
Combining primary cohort data with external aggregate 
information without assuming comparability

Ziqi Chen1, Jing Ning2,*, Yu Shen2, Jing Qin3

1Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, 
School of Statistics, East China Normal University, Shanghai, China

2Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 
USA

3National Institution of Allergy and Infectious Diseases, Bethesda, MD USA

Summary:

In comparative effectiveness research (CER) for rare types of cancer, it is appealing to combine 

primary cohort data containing detailed tumor profiles together with aggregate information derived 

from cancer registry databases. Such integration of data may improve statistical efficiency in 

CER. A major challenge in combining information from different resources however, is that 

the aggregate information from the cancer registry databases could be incomparable with the 

primary cohort data, which are often collected from a single cancer center or a clinical trial. We 

develop an adaptive estimation procedure, which uses the combined information to determine 

the degree of information borrowing from the aggregate data of the external resource. We 

establish the asymptotic properties of the estimators and evaluate the finite sample performance 

via simulation studies. The proposed method yields a substantial gain in statistical efficiency 

over the conventional method using the primary cohort only, and avoids undesirable biases when 

the given external information is incomparable to the primary cohort. We apply the proposed 

method to evaluate the long-term effect of trimodality treatment to inflammatory breast cancer 

(IBC) by tumor subtypes, while combining the IBC patient cohort at The University of Texas MD 

Anderson Cancer Center and the external aggregate information from the National Cancer Data 

Base (NCDB).
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1. Introduction

Comparative effectiveness research (CER) in oncology has attracted substantial attention 

because of its potential to provide timely treatment comparisons and improve health 

outcomes (Hahn and Schilsky, 2012). However, a major research challenge in CER is 

how to best use multiple sources of data to assemble quality evidence, especially for rare 

cancers. Inflammatory breast cancer (IBC) is a rare (less than 5% of breast cancer diagnoses 

annually) but aggressive breast cancer subtype, with 5-year survival rates of only 35% 

to 40% (Rueth et al., 2014). Because of the rarity of the disease, there have been no 

prospective randomized clinical trials to assess various treatment options and to identify the 

optimal ones (Robertson et al., 2010). The current IBC treatment guideline recommended 

by the National Comprehensive Cancer Network is trimodality, defined as neoadjuvant 

chemotherapy followed by modified radical mastectomy and post-mastectomy radiation 

therapy to the chest wall and draining lymphatics. It would be medical value to evaluate IBC 

patients’ long-term prognosis by treatment and their tumor subtype.

The IBC patient cohort at The University of Texas MD Anderson Cancer Center, denoted as 

the primary cohort, contains valuable individual patient information, including demographic 

variables, tumor biology and tumor cell proliferation markers, and detailed systematic 

adjuvant therapies and surgery management (Masuda et al., 2014). This primary cohort, with 

a median follow-up of 5.17 years (range 0.06 to 19 years), is ideal for better understanding 

the treatment effects for these patients by tumor subtype. Although MD Anderson is the 

largest cancer center in the world, the sample size of the primary cohort is not large 

enough to have adequate power and efficiency to characterize treatment effects by tumor 

subtype, due to the rarity of IBC. Complementary data sources, such as population-based 

cancer registry databases, denoted as external data, are being used increasingly for CER 

in oncology (Lyman and Levine, 2012). However, the large population-based databases, 

such as the Surveillance, Epidemiology and End Results (SEER) database and the National 

Cancer Data Base (NCDB), do not capture detailed tumor biology information, such as 

tumor cell proliferation markers. Hence, it is not possible to rely only on population-based 

databases to investigate treatment effects on disease prognosis by tumor subtype. Most uses 

of such databases have focused on monitoring national trends in the disease incidence, 

pattern of treatments, and mortality. Our goal is to facilitate a more accurate statistical 

estimation and inference by combining individual-level data from the primary cohort (e.g., 

the MD Anderson IBC cohort) with aggregate survival information (e.g., 5-year survival 

rates) from NCDB to improve evidence-based treatment guidelines for IBC patients by 

tumor subtypes.

In recent statistical and econometrical literature, combining information from a primary 

cohort with a published external aggregate has drawn considerable interest (Qin, 2017). 

Qin and Lawless (1994) and Qin (2000) developed the empirical-likelihood framework 

to borrow aggregate information from external resources, using the constraints imposed 

to the likelihood. Imbens and Lancaster (1994) discussed how to define constraints on 

regression parameters in econometrical survey sampling. Qin et al. (2015) used stratum­

specific probabilities from external resources to increase the estimation efficiency of logistic 

regression model fitting, given case-control data. Recently, Chatterjee et al. (2016) and 

Chen et al. Page 2

Biometrics. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Huang et al. (2016) developed extensions to accommodate data from complex stratified 

sampling designs and right-censored data. One essential assumption of the aforementioned 

methods is that the aggregate information from the external databases is comparable with 

those of the primary cohort. If the aggregate information was obtained from a different 

population, such information borrowing may result in misleading conclusions, and any 

efficiency gain could be spurious.

The penalized likelihood has been successfully used for variable selection purposes in 

regression analysis, in which penalty terms and tuning parameters shrink certain regression 

coefficients towards zero or exactly to zero, if needed. For example, Tibshirani (1996) 

proposed a least absolute shrinkage and selection operator (LASSO), and Fan and Li (2001) 

developed a non-concave penalized likelihood method with a smoothly clipped absolute 

deviation (SCAD) penalty. In the context of our applications, we propose a penalized 

constraint maximum likelihood to combine the primary cohort data and external aggregate 

information. A penalty function with additional parameters is included to characterize the 

potential discrepancy in the aggregate information from the primary cohort and external 

resources.

The remainder of this article is organized as follows. In Section 2, we introduce the 

notations and the Cox proportional hazards model for the data from the primary cohort 

with constraints to integrate the external information. In Section 3, we propose a penalized 

constraint maximum likelihood to control the degree of borrowing information from the 

external resources, which is determined by the magnitude of comparability. We develop a 

computational algorithm to obtain the estimators of unknown parameters. We also establish 

the asymptotic properties of the proposed estimators. In Section 4, we assess the empirical 

performance of the proposed estimators under various scenarios. We apply the proposed 

method to analyze the MD Anderson IBC cohort with aggregate survival information from 

NCDB in Section 5. We provide concluding remarks in Section 6. The detailed proofs are 

deferred to the online Supporting Information.

