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Abstract

Mitogens trigger cell division in animals. In plants, cytokinins, a group of phytohormones derived 

from adenine, stimulate cell proliferation. Cytokinin signalling is initiated by membrane-

associated histidine kinase receptors and transduced through a phosphorelay system. Here we 

show, in the Arabidopsis shoot apical meristem (SAM), that cytokinin regulates cell division by 

promoting nuclear shuttling of Myb-domain protein 3R4 (MYB3R4), a transcription factor that 

activates mitotic gene expression. Newly synthesized MYB3R4 protein resides predominantly in 

the cytoplasm. At the G2/M transition, rapid nuclear accumulation of MYB3R4—consistent with 

an associated transient peak in cytokinin concentration—feeds a positive-feedback loop involving 

importins, and initiates a transcriptional cascade that drives mitosis and cytokinesis. An 

engineered nuclear-restricted MYB3R4 mimics the cytokinin effects in enhancement of cell 

proliferation and meristem growth.
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Cytokinin promotes nuclear localization of a transcription factor to activate cell division.

Organ morphogenesis in plants is largely determined by the rate and patterns of cell division 

(1) occurring primarily in meristematic tissues such as the shoot and root meristems, and 

vascular cambium (2). The plant hormone cytokinin stimulates cell proliferation (3, 4) and 

acts with auxin to coordinate the balance between stem cell division and differentiation (5, 

6). While the molecular mechanisms underlying plant cell cycle progression (7) and 

cytokinin signal transduction (8–11) have been well-characterized, it is unclear how 

cytokinin signals activate mitotic cell division.

The Arabidopsis shoot apical meristem (SAM) harbors stem cells that undergo active 

proliferation (12). Reduced cytokinin levels (13, 14) or impaired cytokinin signalling (15) 

result in smaller meristems with fewer cells. Exogenous cytokinin application promotes cell 

division, leading to enlarged meristems in wild-type (Col-0) plants that closely resemble 

those in the cytokinin oxidase mutant ckx3 ckx5 (16) in which endogenous cytokinin levels 

are elevated due to reduction in cytokinin degradation (fig. S1).

Two MYB3R transcription factors regulate cytokinin response

A family of three-repeat R1R2R3 MYB transcription factors have been implicated in the 

control of mitotic gene expression (17–20). Among the five MYB3R genes in Arabidopsis, 

only MYB3R1 and MYB3R4 are highly expressed in the SAM, and their mRNAs are 

enriched in dividing cells, as assayed by in situ hybridization (fig. S2A). Compared to wild 

type, the myb3r1 myb3r4 double mutant (20) has a reduced number of cells in both the shoot 

and root meristems (Fig. 1, A and C, and fig. S3). After cytokinin treatment, a large 

proportion (~60–70%) of myb3r1 myb3r4 SAMs terminated prematurely (fig. S2, B to F). In 

myb3r1 myb3r4 SAMs that did not terminate, the meristem size decreased and the number 

of the epidermal (L1) cells was reduced from 164 ±19 (n=11) in mock-treated controls to 

109 ± 39 (n=11) after 100 μM BA treatment (3 external applications spaced by 2 days), 

whereas in wild-type SAMs the same cytokinin treatment increased the number of L1 cells 

from 269 ± 15 (n=12) to 378 ± 24 (n=11) (Fig. 1, B and C). Therefore, instead of sustaining 

cell proliferation activity, high levels of cytokinin increase the relative ratio of stem cell 

differentiation to division in a myb3r1 myb3r4 genetic background, suggesting that 

cytokinin-activated cell division in the shoot meristem requires MYB3R1 and/or MYB3R4.

