remain stable during long simulations and have robust and pre-
dictable generalization properties, with models trained on small
domains producing accurate simulations on larger domains, with

2 of 8 | PNAS
https://doi.org/10.1073/pnas.2101784118

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://doi.org/10.1073/pnas.2101784118

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

different forcing functions and even with different Reynolds
number. Comparison to pure ML baselines shows that gener-
alization arises from the physical constraints inherent in the
formulation of the method.

Background
Navier–Stokes. Incompressible fluids are modeled by the Navier–
Stokes equations:

∂u
∂t

=−∇ · (u⊗ u)+
1

Re
∇2u− 1

ρ
∇p+ f [1a]

∇· u=0, [1b]
where u is the velocity field, f the external forcing, and⊗ denotes
a tensor product. The density ρ is a constant, and the pressure p
is a Lagrange multiplier used to enforce Eq. 1b. The Reynolds
number Re dictates the balance between the convection (first)
and diffusion (second) terms on the right hand side of Eq. 1a.
Higher Reynolds number flows dominated by convection are
more complex and thus generally harder to model; flows are
considered “turbulent” if Re� 1.

DNS solves Eq. 1 directly, whereas LES solves a spatially fil-
tered version. In the equations of LES, u is replaced by a filtered
velocity u and a subgrid term −∇ · τ arising from convection is
added to the right side of Eq. 1a, with the subgrid stress defined
as τ = u⊗ u− u⊗ u. Because u⊗ u is unmodeled, solving LES
also requires a choice of closure model for τ as a function of
u. Numerical simulation of both DNS and LES further requires
a discretization step to approximate the continuous equations
on a grid. Traditional discretization methods (e.g., finite differ-
ences) converge to an exact solution as the grid spacing becomes
small, with LES converging faster because it models a smoother
quantity. Together, discretization and closure models are the two
principal sources of error when simulating fluids on coarse grids
(33, 41).

Methods
Learned Solvers. Our principal aim is to accelerate DNS without
compromising accuracy or generalization. To that end, we con-
sider ML modeling approaches that enhance a standard CFD
solver when run on inexpensive-to-simulate coarse grids. We
expect that ML models can improve the accuracy of the numeri-
cal solver via effective superresolution of missing details. Unlike
traditional numerical methods, our learned solvers are optimized
to fit the observed manifold of solutions to the equations they
solve, rather than arbitrary polynomials. Empirically, this can
significantly improve accuracy over high-order numerical meth-
ods (36), although we currently lack a theoretical explanation.
Because we want to train neural networks for approximation
inside our solver, we wrote a new CFD code in JAX (38), which
allows us to efficiently calculate gradients via automatic differ-
entiation. Our base CFD code is a standard implementation of
a finite volume method on a regular staggered mesh, with first-
order explicit time stepping for convection, diffusion, and forcing
and implicit treatment of pressure; for details see SI Appendix.

The algorithm works as follows. In each time step, the neural
network generates a latent vector at each grid location based on
the current velocity field, which is then used by the subcompo-
nents of the solver to account for local solution structure. Our
neural networks are convolutional, which enforces translation
invariance and allows them to be local in space. We then use
components from standard numerical methods to enforce induc-
tive biases corresponding to the physics of the Navier–Stokes
equations, as illustrated by the light gray boxes in Fig. 1C; the
convective flux model improves the approximation of the dis-
cretized convection operator, the divergence operator enforces
local conservation of momentum according to a finite volume
method, and the pressure projection enforces incompressibility

and the explicit time-step operator forces the dynamics to be
continuous in time, allowing for the incorporation of additional
time-varying forces. “DNS on a coarse grid” blurs the boundaries
of traditional DNS and LES modeling and thus invites a variety
of data-driven approaches. In this work we focus on two types of
ML components: learned interpolation and learned correction.
Both center on convection, the key term in Eq. 1 for turbulent
flows.

