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Abstract: Dysregulated cell division, which leads to aberrant cell proliferation, is one of the key hallmarks of can-
cer. Therefore, therapeutic targets that block cell division would be effective for cancer treatment. Cell division is 
mainly controlled by a complex composed of cyclin and cyclin dependent kinases (CDKs). To date, the CDK inhibitors 
(CDKIs), specifically the ones that block the enzyme activity of CDK4 and CDK6 (CDK4/6), have been approved by 
FDA for the treatment of metastatic hormone receptor positive breast cancer. However, due to the non-selectivity 
and significant toxicity, most of the first generation CDK inhibitors (so called pan-CDK inhibitors that target several 
CDKs), have not been approved for clinical application. Despite this, great efforts and progress have been made 
to enable pan-CDK inhibitors application in the clinical setting. Notably, the development of combination therapy 
strategies in recent years has made it possible to reduce the toxicity and side effects of pan-CDK inhibitors. Thus, 
as a combination therapy approach, pan-CDK inhibitors regain great potential in clinical application. In this review, 
we introduced the CDK family members and discussed their major functions in cell cycle controlling. Then, we 
summarized the research progress regarding CDK inhibitors, especially those other than CDK4/6 inhibitors. We re-
viewed first-generation pan-CDKIs Flavopiridol and Roscovitine, and second-generation CDKIs Dinaciclib, P276-00, 
AT7519, TG02, Roniciclib, RGB-286638 by focusing on their developing stages, clinical trials and targeting cancers. 
The specific CDKIs, which targets to increase specificity and decrease the side effects, were also discussed. These 
CDKIs include CDK4/6, CDK7, CDK9, and CDK12/13 inhibitors. Finally, the efficacy and discrepancy of combina-
tion therapy with CDK inhibitors and PD1/PDL1 antibodies were analyzed, which might give insights into the devel-
opment of promising strategy for cancer treatment.
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Introduction 

Cell division is one of the fundamental biologi-
cal activities, occurring in various physiologi- 
cal processes such as individual development, 
organ homeostasis, tissue regeneration, as we- 
ll as in pathological process of tumorigenesis. 
The sequence of stages in cell division is known 
as the cell cycle, and is divided into a synthesis 
phase, a mitotic segregation phase and two 
intervenient phases G1 and G2 (Figure 1). Cell 
enlarges itself in the G1 phase to prepare  
for the DNA synthesis, which is regulated by a 

“restriction point” in mammals. Whether a cell 
can enter into the cell cycle is determined by 
both intrinsic factors (such as protein synthe-
sis) and extrinsic factors (such as growth fac-
tors). The absence of these essential factors 
causes the cell to end its cell cycle and enter 
into a dormancy period, known as G0 phase. 
Cell cycle regulation involves three “check-
points”: the G1/S, G2/M, and mitotic spindle 
checkpoints. Growing evidence has demon-
strated that the eukaryotic cell cycle is driven  
by a conserved central mechanism, including 
cyclin-dependent kinases (CDKs), which pro-
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mote DNA synthesis and chromosome segre- 
gation by phosphorylation of their substrate [1, 
2]. 

CDKs are involved not only in the cell cycle but 
also in the other critical cellular processes, 
such as gene transcription, insulin secretion, 
glycogen synthesis and neuronal functions [3]. 
So far, 21 CDKs and 5 CDK-like genes have 
been identified in human genome based on 
their homologous sequences [4]. CDK1 emerg-
es as a key determinant of mitotic progression, 
whereas CDK2 is more associated with DNA 
replication in higher eukaryotes. In metazoans, 
cell cycle entry is mostly elicited by CDK4 and 

CDK6, which are responsive to numerous 
growth-regulatory signals [5, 6]. Besides cell 
cycle controlling, some other CDKs including 
CDK7, CDK8, CDK9 and CDK11, have been 
shown to participate in transcriptional regula-
tion [4]. CDK7 can phosphorylate RNA poly-
merase II and contribute to the initiation of 
transcription. CDK8 is a part of the mediator 
complex which regulates a plethora of genes. 
CDK9 can phosphorylate RNA polymerase II 
and thereby promote elongation of transcrip-
tion. CDK11 mainly acts on the splicing machin-
ery. Accumulating evidence suggests that the- 
se transcription-regulating CDKs have potential 
to be efficient therapeutic targets for cancer 

Figure 1. Major Functions of CDKs in cell cycle: Eukaryotic cell cycle is a precise process with order, which is regu-
lated by CDKs, Cyclins and CDKIs. CDK-Cyclin complex can phosphorylate RB protein and regulate cell cycle posi-
tively, whereas CDKIs will inhibit part of the cell cycle process and play a negative regulatory role. As shown in this 
figure, after cell has been stimulated by mitotic signals, it then enters the G1 phase. Before it further enters the next 
phase, RB protein would be first phosphorylated by CDK4/6-CyclinD and CDK2-CyclinE complexes, thereby releasing  
E2F protein, promoting downstream cell cycle factors and transcription-related gene expression. P16INK4a, P21Cip1, 
P27Kip1 and P57Kip2 all belong to CDKIs, among which P16INK4a can inhibit the activity of CDK4, prevent the phos-
phorylation of RB protein and the release of E2F, thereby inhibit the cell life cycle in G1 phase. P21Cip1, P27Kip1 and 
P57Kip2, on the other hand, can inhibit the activity of CDKs and Cyclins more extensively and block cells at different 
stages.
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treatment [7-9]. There is another type of CDKs, 
called atypical CDKs, which include CDK5, 
CDK14, CDK15, CDK16, CDK17, and CDK18 
[4]. CDK5 is involved in postmitotic functions in 
specialized tissue settings [10, 11]. CDK14 is 
reported to be involved in Wnt/β-catenin signal-
ing pathway by combination with Cyclin Y [12, 
13]. 

