
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports

Converting tabular data
into images for deep learning
with convolutional neural networks
Yitan Zhu1*, Thomas Brettin1, Fangfang Xia1, Alexander Partin1, Maulik Shukla1,
Hyunseung Yoo1, Yvonne A. Evrard2, James H. Doroshow3 & Rick L. Stevens1,4

Convolutional neural networks (CNNs) have been successfully used in many applications where
important information about data is embedded in the order of features, such as speech and imaging.
However, most tabular data do not assume a spatial relationship between features, and thus are
unsuitable for modeling using CNNs. To meet this challenge, we develop a novel algorithm, image
generator for tabular data (IGTD), to transform tabular data into images by assigning features to
pixel positions so that similar features are close to each other in the image. The algorithm searches
for an optimized assignment by minimizing the difference between the ranking of distances
between features and the ranking of distances between their assigned pixels in the image. We apply
IGTD to transform gene expression profiles of cancer cell lines (CCLs) and molecular descriptors
of drugs into their respective image representations. Compared with existing transformation
methods, IGTD generates compact image representations with better preservation of feature
neighborhood structure. Evaluated on benchmark drug screening datasets, CNNs trained on IGTD
image representations of CCLs and drugs exhibit a better performance of predicting anti-cancer drug
response than both CNNs trained on alternative image representations and prediction models trained
on the original tabular data.

Convolutional neural networks (CNNs) have been successfully used in numerous applications, such as image and
video recognition1–4, medical image analysis5,6, natural language processing7, and speech recognition8. CNNs are
inspired by visual neuroscience and possess key features that exploit the properties of natural signals, including
local connections in receptive field, parameter sharing via convolution kernel, and hierarchical feature abstrac-
tion through pooling and multiple layers9. These features make CNNs suitable for analyzing data with spatial or
temporal dependencies between components10,11. A particular example is imaging in which the spatial arrange-
ment of pixels carries crucial information of the image content. When applied on images for object recognition,
the bottom layers of CNNs detect low-level local features, such as oriented edges at certain positions. While the
information flows through the layers, low-level features combine and form more abstract high-level features to
assemble motifs and then parts of objects, until the identification of whole objects.

Although CNNs have been applied for image analysis with great success, non-image data are prevalent in
many fields, such as bioinformatics12–14, medicine15,16, finance, and others, for which CNNs might not be directly
applicable to take full advantage of their modeling capacity. For some tabular data, the order of features can be
rearranged in a 2-D space to explicitly represent relationships between features, such as feature categories or
similarities17–19. This motivates the transformation of tabular data into images, from which CNNs can learn and
utilize the feature relationships to improve the prediction performance as compared with models trained on
tabular data. The transformation converts each sample in the tabular data into an image in which features and
their values are represented by pixels and pixel intensities, respectively. A feature is represented by the same pixel
(or pixels) in the images of all samples with the pixel intensities vary across images.

To our knowledge, three methods have been developed to transform non-image tabular data into images
for predictive modeling using CNNs. Sharma et al. developed DeepInsight17 that projects feature vectors onto
a 2-D space using t-SNE20, which minimizes the Kullback–Leibler divergence between the feature distributions
in the 2-D projection space and the original full-dimensional space. Then, on the 2-D projection, the algorithm
identifies a rectangle that includes all the projected feature points with a minimum area, which forms the image

OPEN

1Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439,
USA. 2Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702,
USA. 3Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA. 4Department of
Computer Science, The University of Chicago, Chicago, IL 60637, USA. *email: yitan.zhu@anl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-90923-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

representation. Bazgir et al. developed REFINED (REpresentation of Features as Images with NEighborhood
Dependencies)18, which uses the Bayesian multidimensional scaling as a global distortion minimizer to project
the features onto a 2-D space and preserves the feature distribution from the original full-dimensional space. The
features are then assigned to image pixels according to the projection and a hill climbing algorithm is applied to
locally optimize the arrangement of feature positions in the image18. Ma and Zhang developed OmicsMapNet19
to convert gene expression data of cancer patients into 2-D images for the prediction of tumor grade using CNNs.
OmicsMapNet utilizes functional annotations of genes extracted from the Kyoto Encyclopedia of Genes and
Genomes to construct images via TreeMap21, so that genes with similar molecular functions are closely located
in the image.

In this paper, we develop a novel method, Image Generator for Tabular Data (IGTD), to transform tabular
data into images for subsequent deep learning analysis using CNNs. The algorithm assigns each feature to a
pixel in the image. According to the assignment, an image is generated for each data sample, in which the pixel
intensity reflects the value of the corresponding feature in the sample. The algorithm searches for an optimized
assignment of features to pixels by minimizing the difference between the ranking of pairwise distances between
features and the ranking of pairwise distances between the assigned pixels, where the distances between pixels
are calculated based on their coordinates in the image. Minimizing the difference between the two rankings
assigns similar features to neighboring pixels and dissimilar features to pixels that are far apart. The optimization
is achieved through an iterative process of swapping the pixel assignments of two features. In each iteration, the
algorithm identifies the feature that has not been considered for swapping for the longest time, and seeks for a
feature swapping for it that best reduces the difference between the two rankings.