Learned Interpolation. In a finite volume method, u denotes a vec-
tor field of volume averages over unit cells, and the cell-averaged
divergence can be calculated via Gauss’ theorem by summing the
surface flux over each face. This suggests that our only required
approximation is calculating the convective flux u⊗ u on each
face, which requires interpolating u from where it is defined.
Rather than using typical polynomial interpolation, which is suit-
able for interpolation without prior knowledge, here we use an
approach that we call learned interpolation based on data-driven
discretizations (36). We use the outputs of the neural network to
generate interpolation coefficients based on local features of the
flow, similar to the fixed coefficients of polynomial interpolation.
This allows us to incorporate two important priors: 1) The equa-
tion maintains the same symmetries and scaling properties (e.g.,
rescaling coordinates x→λx) as the original equations and 2) the
interpolation is always at least first-order accurate with respect to
the grid spacing, by constraining the filters to sum to unity. It is
also possible to visualize interpolation weights to interpret pre-
dictions from our model; see SI Appendix, Fig. S2 and our prior
work (36, 37) for examples.

Learned Correction. An alternative approach, closer in spirit to
LES modeling, is to simply model a residual correction to the
discretized Navier–Stokes equations (Eq. 1) on a coarse grid (33,
34). Such an approach generalizes traditional closure models for
LES but in principle can also account for discretization error.
We consider learned correction models of the form ut = u∗t +
LC(u∗), where LC (learned correction) is a neural network and
u∗ is the uncorrected velocity field from the numerical solver on
a coarse grid. Modeling the residual is appropriate both from the
perspective of a temporally discretized closure model and prag-
matically because the relative error between u and u∗t in a single
time step is small. Learned correction models have fewer induc-
tive biases and are less interpretable than learned interpolation
models, but they are simpler to implement and potentially more
flexible. We also explored learned correction models restricted
to take the form of classical closure models (e.g., flow-dependent
effective tensor viscosity models), but the restrictions hurt model
performance and stability.

Training. The training procedure tunes the ML components of
the solver to minimize the discrepancy between an expensive
high-resolution simulation and a simulation produced by the
model on a coarse grid. We accomplish this via supervised train-
ing where we use a cumulative pointwise error between the
predicted and ground truth velocities as the loss function:

L(x , y)=

T∑
i=1

MSE(uexact(ti), upred(ti)), [2]

where MSE denotes the mean-squared error. The ground truth
trajectories are obtained by using a high-resolution simula-
tion that is then coarsened to the simulation grid. Including
the numerical solver in the training loss ensures fully “model-
consistent” training where the model sees its own outputs as
inputs (23, 34, 41), unlike typical “a priori” training where
simulation is only performed offline. As an example, for the Kol-
mogorov flow simulations below with Reynolds number 1,000,

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

PNAS | 3 of 8
https://doi.org/10.1073/pnas.2101784118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://doi.org/10.1073/pnas.2101784118

A B C

Fig. 2. Learned interpolation (LI) achieves accuracy of direct simulation at ∼ 10× higher resolution. (A) Evolution of predicted vorticity fields for reference
(DS 2,048 × 2,048), learned (LI 64× 64), and baseline (DS 64× 64) solvers, starting from the same initial velocities. The yellow box traces the evolution of
a single vortex. (B) Comparison of the vorticity correlation between predicted flows and the reference solution for our model and DNS solvers. (C) Energy
spectrum scaled by k5 averaged between time steps 10,000 and 20,000, when all solutions have decorrelated with the reference solution.

our ground-truth simulation had a resolution of 2,048 cells along
each spatial dimension. We coarsen these ground-truth trajec-
tories along each dimension and time by a factor of 32. For
training we use 32 trajectories of 4,800 sequential time steps
each, starting from different random initial conditions. To eval-
uate the model, we generate much longer trajectories (tens of
thousands of time steps) to verify that models remain stable and
produce plausible outputs. Unrolling over multiple time steps
in training improves inference performance over long trajecto-
ries (both accuracy and stability) but makes training less stable
(34); as a compromise, we unroll for T =32 steps. To avoid the
prohibitive memory requirements of saving neural network acti-
vations inside each unrolled time step in the forward pass we use
gradient checkpointing at the start of each time step (42).