MYB3R1 and MYB3R4 activate core cell cycle gene expression

Genomic binding targets of MYB3R1 and MYB3R4 were identified using chromatin 

immunoprecipitation sequencing (ChIP-seq). Because expression of MYB3R1 and 

MYB3R4 is restricted to dividing cells (fig. S2A), and because of the low stability of these 

proteins (21), we applied the Maximized Objects for Better Enrichment (MOBE)-ChIP 

method, a strategy designed to detect low signals (22). We dissected and pooled 

approximately 1,000 shoot meristems from pMYB3R1::GFP-MYB3R1 and 

pMYB3R4::GFP-MYB3R4 plants. MYB3R1 and MYB3R4-bound DNA fragments were 

purified using an anti-GFP antibody and sequenced. From three biological replicates (i.e. 

~3,000 meristems for each MYB3R protein), we identified 5,477 and 171 gene regions that 
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were bound by MYB3R1 and MYB3R4, respectively (Table S1). 97% of the MYB3R4 

targets were shared by MYB3R1 (Fig. 2A); their binding regions also largely overlapped at 

the gene promoters (fig. S4A). Compared to wild type, the expression levels of the 166 

MYB3R1 and MYB3R4 common target genes were mildly increased in myb3r1 
inflorescence meristems while most were down-regulated in the myb3r4 single or the 

myb3r1 myb3r4 double mutants (Fig. 2B, and fig. S4, B and C). Thus MYB3R4 

predominantly activates gene expression, consistent with a dual luciferase assay showing 

that the promoter activity of target genes was enhanced markedly by MYB3R4 (fig. S4D). 

The overlap of MYB3R1 and MYB3R4 targets and their proximity when bound at gene 

promoters suggest the possibility of cooperative action in transcriptional control, as for 

MYB3R1 interacting with MYB3R3 and MYB3R5 in inhibition of cell division in post-

mitotic or DNA-damaged cells (21, 23–25), and with TSO1 in regulation of flower 

morphogenesis (26). Indeed, through bimolecular fluorescence complementation (BiFC) and 

co-immunoprecipitation (CoIP) assays, it was found that MYB3R1 associates with 

MYB3R4 (fig. S5).

In synchronized Arabidopsis tissue culture cells (27), the expression levels of most 

MYB3R1 target genes remain constant during the cell cycle (fig. S6A), in line with their 

broad roles in developmental and metabolic processes (fig. S6B). In contrast, MYB3R4 

targets exhibited a sharp increase in RNA expression at the G2/M transition (fig. S6, A and 

C). RNA FISH for 19 tested targets detected their mRNAs only in dividing cells (Fig. 2C, 

and fig. S6, D and E). MYB3R1 and MYB3R4 targets are involved in all key steps of mitotic 

progression such as cyclin-dependent kinase (CDK) activation/inhibition, chromosome re-

organization/segregation, and assembly of the phragmoplast structure (Fig. 2D). We 

previously showed that the mRNAs of CELL DIVISION CYCLE 20 (CDC20) and CELL 
CYCLE SWITCH 52B (CCS52B), encoding coactivators of the anaphase-promoting 

complex/cyclosome (APC/C) that targets cell cycle proteins for degradation (28), are 

expressed in dividing cells but sequestered in the nucleus before nuclear envelope 

breakdown (NEBD) (29). Both CDC20 and CCS52B are direct binding targets of MYB3R1 

and MYB3R4. We also observed enrichment of genes that modulate transcription, signal 

transduction, cell wall synthesis/modification, and cell wall signalling (Fig. 2D; Table S2).

Nucleo-cytoplasmic dynamics of MYB3R4 during cell division

Both GFP-MYB3R1 and GFP-MYB3R4 fusion proteins are functional in genetic 

complementation assays (fig. S7A). Similarly to typical transcription factors, GFP-MYB3R1 

is localized in the nucleus (fig. S7B, and movie S1). For MYB3R4, exclusive nuclear 

localization is only seen in a small proportion (~ 6%) of cells while in a majority of GFP-

MYB3R4 expressing cells, GFP fluorescence is present in both cytoplasm and nucleus (Fig. 