Compared with three existing methods for converting tabular data into images, the proposed IGTD approach
presents several advantages. Unlike OmicsMapNet that requires domain knowledge about features, IGTD is a
general method that can be used in the absence of domain knowledge. Because DeepInsight uses the t-SNE
projection as image representation, a significant portion of the image is usually left blank, which is composed
of pixels not representing features. On the contrary, IGTD provides compact image representations in which
each pixel represents a unique feature. Thus, the DeepInsight images are usually much larger than the IGTD
images and potentially require more memory and time to train CNNs in subsequent analysis. Compared with
REFINED, IGTD generates image representations that better preserve the feature neighborhood structure. In
the IGTD image representation, features close to each other in the image are indeed more similar, as will be
shown later in the example applications of transforming gene expression profiles of cancer cell lines (CCLs)
and molecular descriptors of drugs into images. Also, we take the prediction of anti-cancer drug response as an
example and demonstrate that CNNs trained on IGTD images provide a better prediction performance than
both CNNs trained on alternative image representations and prediction models trained on the original tabular
data. Moreover, IGTD provides a flexible framework that can be extended to accommodate diversified data and
requirements. Various measures can be implemented to calculate feature and pixel distances and to evaluate the
difference between rankings. The size and shape of the image representation can also be flexibly chosen.

IGTD algorithm
Let X denote an M by N tabular data matrix to be transformed into images. Each row of X is a sample and each
column is a feature. Let xi,: , x:,j , and xi,j denote the i th row, the j th column, and the element in the i th row and
j th column, respectively. The bold upper-case and lower-case letters are used to denote matrices and vectors,
respectively. Scalars are denoted by either upper-case or lower-case letters without bold. Our goal is to transform
each sample xi,: into an Nr by Nc image (i.e. a 2-D array), where Nr × Nc = N . The pairwise distances between
features are calculated according to a distance measure, such as the Euclidean distance. These pairwise distances
are then ranked ascendingly, so that small distances are given small ranks while large distances are given large
ranks. An N by N rank matrix denoted by R is formed, in which ri,j at the i th row and j th column of R is the
rank value of the distance between the i th and j th features. The diagonal of R is set to be zeros. Apparently, R is
a symmetric matrix. Fig. 1a shows an example of the feature distance rank matrix calculated based on the gene
expression profiles of CCLs containing 2500 genes that are taken as features. Details regarding the data will be
presented in the next section. Distances between genes are measured by the Euclidean distance based on their
expression values. In Fig. 1a, the grey level indicates the rank value. The larger the distance is, the larger the rank
is, and the darker the corresponding point is in the plot.

On the other hand, for an Nr by Nc image, the distance between each pair of pixels can be calculated based on
the pixel coordinates according to a distance measure, such as the Euclidean distance. Then, the pairwise pixel
distances are ranked ascendingly. An N by N rank matrix of pixel distances is generated and denoted by Q , in
which qi,j is the rank of the distance between pixel i and pixel j . The main diagonal of Q is set to zeros and Q is also
a symmetric matrix. The pixels in the image are concatenated row by row to form the order of pixels in Q . Fig. 1b
is an example of the pixel distance rank matrix that shows the ranks of Euclidean distances between all pairs of
pixels calculated based on their coordinates in a 50 by 50 image. The plot presents two apparent patterns. First,
the top right and bottom left corners of the plot are generally darker indicating larger distance and rank values,
while the region around the diagonal is generally brighter indicating smaller distances and rank values. Second,
the plot shows a mosaic pattern because the pixels are concatenated row by row from the image. Small tiles in
the plot correspond to pairwise combinations between rows in the image. Thus, there are totally 50× 50 = 2, 500
tiles in the plot. Each small tile actually shares the same pattern as the whole plot that the top right and bottom
left corners of the tile are relatively darker and the region around the diagonal is relatively brighter.

To transform tabular data into images, each feature needs to be assigned to a pixel position in the image. A
simple way is to assign the i th feature (the i th row and column) in the feature distance rank matrix R to the i th

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

pixel (the i th row and column) in the pixel distance rank matrix Q . But, comparing Fig. 1a with Fig. 1b, we can
see the significant difference between the two matrices. An error function is defined to measure the difference

where diff (·, ·) is a function that measures the difference between ri,j and qi,j , for which there are various options,
such as the absolute difference

∣

∣ri,j − qi,j
∣

∣ or the squared difference
(

ri,j − qi,j
)2 . The error function measures the

difference between the lower triangles of the two symmetric matrices. At this stage, the task of assigning each
feature to a suitable pixel position so that features similar to each other are close in the image can be converted
to reorder the features (rows and columns in R ) so that err(R,Q) becomes small. Notice that the reordering of
rows and columns in R needs to synchronized, which means the orders of features along the rows and columns
in R must always be the same. A basic operation of reordering the features is to swap the positions of two fea-
tures, because any feature reordering can be implemented by a sequence of feature swaps. Thus, we can reduce
the error iteratively by searching for suitable feature swaps. Based on this idea, we design the IGTD algorithm.

err(R,Q) =

N
∑

i=2

i−1
∑

j=1

diff
(

ri,j, qi,j
)

Figure 1.   An illustration of IGTD strategy based on CCL gene expression data. (a) Rank matrix of Euclidean
distances between all pairs of genes. The grey level indicates the rank value. 2500 genes with the largest
variations across CCLs are included for calculating the matrix. (b) Rank matrix of Euclidean distances between
all pairs of pixels calculated based on their coordinates in a 50 by 50 image. The pixels are concatenated row by
row from the image to form the order of pixels in the matrix. (c) Feature distance rank matrix after optimization
and rearranging the features accordingly. (d) The error change in the optimization process. The horizontal axis
shows the number of iterations and the vertical axis shows the error value.