Results
We take a utilitarian perspective on model evaluation: Sim-
ulation methods are good insofar as they demonstrate accu-
racy, computational efficiency, and generalization. DNS excels
at accuracy and generalization but is not efficient. Useful ML
methods for fluids should be faster than standard baselines (e.g.,
DNS) with the same accuracy. Although trained on specific
flows, they must readily generalize to new simulation settings,
such as different domains, forcings, and Reynolds numbers. In
what follows, we first compare the accuracy and generalization
of our method to both DNS and several existing ML-based
approaches for simulations of two-dimensional turbulence flow.
In particular, we first consider Kolmogorov flow (43), a paramet-
ric family of forced two-dimensional turbulent flows obeying the
Navier–Stokes equation (Eq. 1), with periodic boundary condi-
tions and forcing f =sin(4y)x̂− 0.1u, where the second term is
a velocity-dependent drag preventing accumulation of energy at
large scales (44). Kolmogorov flow produces a statistically sta-
tionary turbulent flow, with flow complexity controlled by a single
parameter, the Reynolds number Re.

Accelerating DNS. The accuracy of a DNS quickly degrades once
the grid resolution cannot capture the smallest details of the solu-
tion. In contrast, our ML-based approach strongly mitigates this
effect. Fig. 2 shows the results of training and evaluating our
model on Kolmogorov flows at Reynolds number Re =1,000. All
datasets were generated using high-resolution DNS, followed by
a coarsening step.
Accuracy. The scalar vorticity field ω= ∂xuy − ∂yux is a con-
venient way to describe two-dimensional incompressible flows

(44). Accuracy can be quantified by correlating vorticity fields,∗

C (ω, ω̂) between the ground-truth solution ω and the pre-
dicted state ω̂. Fig. 2 compares the learned interpolation model
(64× 64) to fully resolved DNS of Kolmogorov flow (2,048 ×
2,048) using an initial condition that was not included in
the training set. Strikingly, the learned discretization model
matches the pointwise accuracy of DNS with a ∼ 10× finer
grid. The eventual loss of correlation with the reference solu-
tion is expected due to the chaotic nature of turbulent flows;
this is marked by a vertical gray line in Fig. 2B, indicat-
ing the first three Lyapunov times. Fig. 2A shows the time
evolution of the vorticity field for three different models:
the learned interpolation matches the ground truth (2,048 ×
2,048) more accurately than the 512× 512 baseline, whereas
it greatly outperforms a baseline solver at the same resolution
as the model (64× 64).

The learned interpolation model also produces an energy
spectrum E(k)= 1

2
|u(k)|2 similar to DNS. With decreasing res-

olution, DNS cannot capture high-frequency features, resulting
in an energy spectrum that “tails off” for higher values of k . Fig.
2C compares the energy spectrum for learned interpolation and
direct simulation at different resolutions after 104 time steps.
The learned interpolation model accurately captures the energy
distribution across the spectrum.
Computational efficiency. The ability to match DNS with a
∼ 10× coarser grid makes the learned interpolation solver much
faster. We benchmark our solver on a single core of Google’s
Cloud TPU v4, a hardware accelerator designed for accelerating
ML models that is also suitable for many scientific computing use
cases (45–47). The TPU is designed for high-throughput vector-
ized operations, with extremely high throughput matrix–matrix
multiplication in low precision (bfloat16). On sufficiently large
grid sizes (256× 256 and larger), our neural net makes good use
of matrix-multiplication unit, achieving 12.5× higher through-
put in floating-point operations per second than our baseline
CFD solver. Thus, despite using 150× more arithmetic opera-
tions, the ML solver is only about 12× slower than the traditional
solver at the same resolution. The 10× gain in effective res-
olution in three dimensions (two space dimensions and time,
due to the Courant condition) thus corresponds to a speedup
of 103/12≈ 80.

*In our case the Pearson correlation reduces to a cosine distance because the flows
considered here have mean velocity of 0.

4 of 8 | PNAS
https://doi.org/10.1073/pnas.2101784118

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

https://doi.org/10.1073/pnas.2101784118

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A B C

Fig. 3. Learned interpolation (LI) generalizes well to decaying turbulence. (A) Evolution of predicted vorticity fields as a function of time. (B) Vorticity
correlation between predicted flows and the reference solution. (C) Energy spectrum scaled by k5 averaged between time steps 2,000 and 2,500, when all
solutions have decorrelated with the reference solution.