2E, and fig. S7C, and movies S2, S3). This is the case in both shoot and root meristem cells 

(fig. S8, A and B) as well as in non-dividing cells in which GFP-MYB3R4 is ectopically 

expressed from the Arabidopsis UBIQUITIN10 (UBQ10) promoter (fig. S8, C and D). 

Leptomycin B (LMB) treatment, which blocks nuclear export (30), results in re-distribution 

of GFP fluorescence signals into the nucleus (fig. S8A, and movies S4), demonstrating that 

MYB3R4 is a nuclear-exported transcription factor.
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Time lapse observations of individual cells undergoing division revealed a recurrent pattern 

of rapid changes in GFP-MYB3R4 protein localization (Fig. 2F, and fig. S9). Preceding cell 

division, GFP-MYB3R4 fluorescence signal was detected predominantly in the cytoplasm. 

At the onset of mitosis, shortly before NEBD, a rapid nuclear accumulation of GFP-

MYB3R4 led to the highest nuclear concentration of the protein observed in the cell cycle. 

During the subsequent steps of mitotic division, GFP-MYB3R4 was enriched in the cellular 

domains corresponding to spindles and phragmoplast. After nuclear envelope reformation at 

the end of cytokinesis, GFP-MYB3R4 protein showed a second phase of nuclear 

accumulation, but was soon exported back to the cytoplasm. Constitutively expressed GFP-

MYB3R4 also exhibits transient nuclear localization in prophase cells (fig. S8C).

Cytokinin promotes MYB3R4 nuclear shuttling

To characterize the factors that regulate MYB3R4 nucleo-cytoplasmic trafficking, we first 

changed photosynthetic activity (light/dark shift) or nutrient status, both of which affect cell 

division (31). Light slightly increased the nuclear proportion of MYB3R4, while the other 

changes had no effect (fig. S10). Because MYB3R4 is required for cytokinin-activated cell 

division, we next tested whether cytokinin modulates MYB3R4 subcellular dynamics. A 

series of different concentrations of trans-zeatin (tZ), the most prevalent cytokinin in plants, 

was applied to the GFP-MYB3R4 SAMs. High concentrations of tZ (≥100 μM) lead to re-

localization of GFP-MYB3R4 into the nucleus in all of the cells where the protein was 

present (Fig. 3A, and fig. S11, A and B). Similar effects were observed for 

isopentenyladenine (iP) and BA (Fig. 3A, and movies S5–S7), but auxin had no effect (fig. 

S11C). Cytokinin action on MYB3R4 nuclear accumulation was not inhibited by 

cycloheximide (CHX, a protein synthesis inhibitor) (fig. S11D), indicating the movement of 

pre-existing MYB3R4 protein into the nucleus, and that MYB3R4 nuclear trafficking is a 

direct response to cytokinin.

To dissect how cytokinin promotes MYB3R4 nuclear localization, we analyzed the 

expression patterns of all importin and exportin genes (32) at the shoot apex. Most display a 

uniform distribution or are partially enriched in flower primordia. However, the mRNAs of 

IMPORTIN ALPHA 3 (IMPA3), encoding the importin subunit α−3 also known as MOS6 
(MODIFIER OF SNC1, 6) (33), and IMPA6, exhibit a patchy pattern resembling the 

expression of cell cycle-regulated genes (Fig. 3B, and fig. S12). We confirmed their 

expression in dividing cells by RNA FISH (fig. S13, A and B), and by fluorescence reporter 

live imaging (fig. S13C). Both IMPA3 and IMPA6 were direct targets of MYB3R1 and 

MYB3R4 in the ChIP-seq experiments (fig. S13D). IMPA3 and IMPA6 are α family 

importins that function as adaptors to recognize target proteins for nuclear import. To 