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

The IGTD algorithm takes four input parameters Smax , Scon , tcon , and tswap . Smax and Scon are two positive
integers, and Smax ≫ Scon . Smax is the maximum number of iterations that the algorithm will run if it does not
converge. Scon is the number of iterations for checking algorithm convergence. tcon is a small positive threshold to
determine whether the algorithm converges. tswap is a threshold on the error reduction rate to determine whether
a feature swap should be performed. The IGTD algorithm takes the following 4 steps.

Step 1 initializes some variables used in the algorithm. Initialize the iteration index s = 0 . Calculate the initial
error e0 = err(R,Q) . Initialize h , a vector of negative infinities with a length of N . h will be used to record the
latest iterations in which the features have been considered for feature swap, i.e. in the optimization process hn
will be the latest iteration in which the n th feature in R has been considered for feature swap. Let k0 be

[

1 · · · N
]

 ,
which indicates the ordering of features at the beginning before optimization.

Step 2 identifies the feature that has not been considered for feature swap for the longest time and searches
for a feature swap for it that results in the largest error reduction. In this step, the iteration index is updated,
s = s + 1 . We identify the feature that has not been considered for feature swap for the longest time by identify-
ing the smallest element in h,

Then we identify the feature whose swap with feature n∗ results in the largest error reduction.

where Rn∗∼l is the matrix resulting from swapping features n∗ and l in R , i.e. swapping the n∗ th and l  th rows and
the n∗ th and l  th columns in R . In this search, the algorithm repetitively calculates the error reduction resulted
from swapping two features. The calculation involves only the rows and columns corresponding to the two fea-
tures in the feature and pixel distance rank matrices. See Section 1 in the Supplementary Information for more
discussion about the calculation.

Step 3 performs the identified feature swap if the error reduction rate is larger than tswap . If
(err(R,Q)− err(Rn∗∼l∗ , Q))/err(R,Q) > tswap , the algorithm does the following:

	 (i)	 ks = ks−1 and swap the n∗ th and l∗ th elements in ks
	 (ii)	 es = err(Rn∗∼l∗ ,Q)
	 (iii)	 hn∗ = s and hl∗ = s
	 (iv)	 R = Rn∗∼l∗

Otherwise, the algorithm does the following:

	(xxii)	 hn∗ = s
	(xxiii)	 es = es−1

	(xxiv)	 ks = ks−1

In the case that the identified feature swap is performed, (i) generates the feature reordering indices of itera-
tion s that keep track of feature swap; (ii) calculates the error after feature swap; (iii) labels that features n∗ and
l∗ have been considered for feature swap in iteration s ; (iv) updates the feature distance rank matrix after feature
swap. In the case that the feature swap is not performed, (v) labels that feature n∗ has been considered for feature
swap in iteration s ; (vi) keeps the error unchanged from the previous iteration; (vii) keeps the feature reordering
indices unchanged from the previous iteration. Notice that if tswap is set to be non-negative, the IGTD algorithm
monotonically reduces the error. If tswap is set to be negative, the algorithm has a chance to jump out of a local
optimum and search for a potentially better solution.

Step 4 checks whether the algorithm should terminate or iterate to Step 2 if it should continue. The algorithm
runs iteratively and terminates when reaching either the maximum number of interactions Smax or convergence
where the error reduction rate is continuously smaller than the threshold tcon for Scon iterations. So, if s = Smax
or es−Scon−eu

es−Scon
< tcon for ∀u ∈ {s − Scon + 1, . . . , s} , the algorithm identifies the iteration with the minimum error

It then terminates and outputs kv∗ and ev∗ , which are the optimized indices to reorder the features and the
optimized error resulted from reordering the features according to kv∗ , respectively. If the termination criteria
are not satisfied, the algorithm iterates to Step 2.

Applications on CCL gene expression profiles and drug molecular descriptors.  We applied
the IGTD algorithm for anti-cancer drug response prediction. Following existing works22–24, we predicted the
response of a CCL to a drug treatment using the gene expression profile of CCL and the molecular descriptors
of drug. Two benchmark in vitro drug screening datasets, the Cancer Therapeutics Response Portal v2 (CTRP)25
and the Genomics of Drug Sensitivity in Cancer (GDSC)26, were used to train and evaluate the performance of
drug response prediction model. Supplementary Table 1 shows the numbers of CCLs, drugs, and treatments
(i.e. pairs of drugs and CCLs) in the two datasets. The IGTD algorithm was used to transform CCL gene expres-
sion profiles and drug molecular descriptors into their respective images. A total of 882 CCLs from various

n∗ = argmin
n∈{1,2,...,N}

hn

l∗ = argmax
l∈{1,...,n∗−1,n∗+1,...,N}

err(R,Q)− err(Rn∗∼l ,Q)

v∗ = argmin
v∈{1,...,s}

ev

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

cancer types were included in our analysis. Without loss of generality, we chose the 2,500 genes with the largest
expression variations across CCLs for analysis. The drugs were represented by chemical descriptors calculated
using the Dragon (version 7.0) software package (https://​chm.​kode-​solut​ions.​net/​produ​cts_​dragon.​php) based
on the drug molecular structure. Molecular descriptors were calculated for a total of 651 drugs included in the
two drug screening datasets. Without loss of generality, we also chose the 2500 drug descriptors with the largest
variations across drugs for analysis. See Section 2 in the Supplementary Information for the details of data and
data preprocessing.