Generalization. In order to be useful, a learned model must accu-
rately simulate flows outside of the training distribution. We
expect our models to generalize well because they learn local
operators: Interpolated values and corrections at a given point
depend only on the flow within a small neighborhood around
it. As a result, these operators can be applied to any flow that
features similar local structures to those seen during training.
We consider three different types of generalization tests: 1)
larger domain size, 2) unforced decaying turbulent flow, and 3)
Kolmogorov flow at a larger Reynolds number.

First, we test generalization to larger domain sizes with the
same forcing. Our ML models have essentially the exact same
performance as on the training domain, because they only rely
upon local features of the flows (SI Appendix, Fig. S5 and see
Fig. 5).

Second, we apply our model trained on Kolmogorov flow to
decaying turbulence, by starting with a random initial condition
with high wavenumber components and letting the turbulence
evolve in time without forcing. Over time, the small scales coa-
lesce to form large-scale structures, so that both the scale of
the eddies and the Reynolds number vary. Fig. 3 shows that a
learned discretization model trained on Kolmogorov flows with
Re=1,000 can match the accuracy of DNS running at ∼ 8×

finer resolution. The standard numerical method at the same
resolution as the learned discretization model is corrupted by
numerical diffusion, degrading the energy spectrum as well as
pointwise accuracy. The learned model slightly overestimates the
energy at the smallest spatial scales, an indication of overfitting
to the statistics of forced turbulence from the training dataset.

Our final generalization test is harder: Can the models gen-
eralize to higher Reynolds number where the flows are more
complex? The universality of the turbulent cascade (1, 48, 49)
implies that at the size of the smallest eddies (the Kolmogorov
length scale), flows “look the same” regardless of Reynolds num-
ber when suitably rescaled. This suggests that we can apply the
model trained at one Reynolds number to a flow at another
Reynolds number by simply rescaling the model to match the
new smallest length scale. To test this we construct a new
validation dataset for Kolmogorov flow with Re=4,000. The
theory of two-dimensional turbulence (50) implies that the small-
est eddy size decreases as 1/

√
Re, implying that the smallest

eddies in this flow are half the size of those for original flow
with Re=1,000. We therefore can use a trained Re=1,000
model at Re=4,000 by simply halving the grid spacing. Fig.
4A shows that with this scaling our model achieves the accu-
racy of DNS running at 6× finer resolution. This degree of

A B C

Fig. 4. LIs can be scaled to simulate higher Reynolds numbers without retraining. (A) Evolution of predicted vorticity fields as a function of time for
Kolmogorov flow at Re = 4,000. (B) Vorticity correlation between predicted flows and the reference solution. (C) Energy spectrum scaled by k5 averaged
between time steps 6,000 and 12,000, when all solutions have decorrelated with the reference solution.

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

PNAS | 5 of 8
https://doi.org/10.1073/pnas.2101784118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://doi.org/10.1073/pnas.2101784118

generalization is remarkable, given that we are now testing the
model with a flow of substantially greater complexity. Fig. 4B
visualizes the vorticity, showing that higher complexity is cap-
tured correctly, as is further verified by the energy spectrum
shown in Fig. 4C.

Comparison to Other ML Models. Finally, we compare the per-
formance of learned interpolation to alternative ML-based
methods. We consider three popular ML methods: ResNet
(51), encoder–processor–decoder (52, 53) architectures, and the
learned correction model introduced earlier. These models all
perform explicit time stepping without any additional latent state
beyond the velocity field, which allows them to be evaluated with
arbitrary forcings and boundary conditions and to use the time
step based on the Courant–Friedrichs–Lewy condition. By con-
struction, these models are invariant to translation in space and
time and have similar runtime for inference (varying within a fac-

tor of 2). To evaluate training consistency, each model is trained
nine times with different random initializations on the same
Kolmogorov Re=1,000 dataset described previously. Hyperpa-
rameters for each model were chosen as detailed in SI Appendix,
and the models are evaluated on the same generalization tasks.
We compare their performance using several metrics: time until
vorticity correlation falls below 0.95 to measure pointwise accu-
racy for the flow over short time windows, the absolute error of
the energy spectrum scaled by k5 to measure statistical accu-
racy for the flow over long time windows, and the fraction of
simulated velocity values that does not exceed the range of the
training data to measure stability.