2. Notation and Model

Let T be the survival time from an initial event to an event of interest, and C be its censoring 

time. Denote the covariates of interest by the p-dimensional vector X with a cumulative 

density function (CDF) of G(·). Conditional on X, we assume that censoring time C and 

survival time T are independent, and T is absolutely continuous. Denote the conditional 

density function and the conditional survival function of T given X = x as f(t|x) and S(t|x). 

The observed data are represented by n independent copies, (Yi, Δi, Xi),i = 1, ⋯ ,n, where Yi 

= min{Ti, Ci}, Δi = I(Ti ⩽ Ci), and I(·) is the indicator function.

We assume the survival time T follows the proportional hazards model (Cox, 1972): λ(t|x) 

= λ(t) exp(xTβ), where β is a p–dimensional vector of regression coefficients and λ(t) is an 

unspecified baseline hazard function. Let Λ(t) = ∫0
tλ(u)du be the corresponding cumulative 

baseline hazard function. Under the proportional hazards model, the full log-likelihood 

function for the observed data including covariate information is, up to a constant,
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lF = ∑
i = 1

n
Δi Xi

Tβ + log dΛ Y i − Λ Y i exp Xi
Tβ + log dG Xi . (1)

Following the empirical likelihood principle (Owen, 1988; Qin and Lawless, 1994), let λi 

be the jump of Λ at Yi and pi be the jump of G at Xi. The log-likelihood function can be 

rewritten as the sum of the conditional likelihood of (Y, Δ) given X (denoted as l1) and log 

marginal likelihood of X (denoted as l2), where

l1 = ∑
i = 1

n
Δi XiTβ + log λi − n ∑

i = 1

n
λiS(0) Y i, β ,

l2 = ∑
i = 1

n
log pi , and,S(0)(t, β) = n−1 ∑

j = 1

n
I Y j ⩾ t exp XjTβ .

Suppose that in addition to individual-level data from the primary cohort, some aggregate 

information from the external resources is available. For example, the survival rates at time 

t* by subgroups are commonly reported using data from large population-based registries,

P T > t* ∣ X ∈ Ωk = ϕk, k = 1, 2, ⋯, K . (2)

We want to use such external information appropriately to improve the estimating efficiency 

for unknown parameters for the primary cohort under the proportional hazards model.

3. Method

For the primary cohort, we define the survival rate of the subgroup Ωk, as ϕk*, i.e.,

Pr T > t* ∣ X ∈ Ωk = ϕk*, k = 1, ⋯, K . (3)

When integrating the aggregate information with the primary cohort, one necessary 

assumption for the existing methods is that the survival information should be comparable 

between the different resources, i.e., ϕk* = ϕk, k = 1, ⋯ , K, referred to as the comparability 

assumption by some authors (Huang et al., 2016). We briefly review the work of Huang 

et al. (2016) in Section 3.1, and then present our proposed method to accommodate the 

potential violation of the comparability assumption, i.e., there exists at least one k such that 

ϕk* ≠ ϕk, in Section 3.2.

3.1 Comparable aggregate information from external resources

Under the assumption of comparability, we review the double empirical likelihood with 

constrains by Huang et al. (2016). The external aggregate information only depends on 

parameters of β and Λ(t*). As noted in Huang et al. (2016), the Breslow-type estimator of 
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Λ t*, β  yields biased estimation, since it involves the unknown parameter β. The solution is 

to introduce an additional parameter, defined as α = Λ(t*), whose sample analogue is

∑
i = 1

n
λiI Y i ⩽ t* − α = 0. (4)

Under constraint (4) and by the method of Lagrange multipliers, the objective function to be 

maximized is

∑
i = 1

n
Δi Xi

Tβ + log λi − n ∑
i = 1

n
λiS(0) Y i, β − nν ∑

i = 1

n
λiI Y i ⩽ t* − α . (5)

Taking a derivative of (5) with respect to λi, and letting the derivative be 0, they have

λi = Δi
n S(0) Y i, β + νI Y i ⩽ t*

, (6)

where ν is determined by ∑i = 1
n ΔiI Y i ⩽ t* / S(0) Y i, β + νI Y i ⩽ t* − α = 0. After 

plugging Equation (6) into (5), they have the double empirical log-likelihood,

l = ∑
i = 1

n
Δi Xi

Tβ − log S(0) Y i, β + νI Y i ⩽ t* + nνα + ∑
i = 1

n
log pi . (7)

Given the external aggregate information, the estimators of β, α, and ν can be derived by 

maximizing the likelihood function (7) with the following constraints:

pi ⩾ 0, ∑
i = 1

n
pi = 1, ∑

i = 1

n
piΨk Xi; β, α, ϕk = 0, k = 1, ⋯, K, (8)

where Ψk Xi; β, α, ϕk = I Xi ∈ Ωk exp −αexp Xi
Tβ − ϕk . We denote the corresponding 

estimators of β, α, and ν here as βC, αC and νC, respectively. Using the combined 

information, the baseline cumulative hazard function Λ(t) can be estimated by:

ΛC(t) = 1
n ∑

i = 1

n ΔiI Yi ⩽ t

S(0) Y i, βC + νCI Yi ⩽ t*
.

3.2 Potentially incomparable information from external resources

Cohorts with subjects enrolled in a single institution (e.g., MD Anderson) may not 

be comparable to the aggregate survival information, which is derived from a different 

population. Note that Equation (3) can be expressed equivalently to

E I X ∈ Ωk exp −Λ t* exp XTβ − ϕk* ∣ X ∈ Ωk = 0, k = 1, ⋯, K .
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We introduce a K-dimensional vector parameter τ = (τ1,·⋯ , τK)T to incorporate the 

potential incomparable information for ϕk*: E Ψk Xi; β, α, ϕk ∣ Xi ∈ Ωk = τk, for k = 

1, ⋯ , K. When the information from the two resources are comparable, we have 

τk = ϕk* − ϕk = 0, k = 1, ⋯ , K. Otherwise, there exists at least one k such that. We need to 

estimate τ and identify non-zero τks to adaptively combine the aggregate information from 

the external resources.