We applied the IGTD algorithm on the CCL gene expression data and the drug molecular descriptors,
separately, to generate their image representations. The IGTD algorithm was run with Nr = 50 , Nc = 50 ,
Smax = 30, 000 , Scon = 500 , tcon = 0.000001 , tswap = 0 , the Euclidean distance for calculating pairwise feature
distance and pixel distance, and the absolute difference as the diff (•) function. Fig. 1a and Fig. 1b show the feature
distance rank matrix before optimization and the pixel distance rank matrix, respectively, for the transformation
of CCL gene expression profiles into images. Fig. 1c shows the feature distance rank matrix after optimization
and rearranging the features/genes accordingly. After optimization the feature distance rank matrix becomes
more similar to the pixel distance rank matrix than it originally is. The optimized feature distance rank matrix
shares the two important patterns of the pixel distance rank matrix. The top right corner and the bottom left
corner in Fig. 1c are relatively dark, while the region around the diagonal is relatively bright, and it also shows
a mosaic pattern. The optimization error monotonically decreases and tends to converge after approximately
5,000 iterations as shown in Fig. 1d.

Based on the optimization results, each gene or drug descriptor was assigned to a pixel in the destination
images. The grey level of a pixel in the image indicates the expression value of the corresponding gene in a CCL
or the value of the corresponding molecular descriptor in a drug. Fig. 2a shows an example image representation
of gene expression profile, which is for the SNU-61 rectal adenocarcinoma cell line (https://​web.​expasy.​org/​cello​
saurus/​CVCL_​5078). Fig. 2d shows an example image representation of drug molecular descriptors, which is for
Nintedanib (https://​en.​wikip​edia.​org/​wiki/​Ninte​danib), an inhibitor of multiple receptor tyrosine kinases and
non-receptor tyrosine kinases. In Fig. 2a and Fig. 2d, some genes or drug descriptors have very small values and
thus are indicated by white or a color close to white.

For comparison purposes, we also generated image representations using DeepInsight17 and REFINED18.
Fig. 2c and Fig. 2f show the images generated using DeepInsight for the SNU-61 cell line and Nintedanib,
respectively. Because the DeepInsight images were generated using 2-D t-SNE projection, a significant por-
tion of the images is blank, especially in the presence of outlier features. To include the 2,500 features into the

Figure 2.   Example image representations of CCL gene expression profiles and drug molecular descriptors.
(a–c) are image representations of the gene expression profile of the SNU-61 cell line generated by IGTD,
REFINED, and DeepInsight, respectively. (d–f) are image representations of molecular descriptors of
Nintedanib, generated by IGTD, REFINED, and DeepInsight, respectively.

https://chm.kode-solutions.net/products_dragon.php
https://web.expasy.org/cellosaurus/CVCL_5078
https://web.expasy.org/cellosaurus/CVCL_5078
https://en.wikipedia.org/wiki/Nintedanib

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

plots with a reasonable resolution, the size of DeepInsight images are much larger than that of IGTD images,
227× 387 = 87, 849 pixels (Fig. 2c) and 380× 387 = 147, 060 pixels (Fig. 2f) vs. 50× 50 = 2, 500 pixels
(Fig. 2a and Fig. 2d). The large images generated by DeepInsight may require more memory and time to train
the prediction model in subsequent analysis.

Similar to IGTD, REFINED also generates compact image representations without any blank area. Fig. 2b
and Fig. 2e show the images that REFINED generated for the SNU-61 cell line and Nintedanib, respectively. To
investigate the difference between IGTD and REFINED images, we used the following local heterogeneity (LH)
measure to quantitatively evaluate the preservation of feature neighborhood structure in image representations.

where yi,j is the intensity of the pixel in the i th row and j th column of an image (denoted by Y  ), and Ni,j is a
p× p neighborhood centered around yi,j but not including yi,j . In a p× p neighborhood, the average abso-
lute difference between the center pixel and the neighbor pixels is calculated to measure the neighborhood
heterogeneity. The LH measure is the mean neighborhood heterogeneity obtained by moving the neighbor-
hood window across the whole image. The LH measurements were calculated with multiple neighborhood
sizes for both IGTD and REFINED image representations. Two-tail pairwise t-test27 was applied across CCLs
or drugs to examine the LH difference between IGTD and REFINED images. For each CCL and drug, we
also calculated the percentage that IGTD reduced the local heterogeneity compared with REFINED, which is
(LHREFINED − LHIGTD)/LHREFINED × 100% , where LHREFINED and LHIGTD are the LH measurements of the
REFINED and IGTD images, respectively. Table 1 shows the result. For both CCLs and drugs and all neighbor-
hood sizes in consideration (i.e. 3, 5, 7, and 9), the average LH of the IGTD images is always statistically signifi-
cantly lower (p-values ≤ 0.05) than that of the REFINED images. This result indicates that the IGTD algorithm
better preserves the neighborhood structure of features in the 2-D images, so that similar features are grouped
closer in IGTD images.

We also compared the runtimes of IGTD, REFINED, and DeepInsight for converting tabular data into images.
For the gene expressions of CCLs, IGTD, REFINED, and DeepInsight took 0.66, 7.69, and 0.04 hour to convert
them into images, respectively. For the drug descriptors, IGTD, REFINED, and DeepInsight took 0.74, 5.13, and
0.07 h to convert them into images, respectively. Notice that both IGTD and DeepInsight were executed with
one CPU processor, while REFINED was executed with parallel computing using 40 processors of the same
specification. This result indicates that DeepInsight converts tabular data into images significantly faster. This
observation is expected, because DeepInsight does not generate compact image representations that require an
optimization process to assign features to suitable pixel positions as what IGTD and REFINED do. Interestingly,
for the two methods that generate compact image representations, the runtimes of REFINED were much longer
than those of IGTD, even when REFINED used parallel computing with 40 processors while IGTD used only
a single processor.

