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Plants are complex organisms that adapt to changes in their environment using an array
of regulatory mechanisms that span across multiple levels of biological organization. Due
to this complexity, it is difficult to predict emergent properties using conventional
approaches that focus on single levels of biology such as the genome, transcriptome, or
metabolome. Mathematical models of biological systems have emerged as useful tools
for exploring pathways and identifying gaps in our current knowledge of biological pro-
cesses. Identification of emergent properties, however, requires their vertical integration
across biological scales through multiscale modeling. Multiscale models that capture and
predict these emergent properties will allow us to predict how plants will respond to a
changing climate and explore strategies for plant engineering. In this review, we (1) sum-
marize the recent developments in plant multiscale modeling; (2) examine multiscale
models of microbial systems that offer insight to potential future directions for the model-
ing of plant systems; (3) discuss computational tools and resources for developing multi-
scale models; and (4) examine future directions of the field.

Introduction
Plants have developed complex regulatory strategies, across all levels of biological organization, to
adapt to changes in their environment [1]. With the development of next-generation sequencing tech-
niques, scientists have access to large-scale molecular phenotypes, providing information to help
connect plant genomes to their phenomes. While the flow of biological information along the Central
Dogma of biology (DNA→ RNA→ Protein) seems simple, it is exceedingly complex, making it diffi-
cult to predict plant phenotypes based solely on the genome. Advances in multiscale modeling are
needed to account for this inherent complexity and to capture dynamic biological system responses to
perturbations.
Plant modeling efforts range from empirical to mechanistic and vary in their predictive ability.

Highly parameterized empirical models provide accurate representations of living systems but are
rarely able to predict emergent properties. An exception to this is the OpenSimRoot model that pre-
dicted yield of maize as an emergent property of root architecture and water uptake [2]. Alternatively,
data-driven models, such as machine learning models are entirely predictive, detecting correlations
and extracting unseen patterns in the data. However, they do not reveal the underlying causal
mechanisms driving the predicted phenotypes. Further, these models are unable to predict beyond the
scope of the data used to train the models [3,4]. Finally, mechanistic models are mathematical repre-
sentations of observed phenomena that attempt to identify causal relationships that result in an emer-
gent phenotype, enabling the extrapolation of predictions about behaviors not present in the original
data [3,4]. However, like empirical models, many mechanistic models are only predictive within the
scope of the observed data, failing to predict phenotypes when new parameters are introduced [3].
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Mechanistic plant modeling has often focused on biochemical or metabolic processes like photosynthesis [5–
7], other primary or secondary metabolic pathways [8–10], and genome-scale metabolic models which aim to
capture all of the metabolic fluxes in an organism [11,12]. However, similar to just connecting plant genomes
and phenomes, predicting emergent phenotypic responses based solely on metabolic models are difficult.
Integrating empirical and mechanistic modeling approaches [3,4,13–15] and creating models that span across
biological levels through integrative multiscale modeling (Figure 1) is necessary to understand how plants
respond to a changing climate [16] or to explore how plants can be engineered to achieve specific phenotypic
goals [17].
In this review we discuss the current state of the art in plant multiscale modeling, as well as recent advances

in microbial multiscale modeling that offer insight to potential future directions for the multiscale modeling of
plant systems. We also discuss recently developed computational tools and resources for plant multiscale mod-
eling, and other future directions of the field.

Multiscale plant models
Many of the current plant multiscale models have been developed for the model plant Arabidopsis, which has
been extensively studied over the last few decades [18,19]. One of the most complete multiscale plant models to
date is a family of Arabidopsis framework models. The first version of this model integrated (1) carbon
dynamic, (2) functional-structural, (3) photothermal, and (4) photoperiodism models to describe Arabidopsis
rosette growth [20]. Together, these four models link genetic regulation and biochemical dynamics to organ
and plant growth. Chew et al. used their multiscale model to show that increasing leaf production rate in devel-
opmentally misregulated transgenic Arabidopsis sufficiently explained the smaller leaf size phenotype of this
transgenic. The authors added a clock sub-model that explicitly represented key pathways in the Arabidopsis
clock gene circuit to create version 2 of the Arabidopsis framework model (FMv2) [21]. The outputs of the
clock sub-model were used to regulate tissue elongations and starch metabolism. With these updates,
Arabidopsis FMv2 was able to predict phenotypic responses due to altered circadian timing in clock-mutant
plants [21].
Kinmonth-Schultz et al. further expanded on the Arabidopsis FMv1 model [20] by adding a mechanistic