Fig. 5 compares results across all considered configura-
tions. Overall, we find that learned interpolation performs
best, although learned correction is not far behind. We were
impressed by the performance of the learned correction model,
despite its weaker inductive biases. The difference in effective

Fig. 5. Learned discretizations outperform a wide range of baseline methods in terms of accuracy, stability, and generalization. Each row within a subplot
shows performance metrics for nine model replicates with the same architecture but different randomly initialized weights. The models are trained on
forced turbulence, with larger domain, decaying, and more turbulent flows as generalization tests. Vertical lines indicate performance of nonlearned
baseline models at different resolutions (all baseline models are perfectly stable). The pointwise accuracy test measures error at the start of time integration,
whereas the statistical accuracy and stability tests are both performed on simulations at much later time. For all cases except for the decaying turbulence
we used time 40 after about 5,600 time integration steps (twice the number of steps for more turbulent flow). For the decaying turbulence generalization
test we measured statistical accuracy at time 14 after 2,000 time integration steps and stability at time 40. The points indicated by a left-pointing triangle in
the statistical accuracy tests are clipped at a maximum error.

6 of 8 | PNAS
https://doi.org/10.1073/pnas.2101784118

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2101784118/-/DCSupplemental
https://doi.org/10.1073/pnas.2101784118

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A B C

Fig. 6. Learned discretizations achieve accuracy of LES simulation running on 8× finer resolution. (A) Evolution of predicted vorticity fields as a function
of time. (B) Vorticity correlation between predicted flows and the reference solution. (C) Energy spectrum scaled by k5 averaged between time steps 3,800
and 4,800, when all solutions have decorrelated with the reference solution.

resolution for pointwise accuracy (8× vs 10× upscaling) corre-
sponds to about a factor of 2 in run time. There are a few isolated
exceptions where pure black-box methods outperform the oth-
ers, but not consistently. A particular strength of the learned
interpolation and correction models is their consistent perfor-
mance and generalization to other flows, as seen from the narrow
spread of model performance for different random initialization
and their consistent dominance over other models in the gen-
eralization tests. Note that even a modest 4× effective coarse
graining in resolution still corresponds to a 5× computational
speed-up. In contrast, the black box ML methods exhibit high
sensitivity to random initialization and do not generalize well,
with much less consistent statistical accuracy and stability.

Accelerating LES. Finally, up until now we have illustrated our
method for DNS of the Navier–Stokes equations. Our approach
is quite general and could be applied to any nonlinear PDE. To
demonstrate this, we apply the method to accelerate LES, the
industry standard method for large-scale simulations where DNS
is not feasible.

Here we treat the LES at high resolution as the ground-truth
simulation and train an interpolation model on a coarser grid for
Kolmogorov flows with Reynolds number Re=105 according to
the Smagorinsky–Lilly SGS model (8). Our training procedure
follows the exact same approach we used for modeling DNS.
Note in particular that we do not attempt to model the parame-
terized viscosity in the learned LES model but rather let learned
interpolation model this implicitly. Fig. 6 shows that learned
interpolation for LES still achieves an effective 8× upscaling,
corresponding to roughly 40× speed-up.

Discussion
In this work we present a data-driven numerical method that
achieves the same accuracy as traditional finite difference/finite
volume methods but with much coarser resolution. The method
learns accurate local operators for convective fluxes and resid-
ual terms and matches the accuracy of an advanced numerical
solver running at 8 to 10× finer resolution, while performing
the computation 40 to 80× faster. The method uses ML to
interpolate better at a coarse scale, within the framework of
the traditional numerical discretizations. As such, the method
inherently contains the scaling and symmetry properties of the
original governing Navier–Stokes equations. For that reason, the
methods generalize much better than pure black-box machine-
learned methods, not only to different forcing functions but also
to different parameter regimes (Reynolds numbers).