Drug response prediction using CNNs based on image representations.  We performed drug
response prediction using CNN models trained on the IGTD image representations. See Section 2 in the Supple-
mentary Information for the preprocessing of drug screening datasets. The area under the dose response curve
(AUC) was taken as the prediction target in a regression setting. Fig. 3 shows the architecture of the CNN model.
For both CCLs and drugs, a subnetwork of three convolution layers, each of which has 5× 5 kernels and sub-
sequent batch normalization, ReLU activation, and maximum pooling layers, accepts the image representations
as the input. The output feature maps from the subnetworks are flattened, concatenated, and passed to a fully
connected network to make predictions. The total number of trainable parameters in the model is 1,307,218.
The mean square error was used as the loss function to be minimized during model training. A tenfold cross-
validation was performed to train and evaluate the prediction models, in which eight data folds were used for
model training, one data fold was used for validation to select the dropout rate and for early stopping to avoid

LH =
1

�

Nr − p+ 1
��

Nc − p+ 1
�

Nr−
p−1
2

�

i=
p+1
2

Nc−
p−1
2

�

j=
p+1
2





1

p× p− 1

�

a,b∈Ni,j

�

�ya,b − yi,j
�

�





Table 1.   IGTD reduces the local heterogeneity (LH) of image representations compared with REFINED. In
the LH and reduction percentage columns, the number before the parenthesis is the average value obtained
across CCLs or drugs, and the number in the parenthesis is the standard deviation. P-value is obtained via two-
tail pairwise t-test comparing the LH between IGTD images and REFINED images across CCLs or drugs.

Neighborhood size (p) LH (IGTD) LH (REFINED) Reduction percentage by IGTD P-value

CCL

3 0.174 (0.023) 0.187 (0.026) 6.38% (7.08%) 2.05E−107

5 0.177 (0.024) 0.187 (0.027) 5.32% (6.90%) 3.37E−87

7 0.179 (0.024) 0.188 (0.027) 4.68% (6.79%) 1.96E−74

9 0.180 (0.024) 0.189 (0.027) 4.33% (6.57%) 4.65E−69

Drug

3 0.051 (0.013) 0.064 (0.017) 19.99% (4.98%) 1.50E−252

5 0.056 (0.014) 0.066 (0.017) 14.64% (4.25%) 2.82E−229

7 0.061 (0.014) 0.069 (0.017) 11.37% (3.92%) 9.87E−199

9 0.067 (0.015) 0.074 (0.018) 8.63% (3.78%) 4.56E−156

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

overfitting, and the rest one data fold was used for testing the prediction performance. A total of 20 cross-valida-
tion trials were conducted. The prediction performance was measured by the coefficient of determination (R2).

To assess the utilities of different image representations, the same CNN models were also trained with
REFINED and DeepInsight images. The only difference was when training with DeepInsight images the stride
value for moving the convolution kernels was changed from 1 to 2, in order to accommodate the larger input
images. Due to the larger input images and consequently larger feature maps and concatenation layer, the number
of trainable parameters in the model increased from 1,307,218 for IGTD and REFINED images to 2,715,218
for DeepInsight images. Because the larger input images consumed more memory, we always encountered the
out-of-memory error when training models using static data of DeepInsight images. To avoid the error, a data
generator mechanism had to be implemented to generate the training data batch by batch on the fly instead of
using static data. The out-of-memory error never occurred in model training using static data of IGTD and
REFINED images due to their smaller size, which demonstrated that the compact image representations of IGTD
and REFINED indeed required less memory for model training.

We also compared CNNs trained on IGTD images with prediction models trained on the original tabular
data. Four prediction models, including LightGBM28, random forest29, single-network DNN (sDNN), and two-
subnetwork DNN (tDNN), were included for the comparison. LightGBM is an implementation of the gradient
boosting decision tree algorithm that uses techniques of gradient-based one-side sampling and exclusive feature
bundling to speed up model training28. Random forest constructs multiple decision trees on random sub-samples
of data and uses the average of their outcomes as the prediction29. sDNN was a fully connected neural network
of six hidden layers. For LightGBM, random forest, and sDNN, the CCL gene expression profile and the drug
molecular descriptors were concatenated to form the input vector. tDNN was also a neural network with dense
hidden layers, but it includes two subnetworks for the input of gene expression profiles and drug molecular
descriptors separately. Each subnetwork included three hidden layers. The outputs of the two subnetworks were
concatenated and passed to another three hidden layers to make prediction. For a fair comparison, all predic-
tion models were trained and tested through 20 tenfold cross-validation trials, with the same data partitions
(i.e. training, validation, and testing sets) used for the cross-validation of CNNs with image representations. See
Section 3 in the Supplementary Information for details of the prediction models and the model training process.