description of temperature influence on FLOWERING LOCUS T (FT) expression, a photoperiodic flowering
regulator [22]. Their model also highlighted some areas for further improvement such as incorporating a more

Figure 1. Multiscale plant modeling involves integrating mathematical descriptions across space, time, and biological levels of

organization.
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mechanistic description of the relationship between leaf developmental age and FT expression. Zardilis et al.
further extended the framework models [20,21] to include reproductive growth and developed a whole life
cycle model of Arabidopsis, FM-life [23]. They used FM-life to explore different life cycle strategies for two
genetic inputs (low seed dormancy with low floral repression and high seed dormancy with high floral repres-
sion) in two different environments (Valencia, Spain and Oulu, Finland). Their model helps explain how
genetic variances result in different plant fitness responses in different environments [23].

Genome-scale metabolic models
Another area in multiscale plant modeling has been to integrate genome-scale metabolic flux models with gene
expression data [24,25], spatial data, and temporal data [25–29].
Liu et al. integrated a genome-scale metabolic flux model with condition-specific transcriptome data to

explore the metabolic response of Arabidopsis under low and high CO2 conditions [24]. However, in many
cases using only transcriptomic data has not resulted in the expected improvement in model predictions [30].
Possible reasons for this include that key regulation could be occurring after transcription at either proteomic
[31] or metabolic [32] levels. The authors also found this to be true with their Arabidopsis model, and they
used their model to explore potential areas of post-transcriptional regulation [24]. Their findings suggested that
Arabidopsis adapts to low or high CO2 environments by regulating the metabolic activity after transcription [24].
Multi-tissue genome-scale metabolic models have recently been used to study the balance of resources

between plant tissues and across growth stages. Scheunemann et al. used a genome-scale metabolic model to
develop a model of Arabidopsis root metabolism that consisted of several coupled cell-type specific models
[25]. They used this model to predict the flux of the growth hormone indole-3-actetate through the root and
its developmental stages [25]. De Oliveira Dal’Molin et al. created a multi-tissue genome-scale reconstruction
of Arabidopsis leaf, stem, and roots, which they used to explore carbon (C) and nitrogen (N) resource allocation
between the sink and source tissues with diurnal cycle constraints [26]. Likewise, a multi-tissue dynamic
genome-scale model of Arabidopsis was developed and used to explore C/N balance over different growth
stages [27]. Using this model, they identified sets of growth-stage specific reactions and reactions that were
present during all of the growth stages [27]. This approach has also been successful in crop plants as demon-
strated by Moreira et al. who developed a soybean multi-tissue genome-scale metabolic model of cotyledon and
hypocotyl/root axis tissues and used it to study how stored reserves in seeds are remobilized during seedling
growth [28]. In barley, a multiscale metabolic model was built to couple organ level static FBA models of
metabolism with a dynamic functional plant model to simulate the spatiotemporal metabolic behavior of barley
[29]. They used this model to study the source-sink interactions during the seed developmental phase of barley
plants.