What outlook do our results suggest for speeding up three-
dimensional turbulence? In general, the runtime T for efficient
ML augmented simulation of time-dependent PDEs should scale
like

T ∼ (CML +Cphysics)

(
N

K

)d+1

, [3]

where CML is the cost of ML inference per grid point, Cphysics is
the cost of baseline numerical method, N is the number of grid
points along each dimension of the resolved grid, d is the number
of spatial dimensions, and K is the effective coarse graining fac-
tor. Currently, CML/Cphysics≈ 12, but we expect that much more
efficient ML models are possible, e.g. by sharing work between
time steps with recurrent neural nets with physical motivated
architectures (54, 55). We expect the 10× decrease in effective
resolution discovered here to generalize to three-dimensional
and more complex problems. This suggests that speed-ups in
the range of 103 to 104 may be possible for three-dimensional
simulations. Further speed-ups, as required to capture the full
range of turbulent flows, will require either more efficient repre-
sentations (e.g., based on solution manifolds rather than a grid)
or being satisfied with statistical rather than pointwise accuracy
(e.g., as done in LES modeling).

In summary, our approach expands the Pareto frontier of
efficient simulation in CFD, as illustrated in Fig. 1A. With ML-
accelerated CFD, users may either solve expensive simulations
much faster or increase accuracy without additional costs. To put
these results in context, if applied to numerical weather predic-
tion, increasing the duration of accurate predictions from 4 to 7
time units would correspond to approximately 30 y of progress
(56). These improvements are possible due to the combined
effect of two technologies still undergoing rapid improvements:
modern deep learning models, which allow for accurate simu-
lation with much more compact representations, and modern
accelerator hardware, which allows for evaluating said models
with a remarkably small increase in computational cost. We
expect both trends to continue for the foreseeable future and to
eventually impact all areas of computationally limited science.

Data Availability. Source code for our models, including learned com-
ponents, and training and evaluation datasets are available at GitHub
(https://github.com/google/jax-cfd).

ACKNOWLEDGMENTS. We thank John Platt and Rif A. Saurous for encour-
aging and supporting this work and for important conversations and
Yohai bar Sinai, Anton Geraschenko, Yi-fan Chen, and Jiawei Zhuang for
important conversations.

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

PNAS | 7 of 8
https://doi.org/10.1073/pnas.2101784118

https://github.com/google/jax-cfd
https://doi.org/10.1073/pnas.2101784118

1. L. F. Richardson, Weather Prediction by Numerical Process (Cambridge University
Press, 2007).

2. P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction.
Nature 525, 47–55 (2015).

3. T. Schneider et al., Climate goals and computing the future of clouds. Nat. Clim.
Change 7, 3–5 (2017).

4. P. Neumann et al., Assessing the scales in numerical weather and climate predictions:
Will exascale be the rescue? Philos. Trans. R. Soc. A 377, 20180148 (2019).

5. J. D. Anderson, “Basic philosophy of CFD” in Computational Fluid Dynamics, J. F.
Wendt, Ed. (Springer, 2009), pp. 3–14.

6. A. Bakhshaii, E. A. Johnson, A review of a new generation of wildfire–atmosphere
modeling. Can. J. For. Res. 49, 565–574 (2019).

7. W. M. Tang, V. S. Chan, Advances and challenges in computational plasma science.
Plasma Phys. Contr. Fusion 47, R1 (2005).

8. S. B. Pope, Turbulent Flows (Cambridge University Press, 2000).
9. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press,

1995).
10. R. D. Moser, S. W. Haering, R. Y. Gopal, Statistical properties of subgrid-scale

turbulence models. Annu. Rev. Fluid Mech. 53 (2020).
11. C. Meneveau, J. Katz, Scale-invariance and turbulence models for large-eddy

simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000).
12. J. Boussinesq, Theorie de l’ecoulement tourbillant. Mémoires de l’Acad. des Sci. 23,

46–50 (1877).
13. G. Alfonsi, Reynolds-averaged Navier–Stokes equations for turbulence modeling.

Appl. Mech. Rev. 62, 040802 (2009).
14. J. Smagorinsky, General circulation experiments with the primitive equations: I. The

basic experiment. Mon. Weather Rev. 91, 99–164 (1963).
15. M. Lesieur, O. Metais, New trends in Large-Eddy simulations of turbulence. Annu.