Table 2 shows the drug response prediction performance obtained using different data representations and
prediction models. CNNs with IGTD images provide the highest average R2 across cross-validation trials on
both CTRP and GDSC datasets. The average R2 of CNN with REFINED images is similar to that of CNN with
IGTD images, presumably because both IGTD and REFINED take a similar strategy to generate compact image
representations with an intention of grouping similar features together in the image. CNN with DeepInsight
images and tDNN with tabular data rank the third and the fourth on the CTRP dataset, while their ranks switch
on the GDSC dataset. sDNN, LightGBM, and random forest with tabular data rank the fifth, sixth, and seventh
on the two datasets, respectively. The two-tail pair-wise t-test is applied to evaluate the performance difference
between CNN with IGTD images and other combinations of prediction models and data representations. The
result shows that CNNs trained with IGTD images statistically significantly outperform (p-values ≤ 0.05) all
other combinations, except CNNs trained with REFINED images for which the p-values do not make the cutoff.

Because the DeepInsight images are much larger than the IGTD or REFINED images, the number of train-
able parameters at least double (2,715,218 parameters vs. 1,307,218 parameters) for CNN models trained on
DeepInsight images. To investigate how the larger input image size and consequent model size affect the model
training speed, we compare the model training time (i.e. the time to train a prediction model to convergence)
of CNNs with different image representations. For each cross-validation trial, we calculate the ratio between the
model training time of CNN with DeepInsight or REFINED images and that of CNN with IGTD images. The
ratio is then log2 transformed, so that a positive value indicates CNN with DeepInsight or REFINED images
takes a longer time to train while a negative value indicates CNN with IGTD images takes a longer time to train.
See Table 3 for the mean and standard deviation of the log2 ratio obtained in cross-validation. The one-sample

Figure 3.   Architecture of the convolutional neural network (CNN) used for predicting drug response based on
image representations.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

t-test is applied across the cross-validation trials to evaluate how significantly the log2 ratio is different from 0.
The result indicates that CNNs take a statistically significantly shorter time (p-values ≤ 0.05) to train on IGTD
images than on DeepInsight images for both datasets. CNNs with IGTD images also train statistically significantly
faster than CNNs with REFINED images on the GDSC dataset, while their training speeds are similar on the
CTRP dataset without a significant difference.

Discussion
We developed the Image Generator for Tabular Data (IGTD), a novel algorithm that transforms tabular data
into images for deep learning with CNN models. To investigate its utility, we applied the algorithm to convert
CCL gene expression profiles and drug molecular descriptors into images, and compared with existing methods
that also convert tabular data into images. Compared with DeepInsight, IGTD generates more compact image
representations in which every pixel corresponds to a different feature. The compact images reduce the memory
consumption and increase the training speed of prediction model in subsequent analysis. As compared with
REFINED, the image representations generated by IGTD better preserve the feature neighborhood structure
by clustering similar features closer in the images. Based on two benchmark in vitro drug screening datasets,
we trained CNNs with the image representations of CCLs and drugs to predict anti-cancer drug response. The
prediction performance of CNNs trained on different image representations were compared with each other and
with several other prediction models trained on the original tabular data. The results show that CNNs trained on
IGTD images provide the highest average prediction performance in cross-validation on both datasets.

IGTD provides a flexible framework that can be easily extended to accommodate diversified data and require-
ments. Its flexibility can be seen from multiple aspects. First, various distance measures can be designed and
used to calculate the feature and pixel distances. For example, besides the Euclidean distance, another feature
distance measure is 1− ρ , where ρ can be a correlation coefficient for continuous variables or the Jaccard index
for binary variables. To measure the pixel distance, the Manhattan distance can also be used instead of the
Euclidean distance. Second, various difference functions can be implemented to measure the deviation between
the feature distance ranking and the pixel distance ranking. Different difference functions may emphasize on
distinct aspects of the data. For example, compared with the absolute difference function the squared difference

Table 2.   Comparison on the drug response prediction performance of different data representations and
prediction models. In the R2 column, the number before parenthesis is the average R2 across 20 cross-
validation trials, and the number in the parenthesis is the standard deviation. Bold indicates the highest
average R2 obtained on each dataset. P-value is obtained via the two-tail pairwise t-test to compare the
performance of CNNs trained on IGTD images with those of other combinations of prediction models and
data representations.

Dataset Prediction model Data representation R2 P-value

CTRP

LightGBM

Tabular data

0.825 (0.003) 8.19E−20

Random forest 0.786 (0.003) 5.97E−26

tDNN 0.834 (0.004) 7.90E−18

sDNN 0.832 (0.005) 1.09E−16

CNN

IGTD images 0.856 (0.003)

REFINED images 0.855 (0.003) 8.77E−01

DeepInsight images 0.846 (0.004) 7.02E−10

GDSC

LightGBM

Tabular data

0.718 (0.006) 2.06E−13

Random forest 0.682 (0.006) 4.53E−19

tDNN 0.734 (0.009) 1.79E−03

sDNN 0.723 (0.008) 6.04E−10

CNN

IGTD images 0.74 (0.006)

REFINED images 0.739 (0.007) 5.93E−01

DeepInsight images 0.731 (0.008) 2.96E−06

Table 3.   Comparison on model training time of CNNs trained with different image representations. The
number before parenthesis is the average across 20 cross-validation trials, and the number in the parenthesis is
the standard deviation. P-value is obtained via the two-tail one-sample t-test across the cross-validation trials.