Given the important function of CDKs in regula-
tion of cell division, gene transcription and 
other critical biological processes, CDK inhibi-
tors have been developed for the treatment of 
various diseases caused by CDK abnormalities. 
Over the past 20 years, numerous compounds 
targeting CDK enzyme activity have emerged 
and have been evaluated in the clinical trial. 
Here, we will perform a whole mount review of 
the history of research and progress of CDK 
inhibitors, particularly their involvement in the 
treatment of cancer.

Pan-CDK inhibitors

CDK inhibitors have been studied since the 
1990s. The first generation of CDK inhibitors 
are pan-CDK inhibitors, including Flavopiri- 
dol and Roscovitine, etc. The main function of 
these inhibitors is to block cell cycle and inhibit 
cell proliferation by inhibiting the CDK enzyme 
activity. However, the first-generation of pan-
CDK inhibitors have poor selectivity and high 
toxicity, leading to inevitable harmful effects on 
normal cells. As a result, most of the pan-CDK 
inhibitors failed in their clinical trials [14-16]. 
Subsequently, second-generation CDK inhibi-
tors, including Dinaciclib, P276-00, AT7519, 
TG02, Roniciclib, RGB-286638 and so on, have 
been developed with better selectivity and less 
side effects. Most of the second generation 
CDK inhibitors have presented efficient anti-
tumor activity in preclinical trials, although the 
safety and efficacy of these inhibitors need to 
be further verified in clinical studies. At pres-
ent, there are approximately 40 pan-CDK inhib-
itors that are in various stages of their resear- 
ch and development. For instance, Dinaciclib, 
developed by Merck company, is in phase lll 
clinical study and has already presented a sig-
nificant anti-tumor effect in the treatment of 
melanoma, breast cancer and leukemia. Be- 
sides, several pan-CDK inhibitors entered into 
phase I or phase II studies, while many other 
pan-CDK inhibitors have shown significant anti-

tumor activity in preclinical studies. In order to 
minimize the side effects of pan-CDK inhibi-
tors, numerous studies have been conducted 
on drug delivery strategies, especially in the 
area of combination therapy. Overall, pan-CDK 
inhibitors have shown promising clinical effica-
cy despite serious side effects and safety con-
cerns. Here, we listed pan-CDK inhibitors cur-
rently under research and development, and 
summarized their structures, CDK targets, de- 
velopmental stages and indications of target 
diseases or cancers (Table 1). Representative 
pan-CDK inhibitors are described in details as 
follows.

Flavopiridol

Flavopiridol (Alvocidib) belongs to the first gen-
eration of pan-CDK inhibitors. It is the first pan-
CDK inhibitor that was used in clinical trials and 
is also one of the most widely studied pan-CDK 
inhibitors. Flavopiridol mainly inhibits the activi-
ties of CDK1, CDK2, CDK4, CDK6, CDK7 and 
CDK9 with IC50 values at 30, 170, 100, 60, 300 
and 10 nM, respectively [17]. Since 1997, 63 
clinical trials have been carried out on Fla- 
vopiridol, which is mainly administrated for the 
treatment of ALL, AML, CLL, lymphoma, solid 
tumor, gastric cancer, mantle cell lymphoma, 
myeloid leukemia and so on. Results from a 
preclinical study indicated that Flavopiridol pre-
sented significant anti-tumor activity against 
prostate cancer, reducing tumor volume by 
85% and extending survival by 30 days. In addi-
tion, Flavopiridol can induce apoptosis of pri-
mary and recurrent/refractory AML cells by 4.3 
times in vitro [18]. It can also induce apoptosis 
in a large number of other hematopoietic cell 
lines [19]. In spite of these promising progress 
of preclinical study, Flavopiridol presented poor 
efficacy in clinical trials of solid tumors. Phase I 
clinical studies of AML showed that after three 
days treatment of Flavopiridol, the number of 
peripheral blood cells decreased by more than 
50% in 44% of patients, suggesting that Fla- 
vopiridol can induce anti-leukemia cytotoxicity. 
Subsequently, 45 AML patients were studied in 
phase II clinical study, and 16% of the patients 
have cardiac dysfunction during treatment  
process. Phase I [20] and Phase II [21] clinical 
trials of the CLL patients have shown that 
Flavopiridol can alleviate the symptoms. Due to 
these side effects, clinical trials with Flavopiridol 
only made limited progress. In order to reduce 



CDK inhibitors in cancer therapy

1916 Am J Cancer Res 2021;11(5):1913-1935

Table 1. Pan-CDK inhibitors under development (updated to April, 2021) 

No. Name Alternative Name CAS No. Formula Published CDK 
preference

Other Main 
Target

Highest  
Clinical Phase

Indications/targeting 
cancers Chemical structure

1 Flavopiridol Alvocidib, L868275,  
HMR-1275

146426-40-6 C21H20ClNO5 1, 2, 4, 6, 7, 9 Phase II ALL/AML/CLL/MM/ 
lymphoma/MCL

2 R-roscovitine CYC202, Seliciclib,  
Roscovitine

186692-46-6 C19H26N6O 1, 2, 5, 7, 9 Phase II NSCLC/CD/NPC/Metastatic 
breast cancer/Advanced 
solid tumor