We propose a penalized empirical likelihood with extra constraints, which includes the 

log-likelihood specified in (7) and a penalty term with a tuning parameter γ on the potential 

differences characterized by τ,

lPe = l − n ∑
k = 1

K
pγ τk , (9)

under constraints ∑i = 1
n pi = 1, pi ⩾ 0 and ∑i = 1

n pi Ψk Xi; β, α, ϕk − I Xi ∈ Ωk τk = 0, for 

k = 1,·⋯ , K. Here, we use the smoothly clipped absolute deviation (SCAD) penalty, defined 

as

pγ(t) = γ | t |I( | t | ⩽ γ) − t2 − 2aγ | t | + γ2
2(a − 1) I(γ < | t | ⩽ aγ) + (a + 1)γ2

2 I( | t | > aγ),

with the first derivative of

pγ′ (t) = γ I(t ⩽ γ) +
(aγ − t)+
(a − 1)γ I(t > γ) ,

where γ > 0, and the parameter a is set to be 3.7, as recommended by Fan and Li (2001). 

The SCAD penalty has been well studied in the literature and has many desirable properties, 

including continuity, sparsity, and oracle property (Fan and Li, 2001; Fan and Peng, 2004).

Denote Ψ(Xi; β, α) = (Ψ1(Xi; β, α, ϕ1), ⋯ , ΨK(Xi; β, α, ϕK))T and Ii = (I(Xi ∈ Ω1), ⋯ , 

I(Xi ∈ ΩK))T. Applying the method of Lagrange multipliers to the penalized log-likelihood, 

we have

pi = 1
n × 1

1 + ξ(β, α, τ)T Ψ Xi; β, α − Ii ○ τ
, (10)

where ○ is the Hadamard product and ξ(β, α, τ) is determined by

1
n ∑

i = 1

n Ψ Xi; β, α − Ii ○ τ
1 + ξ(β, α, τ)T Ψ Xi; β, α − Ii ○ τ

= 0,

with a constraint 1+ξ(β, α, τ)T{Ψ(Xi; β, α)−Ii◦τ} ⩾ 1/n to satisfy 0 ⩽ pi ⩽ 1 for any given 

β, α, and τ. By substituting (10), the maximization of the log-likelihood lPe with the extra 

constraints can be achieved by maximizing the following penalized profile log-likelihood:
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lPro(β, α, τ) = ∑
i = 1

n
Δi Xi

Tβ − log S(0) Y i, β + ν(β, α, τ)I Y i ⩽ t* + nν(β,

α, τ)α − ∑
i = 1

n
log 1 + ξ(β, α, τ)T Ψ Xi; β, α − Ii ○ τ − n ∑

k = 1

K
pγ τk ,

(11)

where ν(β, α, τ) = 1
n ∑i = 1

n ξ(β, α, τ)T ∂Ψ Xi; β, α / ∂α / 1 + ξ(β, α, τ)T Ψ Xi; β, α − Ii ○ τ .

To maximize (11), we design a stable and efficient algorithm based on the method of 

profile likelihood. For any given τ, we can apply the estimation procedure in Huang et al. 

(2016) to obtain the estimators β(τ), α(τ), and ν(τ) : = ν(β(τ), α(τ), τ). We then maximize 

lPro(β(τ), α(τ), ν(τ)) to obtain the estimator τ , and finally update all estimators by β = β(τ), 
α = α(τ ), and ν = ν(τ ). Given these estimators, the cumulative baseline hazard function Λ(t) 
can be estimated by

Λ(t) = 1
n ∑

i = 1

n ΔiI Yi ⩽ t

S(0) Y i, β + νI Yi ⩽ t*
.

We call the proposed estimators the adaptive double empirical likelihood (ADEL) estimators 

from now on. In the estimating procedure, we choose the tuning parameter γ, such that it 

minimizes the Bayesian information criterion (BIC)-like criterion (Wang et al., 2007, 2009; 

Kai et al., 2011; Chen et al., 2014).

3.3 Asymptotic Properties

We establish asymptotic properties of (β, τ , Λ), where true values of these parameters are 

denoted as (β0, τ0, Λ0). Technical challenges arise due to the infinite dimension of Λ(·), 

as well as the variability from the estimated τ. Under the mild regularity conditions given 

in the online Supporting Information, we apply the empirical process techniques to prove 

the consistency and asymptotic normality of β, consistency of τ , and weak convergence of 

Λ. We respectively summarize the asymptotic properties of estimators under two settings in 

which the aggregate information are comparable or incomparable with the primary cohort. 

The proofs of the following Theorems are found in the online Supporting Information.

Theorem 3.1: When the external information is comparable (τ0 = 0), under the regularity 

assumptions specified in the online Supporting Information, as n → ∞, P(τ = 0) 1; 

n β − β0  converges to a multivariate normal distribution with a zero mean and covariance 

matrix Γ−1 = Σ + BQ−1BT −1
, where Σ−1 is the asymptotic covariance matrix of the partial 

likelihood estimator of β; B and Q are defined in the online Supporting Information, and 

n Λ(t) − Λ0(t)  converges to a zero-mean Gaussian process.

Remark 1.: When τ0 = 0, Theorem 3.1 shows that n β − β0  has the same asymptotic 

normal distribution as n βC − β0 . This implies that the proposed estimator achieves the 

Chen et al. Page 7

Biometrics. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



same efficiency as that by Huang et al. (2016). Similarly, at any t > 0, n Λ(t) − Λ0(t)  has 

the same asymptotic distribution as n ΛC(t) − Λ0(t) . Hence, we do not have any efficiency 

loss for the estimation of Λ(·) compared with the method of Huang et al. (2016).

When the external information is incomparable with the primary cohort (τ0 ≠ 0), let 

τ0
T = τ01

T , τ02
T . Without loss of generality, we assume τ01 ≠ 0 and τ02 = 0.

Theorem 3.2: Under the regularity assumptions specified in the online Supporting 

Information,, as n → ∞ τ1 p τ01; P τ02 = 0 1; n β − β0  converges to a zero mean 

multivariate normal distribution with covariance matrix Γ*−1 = (Σ + BQ−1BT)−1, where 

Γ* is nonsingular, and B and Q are defined in the online Supporting Information; and 

n Λ(t) − Λ0(t)  converges to a zero-mean Gaussian process.

Remark 2.: Note that (Σ + BQ−1BT)−1 ⩽ Σ−1 and BQ−1BT ⩽ BQ−1BT . This implies Γ−1 

⩽ Γ*−1 ⩽ Σ−1, confirming that the proposed estimator is more efficient than the partial 

likelihood estimator by using the primary cohort only. On the other hand, the estimating 

equations in Huang et al. (2016) have non-zero expectations in the presence of non-zero 

τ0, thus the corresponding estimator is not consistent (Struthers and Kalbfleisch, 1986). 