Data Comparison Log2 ratio of model training time P-value

CTRP
REFINED vs. IGTD − 0.034 (0.232) 5.35E−01

DeepInsight vs. IGTD 4.136 (0.240) 5.55E−25

GDSC
REFINED vs. IGTD 0.172 (0.199) 1.30E−03

DeepInsight vs. IGTD 4.622 (0.417) 2.34E−21

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

function puts larger weights on elements with large differences. Third, the number of dimensions, size, and
shape of the images can be flexibly chosen. The IGTD framework can be extended in a straightforward manner
to transform data vectors into not only 2-D matrices, but also 1-D or multi-dimensional arrays with the features
rearranged according to mutual similarities or even images of irregular shapes, such as a concave polygon.
Fourth, the numbers of features and image pixels can be flexibly adjusted to match each other. If there are more
features than image pixels, either larger images with more pixels can be used or a front-end feature selection can
be done to reduce the feature number. If there are fewer features than image pixels, either smaller images can be
used or pseudo features with all zero elements can be padded to the data to match the feature and pixel numbers.

Compared with existing studies, our IGTD work has the following contributions. First, IGTD transforms
tabular data into images using a novel approach, which minimizes the difference between feature distance ranking
and pixel distance ranking. The optimization keeps similar features close in the image representation. Second,
compared with existing approaches of transforming tabular data into images, IGTD does not require domain
knowledge and provides compact image representations with a better preservation of feature neighborhood
structure. Third, using drug response prediction as an example, we demonstrate that CNNs trained on IGTD
image representations provide a better (or similar) prediction performance than CNNs trained on other image
representations and prediction models trained on the original tabular data. Fourth, IGTD is a flexible framework
that can be extended to accommodate diversified data and requirements as described above.

Because both IGTD and REFINED generate compact image representations for tabular data, it is important
to compare and summarize their difference. We have comprehensively compared the two methods from four
aspects, including the local heterogeneity of the generated images, the runtime to generate image representa-
tions, the prediction performance based on image representations, and the time for training prediction model.
IGTD outperforms REFINED significantly in terms of the preservation of feature neighborhood structure in
image and the speed of converting tabular data into images, while the benefit of IGTD is not very significant for
improving the prediction performance and the model training speed. Although prediction modeling with CNNs
is one of the most important purposes of converting tabular data into images, IGTD also provides a significantly
better choice for applications that emphasize on generating compact image representations promptly with a good
preservation of feature neighborhood structure.

To understand how sensitive the IGTD algorithm is to the hyper-parameters Smax , Scon , and tcon , we run the
IGTD algorithm with three different values for each parameter that spanned across a reasonably large range. Spe-
cifically, we tried 10,000, 20,000, and 30,000 for Smax , 200, 350, and 500 for Scon , 0.0001, 0.00001, and 0.000001 for
tcon . In total, 3× 3× 3 = 27 different combinations of parameter settings were used to apply the IGTD algorithm
on CCL gene expression profiles and drug molecular descriptors. Supplementary Table 2 shows the optimization
results, which are the obtained errors after optimization. To evaluate the variation of error across 27 different
parameter settings, we calculated the coefficient of variation for the error, which was the ratio of the standard
deviation to the mean. The coefficient of variation of error was 0.029% and 0.039% for the analyses of gene expres-
sions and drug descriptors, respectively. Such small coefficients of variation indicate that the IGTD algorithm
is not very sensitive to the variation of the hyper-parameters in a relatively large range. This observation is also
expected, because the optimization process reaches a plateau region fairly quickly. For example, in Fig. 1d the
error does not change much after about 5000 iterations. As long as the hyper-parameters allow the optimization
process to reach the plateau region, the optimization result is not very sensitive to the hyper-parameter setting.

A hypothesis supporting the transformation of data into images is that images may better represent the
relationship between features that can be learned by CNNs to facilitate prediction. Apparently, this hypothesis
is not universally true for all data. An extreme example can be a dataset including only independent features,
where there is no meaningful feature relationship to be represented using images. We expect the IGTD algorithm
to perform better for data with feature relationships that can be characterized by feature similarities, although
there is not much existing knowledge regarding such relationships.

Data availability
IGTD software package is available at https://​github.​com/​zhuyi​tan/​IGTD.

Received: 1 February 2021; Accepted: 17 May 2021

References
	 1.	 Hadsell, R. et al. Learning long-range vision for autonomous off-road driving. J. Field Robot. 26, 120–144 (2009).
	 2.	 Garcia, C. & Delakis, M. Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Trans. Pattern

Anal. Machine Intell. 26, 1408–1423 (2004).
	 3.	 Tompson, J., Goroshin, R. R., Jain, A., LeCun, Y. Y. & Bregler, C. C. Efficient object localization using convolutional networks. in

IEEE Conference on Computer Vision and Pattern Recognition. (2015).
	 4.	 Sermanet, P., Kavukcuoglu, K., Chintala, S. & LeCun, Y. Pedestrian detection with unsupervised multi-stage feature learning. in

IEEE Conference on Computer Vision and Pattern Recognition. (2013).
	 5.	 Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med.

25, 1054–1056. https://​doi.​org/​10.​1038/​s41591-​019-​0462-y (2019).
	 6.	 Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun.

11, 3877 (2020).
	 7.	 Collobert, R. et al. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011).
	 8.	 Sainath, T., Mohamed, A. R., Kingsbury, B. & Ramabhadran, B. Deep convolutional neural networks for LVCSR. in IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing. 8614–8618 (2013).
	 9.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	10.	 Arel, I., Rose, D. C. & Karnowski, T. P. Deep machine learning: A new frontier in artificial intelligence research. IEEE Comput.