3 Dinaciclib SCH 727965, SCH-727965 779353-01-4 C21H28N6O2 1, 2, 5, 9 Phase III CLL/MCL/NSCLC/ 
Melanoma/Breast tumor

4 P276-00 Riviciclib hydrochloride, 
P276

920113-03-7 C21H21Cl2NO5 1, 4, 9 Phase II BC/Head and neck cancer

5 TG02 SB1317, TG-02; SB-1317 937270-47-8 C23H24N4O 1, 2, 5, 7, 9 JAK2, FLT3 Phase II Glioblastoma/anaplastic 
astrocytoma/CLL/Hemato-
logical neoplasm

6 AT7519 AT 7519, AT-7519 844442-38-2 C16H17Cl2N5O2 1, 2, 4, 5, 6, 9 Phase II MM/CLL/MCL/ 
Non-Hodgkin  
lymphoma/Solid tumor
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7 Roniciclib BAY1000394 1223498-69-8 C18H21F3N4O3S 1, 2, 3, 4, 7, 9 Phase II SCLC

8 RGB-286638 RGB286638 784210-87-3 C29H37Cl2N7O4 1, 2, 3, 4, 5, 9 Phase I Hematological  
Malignancies

9 PHA-793887 PHA 793887, PHA793887 718630-59-2 C19H31N5O2 1, 2, 4, 5, 7, 9 Phase I Solid tumor

10 ZK304709 [96] ZK-304709, ZK 304709 477588-78-6 C13H16BrN5O3S 1, 2, 4, 7, 9

11 Xylocydine [97, 98] 685901-63-7 C12H14BrN5O5 7, 9

12 SNS032 [99-102] BMS-387032, SNS-032 345627-80-7 C17H24N4O2S2 1, 2, 4, 7, 9 Phase I B-lymphoid Malignancies, 
CLL, Tumors

13 R547 [103-105] Ro 4584820 741713-40-6 C18H21F2N5O4S 1, 2, 3, 4, 7, 9 Phase I Neoplasms

14 RGB286147 [106] CDK/CRK inhibitor,  
CDK7 inhibitor IV

784211-09-2 C23H22Cl2N4O3 1, 2, 3, 4, 7
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16 Purvalanol A [107-110] NG60 212844-53-6 C19H25ClN6O 1, 2, 4, 5, 7

17 Purvalanol B [107] NG95, NG-95 212844-54-7 C20H25ClN6O3 1, 2, 5

18 Olomoucine 101622-51-9 C15H18N6O 1, 2, 5 ERK1/MAP

19 Olomoucine II IN1181 500735-47-7 C19H26N6O2 1, 2, 7, 9

20 NVP-LCQ195 [111] AT9311, AT-9311, LCQ195, 
LCQ-195

902156-99-4 C17H19Cl2N5O4S 1, 2, 3, 5, 7, 9 CLK3, CHK2

21 Meriolin 3 [112, 113] 954143-48-7 C12H11N5O 1, 2, 5, 9, 3, 4, 6, 7

22 Kenpaullone [114, 115] NSC664704,  
9-Bromopaullone

142273-20-9 C16H11BrN2O 1, 2, 5 GSK-3β
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23 JNJ-7706621 [116-121] Aurora kinase/CDK  
inhibitor, JNJ7706621

443797-96-4 C15H12F2N6O3S 1, 2, 3, 4, 6, 9 Aurora A/B

24 Indirubin-3’-Monoxime 
[122, 123]

160807-49-8 C16H11N3O2 1, 2, 5 GSK-3β

25 Indirubin [122, 124] Isoindigotin; Indigopurpurin 479-41-4 C16H10N2O2 1, 2, 4, 5 GSK-3β Phase IV Childhood Acute  
Promyelocytic Leukemia

26 AZD-5438 [125] AZD5438; AZD 5438 602306-29-6 C18H21N5O2S 1, 2, 4, 5, 7, 9 Phase I Neoplasms

27 AZD5597 [126] cmpd (S)-8b; AZD 5597 924641-59-8 C23H28FN7O 1, 2 CYP, hERG

28 Bohemine [110, 127] 189232-42-6 C18H24N6O 1, 2, 9

29 Butyrolactone I [128] 87414-49-1 C24H24O7 1, 2, 5
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30 CYC065 CYC-065, CYC 065 1070790-89-4 C21H31N7O 2, 9 Phase I AML, MDS, Advanced 
cancer, Relapsed/  
Refractory CLL

31 10Z-Hymenialdisine 
[129]

(Z)-Hymenialdisine, HD; 
Hymenialdesine;

82005-12-7 C11H10BrN5O2 1, 2, 3, 4, 5, 6 MEK1, 
GSK-3β

32 5-Iodo-indirubin-3’-
monoxime [124]

331467-03-9 C16H10IN3O2 1, 5 GSK-3β

33 AG024322 [130, 131] AG-024322 837364-57-5 C23H20F2N6 1, 2, 4, 6, 7, 9 Phase I Neoplasms, Non-Hodgkin 
lymphoma

34 Aloisine A [132] RP107 496864-16-5 C16H17N3O 1, 2, 5 GSK-3α, 
GSK-3β

35 Aloisine B [132] RP90 496864-14-3 C15H16N3Cl 1, 5 GSK-3β
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36 Alsterpaullone [133, 
134]