Although the asymptotic variance of βC is smaller than that of β, the non-consistency of βC
could bring misleading statistical inferences.

4. Simulation

We conducted simulation studies to evaluate the finite sample performance of the proposed 

ADEL. We further compared the performance of ADEL estimators with those of the 

standard Cox regression model with the partial likelihood (PL), and those of the double 

empirical likelihood (DEL) method by Huang et al. (2016) and its extended DEL (DEL-E) 

for handling a special case of the violation of the comparability assumption.

4.1 Simulation set up

For the primary cohort, we considered two covariates: X1 was a continuous covariate 

following the standard normal distribution and X2 was a binary variable with Pr(X2 = 1) = 

0.5. The survival times were generated from a Cox model with a hazard function of λ(t|X1, 

X2) = 2t exp(X1β1 + X2β2). Here, we set β1 = −0.5 and β2 = 0.5. The censoring times 

were generated from a uniform distribution with varying upper boundaries to have different 

censoring percentages. Sample sizes of 100 and 200 were used, and each scenario had 500 

repetitions.

The aggregate information consisted of survival rates at t* = 0.5 for two subgroups classified 

by the covariate information: Ω1 = {(X1, X2) : X1 ⩽ 0, X2 = 0} and Ω2 = {(X1, X2) : X1 > 0, 

X2 = 0}. Under the Cox model for the primary cohort, the survival information was specified 

as ϕ1* = Pr T > t* ∣ X ∈ Ω1 = 0.68, and ϕ2* = Pr T > t* ∣ X ∈ Ω2 = 0.84, respectively. 

We considered different settings in terms of magnitudes of discrepancy, representing four 

realistic relationships between the primary cohort and external aggregate information.
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Setting 1. The external aggregate information were matched with those of the 

primary cohort, i.e., ϕ1, ϕ2 = ϕ1*, ϕ2* = (0.68, 0.84) and (τ1, τ2) = (0, 0).

Setting 2. The external aggregate survival rates of the two subgroups were 0.64 and 

0.88, i.e., (τ1, τ2) = (0.04, −0.04). Under this setting, although the aggregate survival 

rates of the two subgroups were not exactly comparable, the “marginal” aggregate 

survival rate of the subgroup X2 = 0 was comparable (=0.76) between the primary 

cohort and external information.

Setting 3. The external aggregate survival rates of the two subgroups were 0.65 

and 0.81, i.e., (τ1, τ2) = (0.03, 0.03). In other words, the survival rates of the two 

subgroups in the primary cohort were higher when compared with the rates from the 

external resource.

Setting 4. The external aggregate survival rates of the two subgroups were 0.62 and 

0.78, i.e., (τ1, τ2) = (0.06, 0.06). This setting was similar to Setting 3, but with larger 

disparities between the primary cohort and external data.

4.2 Simulation results

In the settings of our simulation studies, we found that τ = 0 when γ >= 2. Our proposed 

penalized empirical likelihood became the empirical likelihood in Huang et al. (2016) when 

τ = 0. This implied that a reasonable range of the tuning parameter was [0, 2], otherwise the 

imposed penalty on τ was too large, such that τ = 0. We therefore chose the value of the 

tuning parameter γ by minimizing the BIC-like criterion (Wang et al., 2007, 2009; Kai et al., 

2011; Chen et al., 2014) over γ ∈ [0, 2].

Tables 1–4 summarize simulation results of the estimated regression coefficients under 

four settings, respectively. The summary statistics are the empirical biases, empirical 

standard deviation (SD), estimated standard errors (SE), square root of mean squared 

errors (RMSE), and coverage probabilities (CP) of 95% Wald-type confidence intervals for 

the estimated regression coefficients β. Tables S1 and S2 in the Supporting Information 

show simulation results for the estimated cumulative baseline hazard function. To 

report the overall performance of Λ(t), we used a sequence of 100 equidistant time 

points within the interquartile range of the simulated survival time, denoted as (t1, ⋯ , 

t100). We then summarized the mean of the estimators, standard errors, and converge 

probabilities over these time points, and used these statistics to compare performance of 

the four methods. We also calculated the empirical mean of the integrated squared error 

(EMISE) to summarize the accuracy and efficiency of all estimates of Λ(·) as follows: 

EMISE(Λ) = ∑q = 1
500 ∑l = 1

100 Λ(q) tl − Λ tl /50000, where Λ(q)( ⋅ ) was the estimator of Λ(·) 

using the qth data set, for q = 1, … , 500.

Under Setting 1, all four methods performed well and the empirical biases of the four 

estimates were negligible. The censoring degree did not affect the estimation bias much, 

but increased the estimation variation of all four methods. Since the external information 

was the same as survival probabilities of the primary cohort, the DEL estimators had the 

smallest SDs and RMSEs, as expected. Although the proposed method posed two additional 
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parameters to account for the potential disparities between the primary cohort and external 

information, it was more efficient than the PL method, with smaller SDs and RMSEs. 

The estimated standard errors agreed well with the standard deviations, and the coverage 

probabilities were close to the nominal value. These observations confirm that the analytical 

variance estimation procedure can capture the true variation of the estimation procedure.

Under Setting 2, the external aggregate survival rates of the two subgroups (Ω1 and Ω2) 

did not match well with those of the primary cohort (τ1, τ2) = (0.04, −0.04). The proposed 

method still performed well in terms of estimating the regression coefficients β and Λ(t). 
The DEL and DEL-E methods produced larger biases for both the estimated β and Λ(t), due 

to incorporating incomparable external information without any adjustment. For example, 

the biases of the regression coefficient corresponding to X1 were at least three times larger 

than the related standard deviations, regardless of the censoring percentages, which could 

lead to misleading inferences with < 5% coverage probabilities. As noted, despite the 

discrepancy between the primary cohort and external information within the subgroups Ω1 

and Ω2, the marginal survival rate of the subgroup X2 = 0 was comparable (=0.76). As 

shown in Table 2, the biases of β2 related to the covariate X2 by the DEL and DEL-E 

methods were smaller compared with those of β1. Due to the same reason, the efficiency 

gain of our proposed estimators over the PL method for β2 was larger than that for β1.