Intell. Mag. 5, 13–18 (2010).

https://github.com/zhuyitan/IGTD
https://doi.org/10.1038/s41591-019-0462-y
https://doi.org/10.1038/nature14539

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

	11.	 Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L. & Muller, P. A. Deep learning for time series classification: A review. Data Min.
Knowl. Disc. 33, 917–963. https://​doi.​org/​10.​1007/​s10618-​019-​00619-1 (2019).

	12.	 Bayat, A. Science, medicine, and the future: Bioinformatics. BMJ 324, 1018–1022. https://​doi.​org/​10.​1136/​bmj.​324.​7344.​1018
(2002).

	13.	 Zhu, Y., Qiu, P. & Ji, Y. TCGA-Assembler: Open-source software for retrieving and processing TCGA data. Nat. Methods 11,
599–600 (2014).

	14.	 Zhu, Y. et al. Zodiac: A comprehensive depiction of genetic interactions in cancer by integrating TCGA data. J. Natl. Cancer Inst.
107, 129. https://​doi.​org/​10.​1093/​jnci/​djv129 (2015).

	15.	 Topol, E. J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 25, 44–56. https://​doi.​
org/​10.​1038/​s41591-​018-​0300-7 (2019).

	16.	 Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. NPJ Digital Med. 1, 18. https://​doi.​org/​10.​
1038/​s41746-​018-​0029-1 (2018).

	17.	 Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A. & Tsunoda, T. DeepInsight: A methodology to transform a non-image data
to an image for convolution neural network architecture. Sci. Rep. 9, 11399. https://​doi.​org/​10.​1038/​s41598-​019-​47765-6 (2019).

	18.	 Bazgir, O. et al. Representation of features as images with neighborhood dependencies for compatibility with convolutional neural
networks. Nat. Commun. 11, 4391. https://​doi.​org/​10.​1038/​s41467-​020-​18197-y (2020).

	19.	 Ma, S. & Zhang, Z. OmicsMapNet: Transforming omics data to take advantage of deep convolutional neural network for discovery.
https://​arxiv.​org/​abs/​1804.​05283 (2018).

	20.	 Van der Maaten, L. J. P. & Hinton, G. E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
	21.	 Shneiderman, B. Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11, 92–99 (1992).
	22.	 Zhu, Y. et al. Enhanced co-expression extrapolation (COXEN) gene selection method for building anti-cancer drug response

prediction models. Genes 11, 1070. https://​doi.​org/​10.​3390/​genes​11091​070 (2020).
	23.	 Zhu, Y. et al. Ensemble transfer learning for the prediction of anti-cancer drug response. Sci. Rep. 10, 18040 (2020).
	24.	 Partin, A. et al. Learning curves for drug response prediction in cancer cell lines. https://​arxiv.​org/​abs/​2011.​12466 (2020).
	25.	 Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154,

1151–1161. https://​doi.​org/​10.​1016/j.​cell.​2013.​08.​003 (2013).
	26.	 Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells.

Nucleic Acids Res. 41, D955-961. https://​doi.​org/​10.​1093/​nar/​gks11​11 (2013).
	27.	 Goulden, C. H. Methods of Statistical Analysis 2nd edn, 50–55 (Wiley, 1956).
	28.	 Ke, G. et al. LightGBM: A highly efficient gradient boosting decision tree. in 31st International Conference on Neural Information

Processing Systems. 3149–3157 (2017).
	29.	 Breiman, L. Random forests. Mach. Learn. 45, 25–32 (2001).

Acknowledgements
This work has been supported in part by the Joint Design of Advanced Computing Solutions for Cancer
(JDACS4C) program established by the U.S. Department of Energy (DOE) and the National Cancer Institute
(NCI) of the National Institutes of Health. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Argonne National Laboratory under Contract DE-AC02-06-CH11357, Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344, Los Alamos National Laboratory under Contract
DE-AC5206NA25396, and Oak Ridge National Laboratory under Contract DE-AC05-00OR22725. This project
has also been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes
of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect
the views or policies of the Department of Health and Human Services, nor does mention of trade names, com-
mercial products, or organizations imply endorsement by the U.S. Government. We thank Prasanna Balaprakash
and Rida Assaf for their critical review of the manuscript.

Author contributions
Y.Z. developed the algorithm, conducted the analysis, and led the writing of article. F.X., A.P., M.S., and H.Y.
collected and processed the data for analysis. R.L.S. and T.B. supervised and participated in the conceptualiza-
tion of the project. J.H.D. and Y.A.E. participated in the validation of analysis results. All authors participated
in writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​90923-y.

Correspondence and requests for materials should be addressed to Y.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1136/bmj.324.7344.1018
https://doi.org/10.1093/jnci/djv129
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1038/s41467-020-18197-y
https://arxiv.org/abs/1804.05283
https://doi.org/10.3390/genes11091070
https://arxiv.org/abs/2011.12466
https://doi.org/10.1016/j.cell.2013.08.003
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/s41598-021-90923-y
https://doi.org/10.1038/s41598-021-90923-y
www.nature.com/reprints

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:11325 | https://doi.org/10.1038/s41598-021-90923-y

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection
may apply 2021

http://creativecommons.org/licenses/by/4.0/

	Converting tabular data into images for deep learning with convolutional neural networks
	IGTD algorithm
	Applications on CCL gene expression profiles and drug molecular descriptors.
	Drug response prediction using CNNs based on image representations.

	Discussion
	References
	Acknowledgements