examine the possible impact of importins on MYB3R4 nuclear translocation, we co-

expressed RFP-IMPA3 and GFP-MYB3R4 in Nicotiana benthamiana leaf cells. In the 

absence of RFP-IMPA3, GFP-MYB3R4 shows a nuclear and cytoplasmic distribution 

similar to that in Arabidopsis cells. After co-expression with RFP-IMPA3, the nuclear 

proportion of GFP-MYB3R4 protein was significantly increased (Fig. 3C). In contrast, in 

the Arabidopsis impa3–1 and impa6–2 mutant SAMs, the relative amount of GFP-MYB3R4 

in the nucleus was reduced compared to the wild-type plants (fig. S13, E and F). Therefore, 

it seems likely that MYB3R1 and MYB3R4 activate IMPA3 and IMPA6 expression, 
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facilitating MYB3R4 nuclear importation. This interplay between MYB3R4 and importins 

could represent a positive feedback loop that would enable more rapid nuclear import of 

MYB3R4 proteins. To test the feasibility of this hypothesis, we established a mathematical 

model to simulate MYB3R4 dynamics during the cell cycle. When using experimentally 

derived parameter values, we found that a peak of cytokinin input induces nuclear 

translocation of MYB3R4 (fig. S14, A–D). Incorporating the positive feedback with IMPA3 

and IMPA6 causes MYB3R4 nuclear trafficking to become both faster and stronger (fig. 

S14, E–G).

The level of cytokinins, like the expression of mitotic genes, fluctuates during the plant cell 

cycle: endogenous cytokinin content slightly increases in the middle of S phase and exhibits 

a sharp peak at the G2/M transition (34–36). The first peak of cytokinins is in line with the 

report that cytokinin induces CYCLIN D3 (CYCD3) expression for the G1/S transition (37). 

It has also been shown that inhibiting cytokinin synthesis at G2 blocks mitotic entry in 

tobacco Bright Yellow 2 (BY-2) cells (38). Our data demonstrate that i) the second peak of 

cytokinin levels coincides with rapid MYB3R4 nuclear accumulation, and ii) cytokinin 

promotes MYB3R4 nuclear re-localization but requires high hormone concentration. On the 

basis of these observations, we postulate that the high concentration of cytokinins at the 

G2/M transition promotes MYB3R4 nuclear localization to activate mitotic cell cycle gene 

expression (Fig. 3D).

MYB3R4 constitutive nuclear localization mimics cytokinin response

Finally, we tested whether perturbing MYB3R4 nucleo-cytoplasmic shuttling would 

influence cell division activity. To localize a nuclear export signal (NES), we generated a 

series of 11 truncated GFP-tagged MYB3R4 derivatives, and expressed them in a wild-type 

background under control of the MYB3R4 promoter (fig. S15A). Subcellular localization 

analysis identified a sequence within the MYB3R4 carboxy-terminal region that is necessary 

and sufficient for cytosolic targeting (fig. S15B, and movie S8). Sequence comparison 

between MYB3R4 orthologues in different plant species identified a conserved sequence 

that could act as an NES (Fig. 4A). When the Phe (F) and Leu (L) residues were 

simultaneously mutated to Ala (A), nuclear export was abolished and the GFP-

MYB3R4mNES protein was exclusively nuclear (Fig. 4B, and movie S9).

GFP-MYB3R4mNES shows transcriptional activity (fig. S15C) and exhibits a similar DNA 

binding profile as the natural GFP-MYB3R4 (fig. S15D). Transcriptomic analysis showed 

an opposite trend in the pMYB3R4::GFP-MYB3R4mNES meristems compared to the 

myb3r4 mutant, with the expression of most MYB3R4 target genes greatly upregulated (fig. 