Rev. Fluid Mech. 28, 45–82 (1996).
16. Q. Malé et al., Large eddy simulation of pre-chamber ignition in an internal

combustion engine. Flow Turbul. Combust. 103, 465–483 (2019).
17. P. Wolf, G. Staffelbach, L. Y. M. Gicquel, J.-D. Müller, T. Poinsot, Acoustic and large

eddy simulation studies of azimuthal modes in annular combustion chambers.
Combust. Flame 159, 3398–3413 (2012).

18. L. Esclapez et al., Fuel effects on lean blow-out in a realistic gas turbine combustor.
Combust. Flame 181, 82–99 (2017).

19. C. P. Arroyo, P. Kholodov, M. Sanjosé, S. Moreau, “CFD modeling of a realistic turbo-
fan blade for noise prediction. Part 1: Aerodynamics” in Proceedings of the Global
Power and Propulsion Society (GPPS, 2019).

20. S. B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows.
New J. Phys. 6, 35 (2004).

21. J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016).

22. K. Duraisamy, G. Iaccarino, H. Xiao, Turbulence modeling in the age of data. Annu.
Rev. Fluid Mech. 51, 357–377 (2019).

23. R. Maulik, O. San, R. Adil, V. Prakash, Subgrid modelling for two-dimensional
turbulence using neural networks. J. Fluid Mech. 858, 122–144 (2019).

24. A. Beck, D. Flad, C.-D. Munz, Deep neural networks for data-driven les closure models.
J. Comput. Phys. 398, 108910 (2019).

25. B. Kim et al., Deep fluids: A generative network for parameterized fluid simulations.
Comput. Graph. Forum 38, 59–70 (2019).

26. Z. Li et al., Neural operator: Graph kernel network for partial differential equations.
arXiv [Preprint] (2020). https://arxiv.org/abs/2003.03485 (Accessed 16 March 2021).

27. K. Bhattacharya, B. Hosseini, N. B. Kovachki, A. M. Stuart, Model reduction and
neural networks for parametric PDEs. arXiv [Preprint] (2020). https://arxiv.org/abs/
2005.03180 (Accessed 10 December 2020).

28. R. Wang, K. Kashinath, M. Mustafa, A. Albert, R. Yu, “Towards physics-informed deep
learning for turbulent flow prediction” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (ACM, 2020), pp.
1457–1466.

29. B. Lusch, J. N. Kutz, S. L. Brunton, Deep learning for universal linear embeddings of
nonlinear dynamics. Nat. Commun. 9, 1–10 (2018).

30. N. B. Erichson, M. Muehlebach, M. W. Mahoney, Physics-informed autoencoders for
lyapunov-stable fluid flow prediction. arXiv [Preprint] (2019). https://arxiv.org/abs/
1905.10866 (Accessed 10 December 2020).

31. J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, “Accelerating Eulerian fluid simu-
lation with convolutional networks” in 34th International Conference on Machine
Learning (2017). http://proceedings.mlr.press/v70/tompson17a/tompson17a.pdf. Ac-
cessed 10 December 2020.

32. O. Obiols-Sales, A. Vishnu, N. Malaya, A. Chandramowlishwaran, “CFDNet: A
deep learning-based accelerator for fluid simulations” in 34th ACM International
Conference on Supercomputing (ACM, 2020).

33. J. Sirignano, J. F. MacArt, J. B. Freund, DPM: A deep learning PDE augmentation
method with application to large-eddy simulation. J. Comput. Phys., 423:109811,
2020.

34. K. Um, R. Brand, Y. R. Fei, P. Holl, N. Thuerey, “Solver-in-the-loop: Learning from
differentiable physics to interact with iterative PDE-solvers” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, Eds. (Curran Associates, Inc, 2020), vol. 33, pp. 6111–6122.

35. J. Pathak et al., Using machine learning to augment coarse-grid computational
fluid dynamics simulations. arXiv [Preprint] (2020). https://arxiv.org/abs/2010.00072
(Accessed 10 December 2020).

36. Y. Bar-Sinai, S. Hoyer, J. Hickey, M. P. Brenner, Learning data-driven discretizations
for partial differential equations. Proc. Natl. Acad. Sci. U.S.A. 116, 15344–15349
(2019).

37. J. Zhuang et al., Learned discretizations for passive scalar advection in a two-
dimensional turbulent flow. Phys. Rev. Fluid., in press.