9-Nitropaullone, 
NSC705701

237430-03-4 C16H11N3O3 1, 2, 5 GSK-3α, 
GSK-3β

37 Aminopurvalanol [135] NG97, NG-97, Aminopur-
valanol A

220792-57-4 C19H26ClN7O 1, 2, 5 ERK1, ERK2

38 R-CR8 [136, 137] (R)-CR8, CR8, (R)-Isomer 294646-77-8 C24H29N7O 1, 2, 5, 7, 9 CK1

39 Voruciclib
[138-141]

P1446A-05 1000023-04-0 C22H19ClF3NO5 4, 6, 9 Phase I CLL/Melanoma
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side effects, researchers are trying to com- 
bine Flavopiridol with other drugs to treat can-
cer so as to improve the clinical efficacy of 
Flavopiridol [22, 23].

Dinaciclib

Dinaciclib (SCH727965), developed by Merck  
& Co. Ltd., has entered phase III clinical trials, 
and showed impressive anti-tumor activity in 
lung cancer, breast cancer, and chronic lym-
phocytic carcinoma. Dinaciclib mainly inhibits 
the activity of CDK9, thus preventing the phos-
phorylation of the carboxyl terminus of RNA 
polymerase II, which plays a transcriptional in- 
hibitory role and induces cell apoptosis. Stri- 
kingly, it has been proved that Dinaciclib has 
the best therapeutic efficacy for leukemia. In 
acute lymphoblastic leukemia, Dinaciclib inhib-
ited the growth of T-ALL cells and prolonged the 
survival time of mouse tumor xenograft mod-
els. In preclinical experiments, Dinaciclib com-
bined with Panobinostat can induce MLL-AF9 
tumor cell apoptosis. The number of leukocytes 
was significantly reduced in the mouse tumor 
model, showing a stronger survival advantage, 
with median survival increased from 33 days to 
52 days [24]. Further studies demonstrated 
that Dinaciclib can eliminate many cytokines in 
the microenvironment, such as CD40L, BAFF, 
IL-4, etc., which are essential for the growth of 
CLL cells [25]. These studies indicated that 
Dinaciclib has great potential as a clinical treat-
ment agent for CLL. Clinical trial results also 
showed that Dinaciclib was superior to Flavo- 
piridol in the treatment of CLL. Recent stu- 
dies have further demonstrated that Dinaciclib 
has a more remarkable anti-tumor effect wh- 
en combined with PD1 monoclonal antibodies 
[26], making Dinaciclib a potential promising 
therapeutic target in clinical setting.

P276-00

P276-00 can effectively inhibit CDK1, CDK4 
and CDK9 with IC50 values at 79 nM, 63 nM and 
20 nM, respectively. P276-00 showed signifi-
cant cytotoxicity against mantle cell lymphoma 
(MCL) cells in vitro [27]. In the Phase II clinical 
trial of MCL, 13 patients with relapsed  
and refractory MCL were treated with p276-00. 
Overall, both drug resistance and anti-tumor 
effects were significant. At present, the molec-
ular mechanism of p276-00 in the treatment of 
MCL remains unclear [28]. Other studies have 

shown that p276-00 can arrest the cell cycle in 
the G1 phase, thereby inducing apoptosis of 
head and neck cancer cells [29]. The anti-tumor 
activity and safety of p276-00 was evaluated in 
a phase II clinical study in patients with recur-
rent and locally advanced head and neck can-
cer. The results suggested that P276-00 had 
good anti-tumor activity, while its safety needs 
to be further evaluated.

TG02

TG02 is a novel oral poly-kinase inhibitor that 
mainly inhibits CDK1, CDK2, CDK7 and CDK9 
activities with IC50 values at 9 nM, 5 nM, 37 nM 
and 3 nM, respectively. Preclinical studies have 
shown that TG02 alone or in combination with 
TMZ can inhibit the proliferation of glioblasto-
ma cells [30]. Phase I clinical studies have been 
conducted in China to determine the clinical 
dose and efficacy of TG02. The results showed 
that TG02 is effective in the treatment of hema-
tological malignancies, and TG02 therapy has 
been found to promote tumor deposition and 
prolong survival in a variety of mouse models of 
leukemia. TG02 has broad-spectrum of anti-
CDKs and anti-JAK2/Flt3 activity, which pro-
vides a theoretical basis for clinical treatment 
of patients with hematologic diseases [31]. 
Further studies have shown that Carfi- 
lzomib (the second-generation proteasome in- 
hibitor) combined with TG02 improve the effi-
cacy of relapsed/refractory multiple myeloma 
(MM) [32]. In conclusion, TG02 has shown pro- 
mising therapeutic potentials in clinical trials, 
although further investigation is still needed in 
the future.