Under Setting 3, although there was discrepancy in the survival rates between the 

external resources and the primary cohort (τ1, τ2) = (0.03, 0.03), the proposed method 

could adaptively determine the degree of information integration, resulting in reasonable 

estimators and inference results. In contrast, the biases of the DEL and DEL-E estimators 

were not ignorable, and they did not decrease with increasing sample sizes. With more 

discrepant information between the external resources and primary cohort (Setting 4), the 

proposed method still had comparable performance with the PL method, while the DEL and 

DEL-E estimators again had substantial biases that could lead to misleading conclusions.

We also conducted simulation studies to evaluate the finite sample performance of the 

proposed method when the external aggregate survival rate P(T > t*|X2 = 0) was comparable 

with the primary cohort, but P(T > t*|X2 = 1) was not, i.e., (τ1, τ2) = (0, 0.06). Table S3 in 

the online Supporting Information summarizes the simulation results. Under this setting, our 

proposed method was more efficient than the standard Cox regression (PL), and had smaller 

estimation biases and more accurate inference conclusions than DEL and its extension 

(DEL-E) by Huang et al. (2016).

Note that the DEL-E method is proposed to handle a special case of the violation of the 

comparability assumption. Specifically, the hazard function of the external survival data is 

assumed to follow a Cox model λ(t|x) = λ*(t) exp(xTβ). The survival difference between the 

two resources is assumed to be caused by different baseline hazard functions via a constant 

ρ, i.e., λ*(t) = ρλ(t). In contrast to this special case, our proposed method considers a 

more general scenario without imposing such model assumptions. Under Settings 2–4, the 

information discrepancy did not follow the specific model required by the DEL-E method. 

Therefore, the DEL and DEL-E methods had similar performance, although DEL-E slightly 

outperformed the DEL method.
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Figure 1 displays the means of estimated cumulative baseline hazard functions with 95% 

empirical confidence intervals by the aforementioned four methods for Setting 2. As 

expected, the proposed method outperformed the PL method with narrower confidence 

intervals, although both can capture the true cumulative baseline hazard curve with 

negligible biases. It was not surprising that the DEL method estimated curve was 

biased, underestimating the risk of developing the event of interest. This was due to the 

incomparable information between different resources. We observed the same pattern in the 

estimated cumulative baseline hazard functions under Settings 3 and 4.

We further calculated the relative efficiency (RE) of the three methods compared with the 

PL method, defined as the RMSE from each of the three methods divided by that of the 

PL method, respectively. In general, the REs of the proposed method were less than one, 

supporting the systemic efficiency gain regardless of whether the external information was 

comparable or not to the primary cohort. With an increase in the sample size of the primary 

cohort, the REs of the proposed method increased and the efficiency gains via integrating the 

external information decreased, as expected.

5. Application

5.1 IBC data cohort and aggregate survival information

IBC is a rare but aggressive form of breast cancer that accounts for < 5% of all breast cancer 

diagnoses (Rueth et al., 2014). Although the use of the recommended therapy, trimodality 

treatment, has shown a survival advantage for the IBC patients, there is limited research to 

reveal how the molecular biology of IBC tumors might be associated with the trimodality 

treatment effects.

Ki-67, one of tumor cell proliferation markers, has received increasing attention in the 

precision treatment for breast cancer patients. The evaluation of Ki-67 has been integrated 

into emerging prognostic tools, such as the Immunohistochemical 4 score for predicting 

disease recurrence in early breast cancer (Lakhanpal et al., 2016). We analyzed the IBC 

cohort data from the Morgan Welch Inflammatory Breast Cancer Research Program and 

Clinic at MD Anderson. We focused on a cohort of patients who had been diagnosed with 

non-metastatic IBC between 1992 and 2012, with a median follow-up of 5.17 years and a 

censoring rate of 58%. After excluding patients who had missing information regarding the 

Ki-67 status of their tumor, our cohort included 257 IBC patients.

NCDB is a collaborative effort of the American College of Surgeons, the American Cancer 

Society, and the Commission on Cancer. NCDB collects patient demographics, treatments 

and survival data from hospitals across the USA (Raval et al., 2009). The aggregate survival 

information of IBC patients has been reported using NCDB data. In the paper by Rueth et al. 

(2014), the authors identified a cohort of 10,197 patients with non-metastatic IBC diagnosed 

from 1998 to 2010, and evaluated the impact of trimodality treatment on survival. Although 

this NCDB cohort had a much larger sample size than that of the MD Anderson cohort, 

it did not capture detailed information on tumor markers such as Ki-67. Hence, it is not 

possible to only rely on NCDB data to investigate the prognostic or predictive value of Ki-67 

on IBC patients.
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Our goal is to combine the MD Anderson IBC cohort (primary cohort) with the external 

aggregate information from NCDB. As reported by Rueth et al. (2014), the 5-year survival 

rates among IBC patients with and without the use of trimodality treatment were 0.554 and 

0.401, respectively. As noted, there is a potential referral bias for large cancer centers, such 

as MD Anderson, and it is unlikely that IBC patients treated at MD Anderson will represent 

IBC patients within USA (Al-Hasan et al., 2011). Accordingly, we should not directly 

use aggregate information from NCDB under the comparability assumption to improve the 

estimating efficiency.

5.2 Analysis results

We fitted a Cox model on the overall survival by including the Ki-67 status (negative vs. 

positive), the use of trimodality treatment, and the interaction term of Ki-67 status and 

trimodality treatment. The same strategy applied in the simulation studies was used to 

identify the value of the tuning parameter in the IBC data. Specifically, we first identified a 

possible range for the turning parameter and then used a finer grid search for the minimizer 

of BIC-like criterion within the range. Table 5 shows the estimated regression coefficients 

and cumulative baseline hazard functions at 3 years and 5 years with their standard errors 

and p-values from Wald-type tests.

All four methods resulted in similar overall conclusions: the IBC patients with positive 

Ki-67 status had the highest risk of death and the effect of trimodality treatment differed 

by Ki-67 status. The trimodality treatment significantly improved the overall survival for 

patients with positive Ki-67 status, but showed little benefit for patients with negative Ki-67 

status. Specifically, by the proposed method, the log hazard ratio of the use of trimodality 

treatment was −0.972 (standard error = 0.210, p-value <0.001) for IBC patients with positive 

Ki-67 status, and was 0.369 (standard error = 0.646, p-value = 0.568) for IBC patients with 

negative Ki-67 status. However, the magnitudes of the treatment effects estimated by the 

DEL and DEL-E methods were substantially larger than those by the other two methods, 

suggesting the potential incomparability on the external information against the primary 

cohort. The estimated values of τ1 and τ2 by our proposed method were −0.1125 and 

0. Specifically, the 5-year survival rate of IBC patients without receiving the trimodality 

treatment at MD Anderson was lower than that of the NCDB cohort, although the 5-year 

survival rates of IBC patients receiving the trimodality treatment were comparable between 

the two resources. This observation is not surprising, because MD Anderson treated many 

referred IBC patients, who had received their initial treatment elsewhere, which may not be 

the standard recommended therapy.