S15E). RNA FISH showed that in pMYB3R4::GFP-MYB3R4mNES the number of cells 

expressing MYB3R4 targets such as CDC20 is increased (Fig. 4C). These plants showed 

enlarged SAMs (Fig. 4D) and expanded WUSCHEL (WUS) expression (Fig. 4E). These 

phenotypes resemble, although are weaker than, those of wild-type plants treated with 

cytokinin. Furthermore, the growth retardation phenotypes of cytokinin-deficient plants of 

genotype 35S::CKX1 (13) or of cytokinin receptor mutant plants of genotype ahk2 ahk3 
(15) could be rescued by pMYB3R4::GFP-MYB3R4mNES (fig. S15, F and G). Thus, by 
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engineering a constitutively nuclear-localized form of MYB3R4, we were able to partially 

recapitulate cytokinin action.

Discussion

Underlying the many aspects of cytokinin-regulated developmental and physiological 

processes (11, 39) is the fundamental role of cytokinin in stimulating cell proliferation. Here 

we report that cytokinin directly promotes MYB3R4 nuclear localization to activate mitosis. 

Our data, together with that on cytokinin-induced CYCD3 expression (37), have revealed a 

mechanistic framework underlying cytokinin-regulated cell division. The dual regulatory 

modes of cytokinin in CYCD3 transcription and MYB3R4 nucleo-cytoplasmic shuttling 

ensure precise control of cell cycle transitions in response to different levels of cytokinin 

input, consistent with the dose-dependent action of cytokinin in plant cell division (4). 

Cytokinin-triggered MYB3R4-IMPA3/6 positive feedback leads to rapid MYB3R4 nuclear 

accumulation shortly before mitosis, but the transience of MYB3R4 presence in the nucleus 

is guaranteed by the dissolution of the nuclear membrane at prometaphase, which eliminates 

the possibilities of importin activity and nuclear localization. This allows for only one round 

of mitotic activation during the cell cycle. Variation of cytokinin levels in meristem cells, 

likely perceived by intracellular cytokinin receptors (40, 41), and acting through nuclear 

localization of a transcription factor, regulates stem cell numbers in the shoot stem cell 

niche.

Supplementary Material
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Fig. 1. A pair of MYB3R transcription factors regulate cytokinin-activated cell division in the 
Arabidopsis shoot meristem.
(A) The morphologies of wild-type (WT, Col-0) and myb3r1 myb3r4 shoot apical meristems 

(SAMs) in response to cytokinin treatment. The shoot apices collected shortly after bolting 

(with stem length 1cm) were treated with BA (100 μM) three times at two-day intervals. The 

SAMs (top panels) are outlined with dashed lines (in magenta), they are surrounded by 

developing flower primordia. Bottom panels show segmented L1 (epidermal) cells. The cell 

walls were stained using propidium iodide (PI, shown in gray). Scale bar in top panel, 20 

μm; in bottom panel, 50 μm.

(B and C) The effect of cytokinin treatment on meristem size (B) and cell number (C) in 

wild-type and myb3r1 myb3r4 SAMs. ***P < 0.001, ****P < 0.0001 (two-tailed t-test).
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Fig. 2. MYB3R4 transiently localizes in the nucleus to activate the expression of mitotic cell cycle 
genes.
(A) Venn diagram showing the number of gene regions bound by MYB3R1 and MYB3R4 as 

detected by ChIP-seq.

(B) Hierarchical clustering of 166 MYB3R1 and MYB3R4 common target genes based on 

their relative expression levels, as detected by RNA-seq in shoot apices of single and double 

mutants compared to wild type. Yellow indicates increased expression and purple indicates 

decreased expression.

(C) MYB3R1 and MYB3R4 bind to target gene promoters and activate their expression in 

dividing cells. The top panels show genome browser tracks of MYB3R1 and MYB3R4 

ChIP-seq coverage at a representative target gene CYCB1;2. The bottom panels show 

CYCB1;2 expression in wild-type and myb3r1 myb3r4 SAMs as revealed by RNA 

fluorescence in situ hybridisation (FISH). FISH signals are displayed using the Fire lookup 

table of Fiji (ImageJ) software. Scale bars, 50 μm.