AT7519

AT7519 is a potent pan-CDK inhibitor that 
mainly inhibits CDK1, 2, 4, 6 and 9. Studies 
have shown that AT7519 not only has inhibitory 
activity against a variety of solid tumors, but 
also can inhibit hematologic malignancies. Pre- 
clinical trials have proved that AT7519 can 
induce apoptosis in various neuroblastoma cell 
lines [33]. In addition, AT7519 also induces 
neutrophils apoptosis and reduces inflam- 
matory response in a pneumonia model. So, 
AT7519 has been evaluated as a potential 
agent for ARDS (acute respiratory distress syn-
drome with neutrophil dominant) in many stud-
ies [34]. The efficacy of AT7519 in patients with 
advanced refractory solid tumors or non-Hodg-
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kin’s lymphoma has been evaluated in phase  
I clinical trials. Phase I clinical trials also pro-
vided guidance for dosages of AT7519 to be 
used in Phase II clinical trials, with a recom-
mended dose of 27.0 mg/kg. AT7519 is  
in phase II clinical trials for the treatment  
of relapsed mantle cell lymphoma and recur-
rent refractory chronic lymphocytic leukemia. 
Furthermore, AT7519 in combination with 
Onalespib (HSP90 inhibitor) for the treatment 
of metastatic or unresectable solid tumors and 
AT7519 in combination with Bortezomib for the 
treatment of multiple myeloma are also in clini-
cal trials [35]. Together, AT7519 exhibited great 
potential for clinical application.

Roniciclib

Roniciclib is an oral pan-CDK inhibitor. A study 
at the National University of Singapore Cancer 
Institute indicated that Roniciclib combined 
with cisplatin has a significant synergistic anti-
tumor effect [36]. Another preclinical study 
showed that Roniciclib induced apoptosis of 
medullary thyroid cancer cells. The combina-
tion of Roniciclib and Soafenib further inhibited 
tumor growth in xenograft models compared to 
Roniciclib alone [37]. To date, the safety and 
tolerated dose of Roniciclib in patients with 
advanced malignancy have been evaluated in 
phase I clinical trials, and Roniciclib in combi-
nation with conventional chemotherapy agents 
for the treatment of extensive non-small cell 
lung cancer (ED-SCLC) has entered phase II 
clinical trials [38]. Unfortunately, the results 
showed that the combination treatment pro-
duced significant side effects and cytotoxicity, 
so the phase II clinical trial was terminated 
[39]. In addition to ED-SCLC, phase II trials in 
non-small cell lung cancer (NSCLC) and ad- 
vanced breast cancer have also failed to meet 
expectations. Therefore, the future develop-
ment of Roniciclib might need to be re-opti-
mized in terms of the dosage and administra-
tion strategy. 

RGB-286638

The main target of RGB-286638 is CDK9, so 
RGB-286638 is involved in controlling of cell 
cycle and regulation of gene transcription [40]. 
Preclinical experiments have shown that RGB-
286638 can induce apoptosis of various hu- 
man cancer cell lines. Intravenous injection of 
RGB-286638 for 5 consecutive days had the 

best inhibition effect on tumor growth in solid 
tumor and hematoma mouse models. Based 
on experience in preclinical trials, a phase I 
clinical trial of RGB-286638 is currently being 
conducted to evaluate safety and drug resis-
tance in patients with recurrent or refractory 
blood cancer [41]. The clinical application of 
RGB-286638 still needs further investigation.

PHA-793887

The low concentration of PHA-793887 inhibits 
the phosphorylation of Rb protein, and thus 
prevents the progression of cell cycle [42]. In 
vitro experiments showed that PHA-793887 
had a certain toxic effect on leukemia cells. 
Subcutaneous xenograft model and primary 
leukemia cell dissemination model were used 
to evaluate the therapeutic effect of PHA-
793887 in vivo, and the results sound promis-
ing [43]. However, in a phase I clinical trial, 
there were 19 patients who showed severe 
hepatotoxicity. Therefore, the clinical applica-
tion of PHA-793887 is still under development 
[44].

Specific CDK inhibitors

The biggest challenge in the clinical application 
of pan-CDK inhibitors is their low specificity and 
significant side effects on normal somatic cells. 
In order to solve this problem, researchers ha- 
ve successfully developed a variety of speci- 
fic CDK inhibitors, including CDK4/6-, CDK7-, 
CDK9-, CDK12/13-inhibitors etc. Each type of 
tumor is associated with its own CDK expres-
sion landscape, selection of appropriate spe-
cific CDK inhibitors for relevant patients is 
therefore expected to assure the therapeutic 
effect, and to avoid toxic and side effects as 
well. At present, a variety of specific CDK inhibi-
tors have shown significant anti-tumor effects 
in preclinical and clinical studies. Here, we bri- 
efly summarized the characteristics of some 
specific CDK inhibitors and their anti-tumor 
activity.

CDK4/6 inhibitors

CDK4/6 inhibitors are the first ones that were 
approved by FDA for clinical treatment. These 
inhibitors specifically inhibit CDK4/6 and show 
limited toxicity to normal cells. There are three 
FDA-approved CDK4/6 inhibitors and they are 
Palbociclib produced by Pfizer, Ribociclib pro-
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duced by Novartis and Abemaciclib produced 
by Eli Lilly. Palbociclib is the first and most pop-
ular CDK4/6 inhibitor, which reached $2.135 
billion of global sales in 2016, and is expected 
to reach $7 billion in 2022. Ribociclib is very 
similar to Palbociclib in structure, but Abema- 
ciclib is quite different. In vitro studies indicat-
ed that Palbociclib has almost equivalent in- 
hibition effect on CDK4 and CDK6, while Abe- 
maciclib and Ribociclib are more potent against 
CDK4 than CDK6 [45-47]. 