For the cumulative baseline hazard function (see Figure 2), by adaptively incorporating 

external survival information, the proposed method had similar point estimates, but narrower 

confidence intervals compared with the PL method. On the other hand, the baseline hazard 

functions estimated by the DEL and DEL-E methods showed a substantial underestimation 

compared to that from the standard PL method, due to ignoring the incomparability on the 

survival information.
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6. Discussion

We have proposed a penalized empirical likelihood approach to accommodate the potential 

discrepancy between the primary cohort data and external aggregate information, when 

combining the two resources for efficiency improvement. The primary cohort with 

detailed tumor information is the target population of interest (e.g., IBC patients at 

MD Anderson), and the primary purpose is to evaluate the treatment effects by tumor 

subtype for hypothesis generating. The large population-based databases unfortunately do 

not capture detailed tumor biology information, such as tumor cell proliferation markers. 

Therefore, the propensity-score based approaches cannot be directly applied here to improve 

statistical efficiency. Developing personalized medicines is a long journey. If the treatment 

heterogeneity by tumor subtype can be pinpointed by combining the primary cohort (an 

observation study) and large population-based databases, confirmation of such findings 

would require further evaluation through randomized clinical trials (RCTs). Then evaluating 

the results observed from the RCTs in the general patient population, represented by large 

population-based databases such as NCDB, would be the next step to advise the clinical 

practice. Our work is focused on the first step of the process.

The proposed penalized likelihood allows us to determine the degree of information 

borrowing from the external resources by making use of the parameter τk and the 

penalty function. Although the value of τk may not be a rigorous indicator for measuring 

comparability, the proposed method is to use such a modeling structure to adaptively adjust 

the utility of the external ancillary information, regardless of whether they are comparable or 

not to the primary cohort.

Although we have assumed the Cox regression model for the primary cohort, due to its 

popularity in survival analysis, the proposed estimation and inference method can be readily 

extended to other types of semiparametric models, such as the proportional odds model 

and accelerated failure time model. We have focused on the scenario in which the external 

information is aggregate survival rates at a single time point. In practice, aggregate survival 

information may be available at multiple time points (e.g., 1-year and 3-year survival rates). 

The proposed method can be readily generalized to accommodate such information. Please 

see online Supporting Information for more details.

In our data application, the external survival rates obtained from NCDB had a negligible 

variation, and thus they can be integrated as estimating constraints in the likelihood. 

However, in other applications, such information may be estimated with non-negligible 

uncertainties from an external dataset. The proposed method is not directly applicable for 

such a case. Developing rigorous tools that account for the uncertainty of the aggregate 

information in the estimation and inference procedures is beyond the scope of this paper, 

though worthy of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Estimated cumulative baseline hazard functions under Setting 2 with a sample size of n = 

200: true curve (black solid), estimated curve (gray dashed) with 95% confidence intervals 

(CIs) (gray dotted) by the proposed method, estimated curve (red dashed) with 95% CIs (red 

dotted) by PL method, estimated curve (green dashed) with 95% CIs (green dotted) by DEL 

method, and estimated curve (blue dashed) with 95% CIs (blue dotted) by DEL-E method.

Chen et al. Page 16

Biometrics. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
The estimated cumulative baseline hazard function Λ(t) of the inflammatory breast cancer 

study.
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Table 1

Simulation results (all the entries are multiplied by 100) under Setting 1. PL, the standard Cox regression with 

the partial likelihood; DEL and DEL-E, the double empirical likelihood method and its extension by Huang et 

al. (2016); ADEL, the proposed adaptive double empirical likelihood method.

PC Method

β 1 β2

Bias SD SE RMSE CP RE Bias SD SE RMSE CP RE

Sample Size=100

0% PL −1.27 11.09 11.56 11.15 95.4 – 1.93 21.69 21.25 21.76 95.4 –

DEL −0.68 4.92 4.90 4.96 95.4 0.44 −0.76 17.62 17.48 17.62 94.8 0.81

DEL-E −0.80 5.02 4.96 5.08 95.0 0.46 1.61 21.07 21.02 21.11 95.4 0.97

ADEL −1.29 9.65 8.73 9.73 95.0 0.87 0.72 18.96 18.91 18.96 94.6 0.87

15% PL −1.53 12.28 12.43 12.36 95.2 – 1.17 26.29 23.05 26.29 92.0 –

DEL −0.31 5.03 4.87 5.04 95.2 0.41 −0.95 20.33 18.72 20.33 92.4 0.77

DEL-E −0.38 5.07 4.91 5.08 95.2 0.41 0.72 25.95 22.80 25.93 92.0 0.99

ADEL −1.65 10.68 9.67 10.80 96.6 0.87 0.33 22.42 20.55 22.40 93.0 0.85

30% PL −1.97 13.27 13.68 13.40 95.4 – 2.11 29.04 25.44 29.08 92.2 –

DEL −0.32 5.09 4.94 5.10 95.0 0.38 −0.80 21.44 20.20 21.43 92.8 0.74

DEL-E −0.41 5.14 4.98 5.15 95.6 0.38 1.51 28.67 25.15 28.68 91.8 0.99

ADEL −2.04 11.34 10.90 11.51 96.6 0.86 0.84 23.35 22.81 23.34 93.8 0.80

Sample Size=200

0% PL −0.18 8.15 8.00 8.15 95.4 – 0.44 15.17 14.78 15.16 95.2 –

DEL −0.35 3.48 3.44 3.49 94.4 0.43 −1.09 12.50 12.26 12.54 95.2 0.83

DEL-E −0.42 3.51 3.47 3.53 94.0 0.43 0.23 14.92 14.68 14.91 94.6 0.98

ADEL −0.44 7.19 6.29 7.20 93.8 0.88 −0.28 13.52 13.06 13.51 94.8 0.89

15% PL −1.10 8.87 8.66 8.92 95.0 – −0.76 15.84 15.99 15.84 94.2 –

DEL −0.39 3.53 3.51 3.55 95.0 0.40 −1.05 12.59 13.14 12.62 95.2 0.80

DEL-E −0.39 3.53 3.52 3.55 94.8 0.40 −1.17 15.62 15.88 15.65 95.0 0.99

ADEL −1.17 7.98 6.89 8.05 94.2 0.90 −0.54 13.85 14.14 13.85 95.0 0.87

30% PL −1.12 9.60 9.49 9.66 95.4 – −0.71 18.11 17.59 18.11 93.6 –

DEL −0.37 3.60 3.56 3.61 95.8 0.37 −1.22 14.25 14.17 14.28 94.4 0.79

DEL-E −0.38 3.61 3.57 3.62 95.4 0.37 −1.17 17.86 17.47 17.88 93.4 0.99

ADEL −1.09 8.73 7.10 8.80 94.6 0.91 −0.65 15.91 15.50 15.91 94.8 0.88
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Table 2