Multiscale models for plant engineering
A third area in plant multiscale modeling are models that were developed to explore strategies for engineering
plants to achieve specific objectives. For example, a gene regulatory network model, a protein translation
model, a mechanistic photosynthesis model, and a leaf-level physiological model were coupled to explore the
impacts of genetic modifications to soybean photosynthesis in ambient and elevated CO2 [33]. The integrated
model was used to identify gene regulatory controls of the allocation of resources from Rubisco to RuBP regen-
eration, which has been shown to improve photosynthesis under elevated CO2. Similarly, a multiscale model of
lignin biosynthesis in the model tree Populus trichocarpa, was created by coupling a simple monolignol gene
protein translation model, a mechanistic model of the monolignol biosynthetic pathway [9], and a multiple
regression model to predict lignin and other wood traits under transgenic knockdowns of the monolignol
genes [17]. This multiscale model was used to explore potential gene engineering strategies for producing trees
with improved bioenergy traits while mitigating negative impacts on tree growth. This model was later
expanded by incorporating the impact of cross-regulatory influences between the monolignol gene transcripts
and proteins, capturing the effect of regulatory mechanisms that occur after transcription, such as potential
post-transcriptional and post-translational modifications on predicted monolignol protein abundances [34,35].
Most of the current work in plant multiscale modeling has been to semi-integrate models, where information

is passed from one layer to another, but limited feedback regulation is represented. The Arabidopsis FM models
[20–23] are close to a fully-integrated framework, but also have few regulatory components modeled. As plant
models become more fully-integrated, by communicating information across biological scales, they will better
represent dynamic response to perturbation, which may reveal insights about system response to untested
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conditions. Recent works in microbial multiscale modeling have demonstrated that emergent properties can be
predicted using fully-integrated models.

Learning from multiscale microbial models
Multiscale models have been developed for three different microbial organisms, Mycoplasma genitalium [36],
E. coli [37–39], and S. cerevisiae [40,41].
Twenty eight submodels of diverse cellular processes were integrated to develop a whole cell multiscale

model that describes the life cycle of a single cell of the human pathogen M. genitalium at the molecular level
[36]. Their model provided insights into previously unobserved cellular behaviors. Through comparison of
model predictions and experimental measurements they were able to detect new biological functions including
a novel component of the pyruvate dehydrogenase chemical reactions [36].
A multiscale model of E. coli integrated transcriptional regulation, signal transduction, and metabolic path-

ways, and was used to predict E. coli growth rates in adverse conditions for single gene knockouts [37]. A mul-
tiscale model of chemotactic E. coli was also developed, which models cross-compartment mechanisms linking
E. coli to its environment [38]. Further, researchers have used a large-scale integrated model of E. coli to assess
the cross-consistency of millions of heterogeneous E. coli parameters collected from the literature, and used the
identified inconsistencies to further improve their model [39].
In S. cerevisiae, Ye et al. followed the whole-cell modeling principles used to model M. genitalium [36,42] to

develop a whole-cell multiscale model. This model bridged the gap between genotype and phenotype predic-
tions by developing and integrating models on one second timescales of 26 cellular processes that span five
areas of cell biology [40]. Using this model, they were able to study the dynamic allocation of resources during
the cell cycle in real-time simulations. Ma et al. took a different approach by developing an interpretable neural
network that incorporated 2526 intracellular components, processes, and functions to model the hierarchical
structure and function of S. cerevisiae [41]. Their model was able to capture nearly all phenotypic variation in
cellular growth, including variation due to genetic interactions under single and double gene deletions. Further,
by using an interpretable neural network framework, they were able to identify previously undocumented pro-
cesses related to cell growth, DNA repair, and UV sensitivity [41].
Plants are orders of magnitude more complex than microbes, so modeling whole plant systems at the same

level of granularity as these microbial models may never be completely feasible. However, recently developed
computational and experimental tools have the potential to make more fully-integrated plant multiscale models
possible.