All three CDK4/6 inhibitors can effectively 
arrest cell cycle from G1 to S phase by blocking 
the phosphorylation of Rb protein, and thus 
inhibit the proliferation of Rb-positive tumor 
cells. These inhibitors are currently approved 
for the first-line treatment of HR+ advanced 
breast cancer, which can effectively reduce 
resistance to mono-endocrine therapy and sig-
nificantly extend survival in HR+/HER2- breast 
cancer patients. Recent studies have shown 
that, besides blocking of the cell cycle, CDK4/6 
inhibitors also suppress tumor growth through 
multiple other mechanisms, including enhanc-
ing cytostasis caused by signaling pathway 
inhibitors, inducing senescence, regulation of 
cell metabolism, and even promoting anti-tu- 
mor immune responses [48]. These novel mo- 
lecular mechanisms provide a theoretical basis 
for combination therapy with CDK4/6 inhibi-
tors. For instance, CDK4/6 inhibitors combined 
with hormone receptor antagonist letrozole 
have been applied for breast cancer therapy. 
Many other combination therapies involving 
CDK4/6 inhibitors are currently under clinical 
trials for a variety of diseases including anti-
cancer therapy.

CDK7 inhibitors

CDK7 has dual functions of cell cycle con- 
trolling and transcriptional regulation, which 
make CDK7 a potential target for cancer thera-
py. Several CDK7 specific inhibitors have be- 
en shown significant anti-tumor activity, includ-
ing non-covalent inhibitors BS-181, ICEC0942, 
LDC4297, QS1189 and covalent inhibitors 
THZ1, THZ2, YKL-5-124. BS-181 is the first 
highly selective CDK7 inhibitor. Preclinical stud-
ies have shown that BS-181 inhibits cancer cell 
proliferation and xenograft tumor growth, but 
its bioavailability is poor and cell permeability is 
insufficient [49]. ICEC0942 (CT7001) is the first 

oral CDK7 inhibitor, which is developed fr- 
om BS-181 and has higher drug-like proper- 
ties compared with BS-181 [50, 51]. Notably, 
ICEC0942 entered clinical trials in 2017 and is 
currently being investigated in phase I/II trials 
for a variety of therapies for advanced malig-
nancies, including monotherapy or combination 
therapy for triple-negative breast cancer, cas-
trate resistant prostate cancer (CRPC), and 
combination therapy with Fulvestrant for pa- 
tients with HR+/HER2- breast cancer. (Clinical- 
Trials.gov identifier: NCT03363893). 

THZ1 is one of the most widely studied CDK7 
covalent inhibitors. Preclinical studies have 
shown that THZ1 has strong anti-tumor activity 
in several cancer types [52-57]. Of note, THZ1 
has been shown to inhibit not only CDK7 activ-
ity, but also CDK12 and CDK13 activity. In order 
to obtain a more specific inhibitor of CDK7, 
researchers developed the inhibitor YKL-5-124 
by combining the covalent warhead of THZ1 
with the pyrrolidinopyrazole core of PAK4 inhibi-
tor PF-3758309 [58]. YKL-5-124 has a potent 
inhibition specificity against CDK7, but has no 
inhibitory activity against CDK12 and CDK13. 
Preclinical studies have shown that YKL-5-124 
can potentiate genomic instability and trigger 
anti-tumor immune response in small cell lung 
cancer, which provides a theoretical basis for 
the combination therapy of CDK7 inhibitors and 
immunotherapy [59]. SY-1365, a THZ1 derived 
CDK7 inhibitor, entered phase I clinical trial in 
advanced solid tumors in May 2017 to evaluate 
its efficacy in the treatment of ovarian and 
breast cancer [60] (ClinicalTrials.gov identifier: 
NCT03134638). SY-5609 is another selective 
CDK7 inhibitor. Preclinical studies have shown 
that SY-5609 combined with Fulvestrant have 
potent anti-tumor activity against ovarian can-
cer, TNBC and ER+ breast cancer [61, 62]. 
SY-5609 entered phase I clinical trials in 
January 2020 for the treatment of advanced 
solid tumors and in combination with Fulve- 
strant in patients with HR+/HER2- breast can- 
cer (ClinicalTrials.gov identification: NCT04247- 
126).

CDK9 inhibitors

CDK9 regulates cellular transcriptional elonga-
tion and mRNA maturation, and has become an 
attractive therapeutic target for many cancers, 
especially those caused by dysregulation of 
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transcription [63, 64]. Several CDK9 inhibitors 
have been developed, and their significant anti-
tumor activity has been demonstrated in  
preclinical studies, such as Fadraciclib, AZD- 
4573, CDKI-73, MC180295, etc. In addition, 
Fadraciclib combined with temozolomide can 
effectively suppress MYCN-amplified neuro-
blastoma long-term [65]. AZD-4573 is a highly 
selective CDK9 inhibitor that can down-regu-
late the expression of oncogenic genes such as 
MCL-1. Preclinical studies have demonstrated 
that AZD-4573 has significant anti-cancer effi-
cacy in hematologic malignancies [66, 67]. 
CDKI-73 combined with Olaparib has a syner-
gistic therapeutic effect in BRCA1-proficient 
ovarian cancer, which facilitates the use of 
CDK9 as a predictive biomarker for PARP inhibi-
tors in clinical practice [68]. MC180295 can 
dephosphorylate SWI/SNF protein Brg1, there-
by promoting gene activation and leading to the 
restoration of tumor suppressor gene expres-
sion. Additionally, CDK9 inhibition sensitizes to 
the immune checkpoint inhibitor α-PD-1 in vivo, 
making it an excellent target for epigenetic 
therapy on cancer [69]. The results of these 
preclinical studies have promoted the develop-
ment of CDK9 inhibitors for clinical applica- 
tion.