Simulation results (all the entries are multiplied by 100) under setting 2. PL, the standard Cox regression with 

the partial likelihood; DEL and DEL-E, the double empirical likelihood method and its extension by Huang et 

al. (2016); ADEL, the proposed adaptive double empirical likelihood method.

PC Method

β 1 β2

Bias SD SE RMSE CP RE Bias SD SE RMSE CP RE

Sample Size=100

0% PL −1.27 11.09 11.56 11.15 95.4 – 1.93 21.69 21.25 21.76 95.4 –

DEL −21.30 6.34 5.94 22.22 3.0 1.99 3.28 19.25 17.72 19.51 92.6 0.90

DEL-E −21.45 6.48 6.09 22.40 4.0 2.01 5.34 22.74 21.15 23.34 93.2 1.07

ADEL −2.80 10.92 11.04 11.26 93.0 1.01 1.17 19.29 20.21 19.30 95.6 0.89

15% PL −1.53 12.28 12.43 12.36 95.2 – 1.17 26.29 23.05 26.29 92.0 –

DEL −21.90 6.70 6.09 22.90 4.2 1.85 2.62 22.31 19.00 22.44 90.4 0.85

DEL-E −21.98 6.71 6.23 22.98 4.8 1.86 4.25 27.97 22.96 28.27 88.6 1.08

ADEL −2.70 11.81 12.06 12.10 93.2 0.98 1.49 22.70 21.86 22.73 94.0 0.86

30% PL −1.97 13.27 13.68 13.40 95.4 – 2.11 29.04 25.44 29.08 92.2 –

DEL −22.83 6.94 6.35 23.86 3.6 1.78 2.46 23.72 20.52 23.82 89.8 0.82

DEL-E −22.98 6.97 6.49 24.02 4.2 1.79 4.99 31.03 25.33 31.40 89.2 1.08

ADEL −3.01 12.35 12.90 12.70 92.0 0.95 1.99 23.87 23.96 23.93 95.6 0.82

Sample Size=200

0% PL −0.18 8.15 8.00 8.15 95.4 – 0.44 15.17 14.78 15.16 95.2 –

DEL −20.57 4.61 4.23 21.07 0.2 2.59 3.13 13.80 12.44 14.14 91.8 0.93

DEL-E −20.60 4.72 4.33 21.12 0.6 2.59 3.87 16.42 14.75 16.86 92.2 1.11

ADEL −1.34 8.41 7.86 8.51 93.0 1.04 0.84 13.80 14.34 13.81 95.6 0.91

15% PL −1.10 8.87 8.66 8.92 95.0 – −0.76 15.84 15.99 15.84 94.2 –

DEL −21.59 4.82 4.43 22.11 0.4 2.48 2.49 13.92 13.35 14.13 93.6 0.89

DEL-E −21.49 4.83 4.53 22.02 0.4 2.47 1.95 17.18 15.95 17.27 91.8 1.09

ADEL −2.33 8.85 8.48 9.15 92.4 1.03 0.31 14.23 15.14 14.22 95.6 0.90

30% PL −1.12 9.60 9.49 9.66 95.4 – −0.71 18.11 17.59 18.11 93.6 –

DEL −22.50 4.97 4.61 23.04 0.4 2.39 1.94 15.62 14.40 15.73 92.2 0.87

DEL-E −22.46 5.00 4.71 23.01 0.4 2.38 1.82 19.50 17.55 19.56 90.4 1.08

ADEL −2.09 9.38 9.33 9.60 94.2 0.99 0.24 16.10 16.99 16.09 95.2 0.89
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Table 3

Simulation results (all the entries are multiplied by 100) under setting 3. PL, the standard Cox regression with 

the partial likelihood; DEL and DEL-E, the double empirical likelihood method and its extension by Huang et 

al. (2016); ADEL, the proposed adaptive double empirical likelihood method.