The future of multiscale plant modeling
Improving and developing models of metabolic regulation across biological scales including transcriptional,
post-transcriptional, translational, and post-translational regulation is one direction for the plant multiscale
modeling community. Due to the advances in next-generation sequencing techniques, genomic and transcrip-
tomic research has progressed at a much faster pace than their proteomic and metabolomic counterparts,
which primarily rely on mass spectrometry technologies. However, it has become increasingly clear the import-
ance of these omics levels when trying to scale from genotype to phenotype. Novel approaches that couple in
vivo proteins with their corresponding mRNA sequences are expected to leverage next-generation sequencing
capabilities for proteomics, improving the scalability, standardization, and cost of large-scale proteomic experi-
ments [43]. Another challenge to overcome is obtaining greater resolution of gene and gene product expression
over time and space, which would improve multiscale molecular models. Specifically, such spatial and temporal
information would inform modeling efforts aimed at understanding development at the cellular, tissue, organ,
and whole organism scales. New technologies that provide better spatial and temporal resolution include
fliFISH, which allows quantification of mRNA transcripts within organs and cell types [44], and FRET sensors
which are used to track dynamic protein-protein interactions, nutrient signaling, and subcellular visualization
of metabolites [45].
In addition to multiscale models of metabolic regulation in plants, future directions of plant multiscale mod-

eling will involve connecting these microscale cell-type specific, gene regulation, and metabolic models to
macroscale models such as multi-tissue and organ models, plant growth models (e.g. APSIM [46], BioCro [47],
DSSAT [48]), physiological models, and ecosystem models (e.g. Community Land Model [49]). In the last few
years computational tools have been developed to help achieve this goal. The yggdrasil framework [50] is an
Open source Python package that can couple models written in a variety of programming languages including
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C/C++, Python, R, Matlab, and Fortran. Kannan et al. used the yggdrasil framework to one-way couple a gene
regulatory network model (R), a protein translation model (Python), and a leaf photosynthesis model (Matlab)
[33]. yggdrasil is also capable of two-way coupling between models with different timescales, throughout a
simulation. Another tool, Vivarium [38], is an engine that allows different models to be assembled within a
hierarchy of embedded compartments and then run as integrated multiscale simulations with multiple time-
scales and distributed computation. Agmon et al. used this engine to develop their multiscale model of E. coli
chemotaxis [38]. The Chromar modeling language [51] was used in the FM-Life Arabidopsis model [23], and is
a declarative, agent-based language that allows for the compact definition of complex biological models that
can evolve with new biological reactions and components throughout a simulation. Additionally, advances in
high performance computing (HPC) have been developed and applied to biological problems such as param-
eterizing multiscale models through statistical inference [52], modeling biochemical reactions in 3D space [53],
and modeling the relationships between microscale mechanisms and emergent macroscopic behavior of a
gliding motility assay [54]. Multiscale models can have high computational costs, especially when scaling from
the microscales to the macroscales or when creating fully-integrated models that communicate across scales. As
such, HPC could be a key component in creating fully-integrated plant models similar to the fully-integrated
microbial models.
There are still many processes in plants that are unknown or not well understood, and as such are difficult

to model. Machine and deep learning approaches, which detect statistical correlations in data, have become
popular tools to develop predictive models in many fields. These models, however, are black-boxes and do not
provide information about the mechanisms behind those predictions, limiting their applicability to the data
used to train them and providing little new biological insight [3,4,41,55,56]. Interpretable or knowledge-primed
neural networks are a recent advancement in the deep learning field that seeks to address this problem. By
forcing the neural networks to have biologically relevant structure and hierarchy, interpretable neural networks
have been used to develop models that are both predictive and biologically informative. Interpretable neural
networks have been developed to model transcriptional control in fruit fly embryos [55], to predict cancer and
immune cell states from single-cell RNAseq data [56], and to model S. cerevisiae cellular growth [41].
Developing models that communicate across these levels of biological organization will enable us to do the

following: (1) Improve sink/source dynamics in the source-driven growth models. As many plant responses to
stress are sink limited [57–60], this will improve our understanding of plant responses to stress and help us to
identify engineering or management strategies for mitigating yield losses under stress; (2) Study carbon and
nutrient allocation and remobilization between plant organs. This would allow us to explore methods of achiev-
ing optimal allocation strategies and could lead to improved yields and the development of seeds and grains
with designed nutritional profiles; and (3) Explore how different plant engineering strategies respond in differ-
ing climates. This could have possible ecological impacts through the development of plants that are engineered
for higher yields or improved water and nitrogen use efficiencies.
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