A recent review summarized the progress of 
sixteen CDK9 inhibitors in various stages of 
clinical development for cancer therapy. Four of 
them, P276-00, ZK-304709, BAY-1000394 
and SNS-032, have been terminated in clinical 
trials due to their poor selectivity and high to- 
xicity. Other inhibitors, including Alvocidib, 
TP-1287, P-1446, BAY-1143572, BAY-1251152, 
TG-02, (R)-Roscovitine, Fadraciclib, Dinaciclib, 
AT7519, BTX-A51 and AZD-4573, are currently 
being evaluated in several clinical trials [70]. 
Actually, most of these compounds are not very 
specific, they also inhibit other CDKs, such as 
Dinaciclib which also targets CDK1, 2, 5, TG-02 
which also targets CDK1, 2, 3, 5, AT7519 which 
also targets CDK1, 2, 4, 5, 6, etc. [71-73]. Thus, 
they are also considered as pan-CDK inhibitors. 
Due to the high homology of these CDKs in the 
catalytic domain, the development of specific 
CDK9 inhibitors remains a major challenge. 

CDK12 inhibitors

CDK12 is another critical transcriptional regu-
lator besides CDK7 and CDK9 among CDK fam-

ily. It can bind to cyclin K to phosphorylate the 
CTD region of RNA polymerase II, thereby pro-
mote transcription elongation [74]. Several 
novel functions of CDK12 in cancer, especially 
breast cancer, have been revealed in recent 
studies. These novel functions are achieved by 
regulation of a variety of biological activities, 
including c-MYC expression, Wnt/β-catenin sig-
naling, RNA splicing, ErbB-PI3K-AKT signaling, 
MAPK signaling as well as noncanonical NF-kB 
pathway, and DNA damage response (DDR) sig-
naling [75-80]. In recent years, several CDK12 
inhibitors have been developed. These inhibi-
tors include SR-4835 and THZ531, which pre-
sented strong anti-tumor activity in preclinical 
studies. SR-4835 is a highly selective dual 
inhibitor of CDK12 and CDK13, which can sup-
press the expression of core DNA damage 
response proteins. This can provoke a “Br- 
caness” phenotype that leads to deficiencies in 
DNA damage repair, thereby promote the syner-
gistic effect of DNA damage chemotherapy  
and PARP inhibitors in TNBC [81, 82]. THZ531 
is another covalent inhibitor of CDK12 and 
CDK13, which can significantly down-regulate 
the expression of DNA damage response genes 
and key super-enhancer-related transcription 
factors [83]. Recent studies indicated that 
THZ531 has a striking synergistic effect with 
sorafenib in the treatment of hepatocellular 
carcinoma [84]. To date, the inhibitors targeting 
CDK12 in clinical trials have all been pan- 
CDK inhibitors, including Dinaciclib. Therefore, 
development of CDK12 inhibitors with high 
specificity and drug properties is needed.

Combination therapy of CDK inhibitors and 
PD1-PDL1 antibodies

Through decades of research, cancer immuno-
therapy has emerged as a powerful and effec-
tive strategy for cancer treatment. In 1992,  
Dr. Honjo identified PD1 (programmed death 
receptor 1) and demonstrated PD1 expression 
in T cells. In 1999, Dr. Chen identified PDL1 
(B7-H1) and demonstrated high PDL1 expres-
sion in immune and tumor cells. The interaction 
between PDL1 and PD1 induces T cell apopto-
sis and negatively regulates lymphocyte activa-
tion. Thus, blocking PD1-PDL1 immune check-
points promotes T cell activation, which facili-
tates the cytotoxic effect of T cells on tumor 
cells. Although the blockade of the immune 
checkpoint PD1-PDL1 has achieved remark-
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able success in the clinical treatment of a vari-
ety of cancers, the majority of cancer patients 
still failed to respond to the immunotherapy. In 
addition, drug resistance may occur during the 
targeted therapy of PD1-PDL1. Therefore, many 
trials have been conducted to improve the re- 
sponsiveness of cancer patients to immuno-
therapy through combination therapy strate-
gies. Recent studies have shown that some 
CDK inhibitors can enhance the anti-tumor 
immune response. In preclinical and clinical tri-
als, some CDK inhibitors have demonstrated 
potent anti-tumor activity when used in combi-
nation with PD1-PDL1 immunotherapy.

Dinaciclib enhances anti-PD1 mediated tumor 
suppression

Dinaciclib, a potent CDK inhibitor of CDK1, 2, 5, 
9 and 12, can induce apoptosis in various 
tumor cells as described above. Hossain et al. 
reported that combination therapy with Dina- 
ciclib and anti-PD1 antibody presented consid-
erable anti-tumor activity. This combination 
therapy can induce T cell infiltration and DC 
activation, suggesting that combination thera-
py can improve anti-tumor immune response 
and lead to tumor regression. In addition, in 
combination with anti-PD1 antibodies, Dina- 
ciclib can induce immunogenic cell death (ICD) 
to convert tumor cells into endogenous vac-
cines [26]. Together, this study has paved a 
new path in solving the toxic and side-effect 
issues of pan-CDK inhibitors, thus increases 
the application possibility of pan-CDK inhibi- 
tors.