38. J. Bradbury et al., JAX: Composable transformations of Python+NumPy programs.
http://github.com/google/jax. Deposited 15 December 2020.

39. L. Li et al., Kohn-Sham equations as regularizer: Building prior knowledge into
machine-learned physics. Phys. Rev. Lett. 126, 036401 (2021).

40. S. S. Schoenholz, E. D. Cubuk, “JAX, M.D.: A framework for differentiable physics”
in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, Eds. (Curran Associates, Inc., 2020), vol. 33, pp.
11428–11441.

41. K. Duraisamy, Perspectives on machine learning-augmented Reynolds-averaged
and large eddy simulation models of turbulence. arXiv [Preprint] (2020).
https://arxiv.org/abs/2009.10675 (Accessed 16 March 2021).

42. A. Griewank, Achieving logarithmic growth of temporal and spatial complex-
ity in reverse automatic differentiation. Optim. Methods Software 1, 35–54
(1994).

43. G. J. Chandler, R. R. Kerswell, Invariant recurrent solutions embedded in a turbulent
two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554–595 (2013).

44. G. Boffetta, R. E. Ecke, Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–
451 (2012).

45. Z. Ben-Haim et al., Inundation modeling in data scarce regions. arXiv [Preprint] (2019).
https://arxiv.org/abs/1910.05006 (Accessed 10 December 2020).

46. K. Yang, Y.-F. Chen, G. Roumpos, C. Colby, J. Anderson, “High performance Monte
Carlo simulation of ising model on TPU clusters” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Association for Computing Machinery, New York, 2019), pp. 1–15.

47. T. Lu, Y.-F. Chen, B. Hechtman, T. Wang, J. Anderson. Large-scale discrete fourier trans-
form on TPUs. arXiv [Preprint] (2020). https://arxiv.org/abs/2002.03260 (Accessed 10
December 2020).

48. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers. Cr. Acad. Sci. URSS 30, 301–305 (1941).

49. R. H. Kraichnan, D. Montgomery, Two-dimensional turbulence. Rep. Prog. Phys. 43,
547 (1980).

50. G. Boffetta, R. E. Ecke, Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–
451 (2012).

51. K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(IEEE, 2016), pp. 770–778.

52. P. W. Battaglia et al., Relational inductive biases, deep learning, and graph networks.
arXiv [Preprint] (2018). https://arxiv.org/abs/1806.01261 (Accessed 10 December
2020).

53. A. Sanchez-Gonzalez et al., “Learning to simulate complex physics with graph
networks” in 37th International Conference on Machine Learning (2020). http://
proceedings.mlr.press/v119/sanchez-gonzalez20a/sanchez-gonzalez20a.pdf. Accessed
12 May 2021.

54. T. Nguyen, R. Baraniuk, A. Bertozzi, S. Osher, B. Wang, “Momentumrnn: Integrating
momentum into recurrent neural networks” in Advances in Neural Information Pro-
cessing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.
(Curran Associates, Inc., 2020), vol. 33, pp. 1924–1936.

55. P.-J. Hoedt et al., MC-LSTM: Mass-Conserving LSTM. arXiv [Preprint] (2021).
https://arxiv.org/abs/2101.05186 (Accessed 16 March 2021).

56. P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction.
Nature 525, 47–55 (2015).

8 of 8 | PNAS
https://doi.org/10.1073/pnas.2101784118

Kochkov et al.
Machine learning–accelerated computational fluid dynamics

https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2005.03180
https://arxiv.org/abs/2005.03180
https://arxiv.org/abs/1905.10866
https://arxiv.org/abs/1905.10866
http://proceedings.mlr.press/v70/tompson17a/tompson17a.pdf
https://arxiv.org/abs/2010.00072
http://github.com/google/jax
https://arxiv.org/abs/2009.10675
https://arxiv.org/abs/1910.05006
https://arxiv.org/abs/2002.03260
https://arxiv.org/abs/1806.01261
http://proceedings.mlr.press/v119/sanchez-gonzalez20a/sanchez-gonzalez20a.pdf
http://proceedings.mlr.press/v119/sanchez-gonzalez20a/sanchez-gonzalez20a.pdf
https://arxiv.org/abs/2101.05186
https://doi.org/10.1073/pnas.2101784118