(D) Classification of MYB3R1 and MYB3R4 targets based on their molecular functions. 

MYB3R1- and MYB3R4-regulated genes are involved in all key steps of mitotic 

progression. The common targets are shown in bold text.
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(E) Nucleo-cytoplasmic shuttling of MYB3R4. Shown are SAM cells expressing GFP-

MYB3R4 (green) together with a plasma membrane marker myr-CFP (blue) and a nuclear 

reporter H2B-RFP (red). Scale bars, 20 μm.

(F) The dynamic localization of GFP-MYB3R4 protein during cell division. MYB3R4 

shows rapid translocalization from the cytoplasm to the nucleus at the onset of mitosis (time 

zero). Scale bar, 5 μm.
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Fig. 3. Cytokinins promote MYB3R4 nuclear localization.
(A) The subcellular localization patterns of GFP-MYB3R4 after mock treatment or 

cytokinin treatment. GFP-MYB3R4 protein was predominantly nuclear after 6 h of 100 μM 

cytokinin treatment. The nuclear (nuc)-to-cytoplasmic (cyt) ratio of MYB3R4 was measured 

by quantifying the GFP fluorescence intensities in Fiji. Scale bars, 20 μm. ****P < 0.0001 

(two-tailed t-test).

(B) The expression of MYB3R1 and MYB3R4 target genes IMPA3 and IMPA6 in dividing 

cells of the SAM. IMPA3 and IMPA6 mRNAs were detected by in situ hybridisation. Scale 

bars, 50 μm.

(C) IMPA3 facilitates MYB3R4 nuclear import. GFP-MYB3R4 was expressed in the 

absence (upper panel) or presence (lower panel) of RFP-IMPA3 in the tobacco leaf cells. 

Free GFP serves as a control. The Arabidopsis UBQ10 promoter was used for expression of 

all genes. Scale bars, 50 μm. ****P < 0.0001 (two-tailed t-test).

(D) A schematic illustration of cytokinin-activated cell division and the feedback between 

importin and MYB3R4. A relatively high level of cytokinin induces CYCD3 expression to 

promote G1/S transition (37). As cell cycle proceeds, a further increase in cytokinin 

abundance promotes MYB3R4 nuclear translocation. Inside the nucleus, MYB3R4 interacts 

with MYB3R1 to activate the expression of mitotic cell cycle genes as well as IMPA3 and 

IMPA6. IMPA3 and IMPA6 subsequently facilitate MYB3R4 nuclear import, thus 

generating a positive feedback loop.
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Fig. 4. MYB3R4 nuclear localization stimulates cell division and meristem growth.
(A) Analysis of MYB3R4 nuclear export signal (NES). The conserved hydrophobic residues 

of MYB3R4 NES are substituted with alanine in the mutated NES (mNES).

(B) Protein localisation of GFP-MYB3R4 and GFP-MYB3R4mNES expressed under 

MYB3R4 promoter. GFP-MYB3R4mNES protein could be detected only in the nucleus. 

Scale bars, 20 μm.

(C) Increased expression of the target gene CDC20 in wild type and pMYB3R4::GFP-
MYB3R4mNES. Bottom panels show heatmap of the segmented CDC20 RNA FISH signals. 

Scale bars, 50 μm.

(D) Enhanced meristem growth in pMYB3R4::GFP-MYB3R4mNES. Top panels are 3-D 

surface views of wild-type and pMYB3R4::GFP-MYB3R4mNES SAMs. The SAMs are 

outlined with dashed lines (in magenta). Three representative pMYB3R4::GFP-
MYB3R4mNES transgenic lines were used for quantification of meristem size and L1 cell 

size. Scale bars, 20 μm. ****P < 0.0001 (two-tailed t-test).

(E) Comparison of WUS expression in wild-type and pMYB3R4::GFP-MYB3R4mNES 

SAMs, as revealed by mRNA in situ hybridisation. Scale bars, 50 μm.
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