CDK4/6 inhibitors augment the anti-tumor 
efficacy of PD1-PDL1 immune checkpoint 
blockade

CDK4 and CDK6 are fundamental drivers of the 
cell cycle and are required for the initiation and 
progression of various malignancies. Phar- 
macological inhibitors of CDK4/6 have dis-
played significant activity against several solid 
tumors. In a mouse tumor model study, Goel et 
al. found that CDK4/6 inhibitors not only induce 
tumor cell cycle arrest, but also promote anti-
tumor immunity [85]. On one hand, CDK4/6 
inhibitors activate expression of endogenous 
retroviral elements in tumor cells, thereby stim-
ulates the production of type III interferons and 
simultaneously enhances tumor antigen pre-
sentation. On the other hand, CDK4/6 inhibi-

tors markedly suppress the proliferation of reg-
ulatory T cells. Based on these two functions, 
clearance of tumor cells mediated by cytotoxic 
T cell is significantly promoted by treatment 
with CDK4/6 inhibitors. This study provided a 
theoretical basis for combination therapy using 
CDK4/6 inhibitors and PD1-PDL1 antibodies.

Abemaciclib is another CDK4/6 inhibitor, which 
has been clinically approved in the treatment of 
HR+ breast cancer. In a recent study, Schaer et 
al. reported that treatment with Abemaciclib 
can promote human T cell activation and can 
up-regulate expression of antigen presentation 
genes in breast cancer cells [86]. Further study 
indicated that Abemaciclib monotherapy can 
increase T cell inflammatory and delay tumor 
growth. Combination therapy with Abemaciclib 
and anti-PDL1 antibody can induce immuno-
logical memory and tumor elimination. These 
results suggested that combination therapy 
with Abemaciclib and anti-PDL1 antibody effec-
tively stimulated both innate and adaptive 
immune response. Taken together, combina-
tion therapy with Abemaciclib and anti-PDL1 
antibody have presented a great potential in 
clinical application.

Since the efficacy of PDL1 antibody therapy 
depends on the protein abundance of PDL1, 
Zhang et al. investigated the regulatory mecha-
nism of PDL1 expression and stability [87]. 
They found that CDK4 is involved in the regula-
tion of PDL1. Another study further proved that 
combination therapy with CDK4/6 inhibitors 
and anti-PDL1 antibody presented a remark-
able anti-tumor activity [88]. Together, these 
findings reinforce the potential of combination 
therapy with CDK4/6 inhibitors and PD1-PDL1 
antibody in clinical application. To date, in addi-
tion to the combination of CDK4/6 inhibitors 
and PDL1 antibody, other combination thera-
pies are also being tried [89-92]. Com- 
bination therapies are expected to play an 
important role in future cancer therapy.

Other combination therapies

CDK12 mutant cases are known to be as- 
sociated with elevated neoantigen burden and 
increased tumor T cell infiltration and clonal 
expansion [93]. CDK12 inactivation defines a 
distinct class of metastatic castration-resistant 
prostate cancer (mCRPC) that may benefit from 
immune checkpoint immunotherapy [93, 94]. 
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Indeed, a phase ll clinical trial was conducted in 
patients with metastatic prostate cancer har-
boring CDK12 deficiency (ClinicalTrials.gov 
Identifier: NCT03570619). These patients were 
administered with immune-checkpoint inhibitor 
in combination with nivolumab and ipilimumab 
followed by nivolumab monotherapy. A recent 
study also reported that SR-4835, a CDK12 
and CDK13 specific inhibitor, induced immuno-
genic cell death, thereby enhanced the anti-
tumor activity of PD1-PD-L1 immune check-
point therapy in breast cancer [95]. Moreover, 
YKL-5-124 (CDK7 inhibitor) and MC18029 
(CDK9 inhibitor) are also being studied in com-
bination therapy with PD1/PD-L1 as mentioned 
above [59, 69]. These findings suggested that 
the combination of CDK12 inhibitors and PD1-
PDL1 immunotherapy will be a promising strat-
egy for cancer treatment.

Future perspective

CDK inhibitors developed in the early stage 
lack efficacy and selectivity in clinical practice, 
and the therapeutic effect is limited. Pan- 
CDK inhibitors have displayed remarkable anti-
tumor efficacy. However, due to their low speci-
ficity and severe side effects, pan-CDK inhibi-
tors have not been approved for clinical (can-
cer) treatment. Optimization of pan-CDK inhibi-
tors together with combination therapy might 
hold some promise, and more relevant clinical 
trials are actually underway.

In contrast to pan-CDK inhibitors, great prog-
ress has been achieved in terms of selective 
Cdk4/6 inhibitors. Palbociclib has been licens- 
ed since 2015 for the treatment of hormone 
responsive, Rb positive breast cancer. Su- 
bsequently, Abemaciclib developed by Eli Lilly 
and Ribociclib developed by Novartis were also 
approved by the FDA. The biggest challenge in 
research and development of CDK inhibitors 
might be dealing with the adverse effects and 
potential drug tolerance. Further understand-
ing of the behind mechanism and exploring 
ideal combination therapy might help overcome 
the selectivity and drug tolerance of CDK 
inhibitors.
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