PC Method

β 1 β 2

Bias SD SE RMSE CP RE Bias SD SE RMSE CP RE

Sample Size=100

0% PL −1.27 11.09 11.56 11.15 95.4 – 1.93 21.69 21.25 21.76 95.4 –

DEL 3.79 4.58 4.57 5.94 79.4 0.53 −8.54 16.84 17.20 18.86 94.2 0.87

DEL-E 3.40 4.74 4.67 5.83 81.4 0.52 0.88 20.86 21.00 20.86 96.2 0.96

ADEL −1.06 10.17 9.94 10.21 92.8 0.92 −1.25 18.75 19.69 18.77 95.8 0.86

15% PL −1.53 12.28 12.43 12.36 95.2 – 1.17 26.29 23.05 26.29 92.0 –

DEL 4.23 4.65 4.52 6.28 77.0 0.51 −9.11 19.41 18.42 21.42 92.4 0.81

DEL-E 3.93 4.73 4.60 6.15 78.2 0.50 0.05 25.67 22.78 25.64 92.2 0.98

ADEL −1.62 11.47 11.01 11.57 93.2 0.94 −1.62 22.23 21.44 22.27 95.0 0.85

30% PL −1.97 13.27 13.69 13.40 95.4 – 2.11 29.04 25.44 29.08 92.2 –

DEL 4.29 4.69 4.57 6.36 76.2 0.47 −9.52 20.49 19.88 22.58 92.6 0.78

DEL-E 4.02 4.77 4.64 6.23 78.2 0.46 0.86 28.35 25.12 28.33 92.4 0.97

ADEL −1.95 12.08 12.22 12.23 94.4 0.91 −0.85 23.50 23.66 23.49 95.4 0.81

Sample Size=200

0% PL −0.18 8.15 8.00 8.15 95.4 – 0.44 15.17 14.78 15.16 95.2 –

DEL 4.07 3.24 3.21 5.20 70.6 0.64 −8.79 11.92 12.06 14.80 91.2 0.98

DEL-E 3.75 3.30 3.26 4.99 73.6 0.61 −0.48 14.72 14.66 14.71 95.8 0.97

ADEL −0.57 7.89 7.54 7.90 93.0 0.97 −1.98 13.59 14.11 13.72 95.4 0.91

15% PL −1.10 8.87 8.66 8.92 95.0 – −0.76 15.84 15.99 15.84 94.2 –

DEL 4.14 3.26 3.26 5.27 72.2 0.59 −9.09 12.01 12.93 15.05 90.8 0.95

DEL-E 3.89 3.29 3.30 5.10 75.4 0.57 −1.77 15.42 15.87 15.51 94.6 0.98

ADEL −1.12 8.31 7.74 8.38 92.2 0.94 −2.82 13.95 14.89 14.21 95.2 0.90

30% PL −1.12 9.60 9.49 9.66 95.4 – −0.71 18.11 17.59 18.11 93.6 –

DEL 4.23 3.32 3.29 5.37 71.2 0.56 −9.79 13.64 13.95 16.78 89.0 0.93

DEL-E 4.01 3.35 3.33 5.22 74.4 0.54 −1.73 17.65 17.46 17.72 94.6 0.98

ADEL −1.12 9.03 8.57 9.09 92.4 0.94 −2.75 15.83 16.38 16.05 95.4 0.89
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Table 4

Simulation results (all the entries are multiplied by 100) under Setting 4. PL, the standard Cox regression with 

the partial likelihood; DEL and DEL-E, the double empirical likelihood method and its extension by Huang et 

al. (2016); ADEL, the proposed adaptive double empirical likelihood method.

PC Method

β 1 β 2

Bias SD SE RMSE CP RE Bias SD SE RMSE CP RE

Sample Size=100

0% PL −1.27 11.09 11.56 11.15 95.4 – 1.93 21.69 21.25 21.76 95.4 –

DEL 7.36 4.30 4.29 8.52 55.8 0.76 −15.73 16.18 16.97 22.55 87.8 1.04

DEL-E 6.81 4.50 4.42 8.16 59.8 0.73 0.30 20.72 20.98 20.70 96.4 0.95

ADEL −1.68 10.79 10.82 10.91 92.2 0.98 −3.27 19.48 20.43 19.73 95.8 0.91

15% PL −1.53 12.28 12.43 12.36 95.2 – 1.17 26.29 23.05 26.29 92.0 –

DEL 7.84 4.34 4.23 8.95 51.8 0.72 −16.65 18.64 18.17 24.98 85.2 0.95

DEL-E 7.40 4.45 4.33 8.64 56.0 0.70 −0.48 25.46 22.76 25.44 92.6 0.97

ADEL −2.04 11.71 11.78 11.87 93.2 0.96 −3.41 22.61 22.32 22.85 94.4 0.87

30% PL −1.97 13.27 13.69 13.40 95.4 – 2.11 29.04 25.44 29.08 92.2 –

DEL 7.94 4.36 4.25 9.06 49.6 0.68 −17.62 19.67 19.62 26.40 86.6 0.91

DEL-E 7.55 4.47 4.35 8.77 54.0 0.65 0.37 28.00 25.11 27.98 92.4 0.96

ADEL −2.39 12.44 13.11 12.66 95.0 0.94 −2.92 23.70 24.63 23.85 95.6 0.82

Sample Size=200

0% PL −0.18 8.15 8.00 8.15 95.4 – 0.44 15.17 14.78 15.16 95.2 –

DEL 7.62 3.04 3.01 8.20 30.2 1.01 −15.91 11.44 11.90 19.60 73.0 1.29

DEL-E 7.13 3.12 3.09 7.78 37.2 0.95 −1.05 14.57 14.65 14.60 96.0 0.96

ADEL −0.95 8.12 7.82 8.17 92.0 1.00 −4.12 13.78 14.48 14.37 94.8 0.95

15% PL −1.10 8.87 8.66 8.92 95.0 – −0.76 15.84 15.99 15.84 94.2 –

DEL 7.74 3.04 3.04 8.31 28.4 0.93 −16.52 11.54 12.75 20.15 78.6 1.27

DEL-E 7.35 3.10 3.10 7.97 33.2 0.89 −2.25 15.29 15.86 15.44 95.2 0.97

ADEL −1.71 8.77 8.42 8.93 91.8 1.00 −4.88 14.15 15.57 14.95 94.4 0.94

30% PL −1.12 9.60 9.49 9.66 95.4 – −0.71 18.11 17.59 18.11 93.6 –

DEL 7.88 3.09 3.06 8.46 26.2 0.88 −17.70 13.14 13.76 22.04 78.4 1.22

DEL-E 7.53 3.14 3.12 8.15 30.2 0.84 −2.18 17.51 17.45 17.63 94.8 0.97

ADEL −1.79 9.37 9.20 9.53 92.6 0.99 −4.92 16.08 17.12 16.80 94.6 0.93
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Table 5

Analysis results of the inflammatory breast cancer study.

Treatment Ki67 Treatment*Ki67 Treatment*Ki67+Treatment Λ(3) Λ(5)

Standard Cox regression with the partial likelihood (PL)

Estimate 0.282 1.516 −1.299 −1.017 0.249 0.383

Standard error 0.641 0.607 0.679 0.228 0.155 0.237

Wald p-value 0.660 0.013 0.056 <0.001

Double empirical likelihood (DEL)

Estimate 0.744 1.628 −1.417 −0.673 0.157 0.235

Standard error 0.629 0.659 0.725 0.127 0.102 0.155

Wald p-value 0.236 0.014 0.051 <0.001

Extended Double empirical likelihood (DEL-E)

Estimate 0.701 1.587 −1.355 −0.653 0.177 0.271

Standard error 0.622 0.645 0.712 0.118 0.136 0.208

Wald p-value 0.260 0.014 0.057 <0.001

Adaptive double empirical likelihood (ADEL)

Estimate 0.369 1.552 −1.341 −0.972 0.224 0.342

Standard error 0.646 0.620 0.690 0.210 0.137 0.210

Wald p-value 0.568 0.012 0.052 <0.001
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