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Abstract: The engagement of human angiotensin-converting enzyme 2 (hACE2) and SARS-CoV-2 spike protein 
facilitate virus spread. Thus far, ACE2 and TMPRSS2 expression is correlated with the epithelial-mesenchymal 
transition (EMT) gene signature in lung cancer. However, the mechanism for SARS-CoV-2-induced EMT has not been 
thoroughly explored. Here, we showed that SARS-CoV-2 induces EMT phenotypic change and stemness in breast 
cancer cell model and subsequently identified Snail as a modulator for this regulation. The in-depth analysis identi-
fies the spike protein (S), but not envelope (E), nucleocapsid (N), or membrane protein (M), of SARS-CoV-2 induces 
EMT marker changes. Suppression of Snail expression in these cells abrogates S protein-induced invasion, migra-
tion, stemness, and lung metastasis, suggesting that Snail is required for SARS-CoV-2-mediated aggressive pheno-
type in cancer. This study reveals an important oncogenic role of SARS-CoV-2 in triggering breast cancer metastasis 
through Snail upregulation.
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Introduction

Coronaviruses have been linked to several 
human infectious disease outbreaks, including 
severe acute respiratory syndrome (SARS) in 
2002-2003, Middle East respiratory syndrome 
(MERS) in 2012, and SARS-CoV-2 in December 
2019 [1-3]. The coronavirus disease 2019 
(COVID-19) pandemic has resulted in a total  
of 89,048,345 confirmed cases and 1,930,265 
deaths globally (WHO situation report, 01/ 
12/2021). Coronavirus is a positive-sense, sin-
gle-stranded RNA virus that encodes four struc-
tural proteins [envelope (E), nucleocapsid (N), 
spike (S), and membrane protein (M)], as well 
as auxiliary proteins that can be used for virus 

replication [4]. The interaction of viral spike (S) 
glycoprotein and its cell receptor, angiotensin-
converting enzyme 2 (ACE2), initiates SARS-
CoV-2 entering into host cells [5]. Serine prote-
ase TMPRSS2 further cleaves the spike protein 
allowing efficient virus entry and genome repli-
cation in host cells [6-9]. 

The cellular reprogramming of epithelial-mes-
enchymal transition (EMT) facilitates cancer 
metastasis, allowing primary tumor cells to 
intravasate blood capillaries [10]. Loss of epi-
thelial markers (E-cadherin and ZO-1), gain of 
mesenchymal markers (N-cadherin, vimentin, 
and fibronectin), and the increase of migratory 
and invasive ability are the hallmark of EMT 
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[11]. Transcription repressors such as Zeb-1/2, 
Twist1, Snail, and Slug induce EMT via EGF, 
NF-κB, or TGFβ signaling transduction [12]. 
Upon activation, these transcription factors 
recruit histone deacetylases to restrict the 
E-cadherin promoter susceptibility [13]. Tumor 
cells that undergo EMT are often associated 
with distant metastasis, leading to drug resis-
tance and poor prognosis in patients [14]. 
Chemotherapy, targeted therapy, kinase inhibi-
tors, or natural food compounds that revert 
EMT can be developed as therapeutic agents to 
reduce metastasis [15]. In this regard, a better 
understanding of EMT regulation is urgently 
needed for the design of effective anti-cancer 
strategies.

A spectrum of viruses can initiate cancer inci-
dence, including Epstein-Barr virus (EBV), hepa-
titis B virus (HBV), hepatitis C virus (HCV), 
human Papillomavirus (HPV) and human 
T-lymphotropic virus 1 (HTLV-1), etc. [16]. In 
addition, the persistence of virus infection 
bona fide promotes cancer metastasis [17]. 
Using virus-induced hepatoma as examples, 
NS5A of HCV promotes EMT via activating 
Twist1 [18], and HBx of HBV indirectly activates 
the Twist1 via STAT3 [19]. Moreover, stabiliza-
tion of the Snail protein through glycogen syn-
thase kinase-3β (GSK-3β) signaling is an alter-
native mechanism for HBx facilitating tumor 
invasion and metastasis [20]. 

The link between SARS-CoV-2 and cancer pro-
gression remains largely unknown. Compared 
with normal individuals, cancer patients are 
three times more vulnerable to die from COVID-
19 because cancer and its treatment may 
impair the patient’s immune system, increasing 
the SARS-CoV-2 infection rate [21]. COVID-19 
patients with hematological cancers have the 
highest mortality rate, followed by lung cancer 
patients and esophageal cancer. In addition, 
COVID-19 patients with stage IV metastatic 
cancer are at high risks of severe illness and 
death [21, 22]. Despite the correlation between 
ACE2 expression and EMT signature in lung 
cancer [23], the exact regulatory mechanism of 
SARS-CoV-2 in EMT regulation has not been 
unraveled. The current study aimed to dissect 
the underlying mechanism of SARS-CoV-2 in 
the EMT progression. We discovered that the 
spike protein of SARS-CoV-2 increases breast 
cancer metastatic potentials through Snail but 

not other EMT modulators. In-depth analysis of 
the relation between SARS-CoV-2 and cancer 
metastasis may help reduce COVID-19-me- 
diated cancer aggressiveness. 

Materials and methods

Cell cultures and treatments

MCF10A, MCF12A, A549, and HEK293 cells 
were obtained from American Type Culture 
Collection. MCF10A and MCF12A cells were 
cultured in DMEM/F12 medium supplemented 
with 5% horse serum, 10 μg/ml insulin, 20 ng/
ml EGF, and 500 ng/ml hydrocortisone. For 
transient transfection, cells were transfected 
with DNA by lipofectamine 2000 (Invitrogen, 
Carlsbad, CA). 

Plasmids

The gene encoding amino acids 1-1273 of the 
SARS-CoV-2 spike glycoprotein (Gene ID: 
MN908947) was cloned into the pMD vector 
(RNAi core, Academia Sinica, Taiwan) to gener-
ate a pMD-spike construct for transient trans-
fection. The gene encoding human angioten- 
sin-converting enzyme 2 (ACE2, Gene ID: 
NM_021804) was cloned into the pLAS2w-
pPuro lentiviral vector (RNAi core, Academia 
Sinica, Taiwan) to generate pLAS-ACE2-Flag 
construct for establishing MCF10A-ACE2 and 
MCF12A-ACE2. N, M, E proteins were directly 
cloned from SARS-CoV-2 (TCDC#4). All con-
structs were confirmed by enzyme digestion 
and DNA sequencing. 

Antibodies 

The following antibodies were used: β-Tubulin 
(66240-1-Ig; Proteintech, Chicago, IL, USA), N 
protein (a gift from Dr. An-Suei Yang’s lab, 
Genomics Research Center, Academia Sinica, 
Taiwan), IκBα (ab32518; Abcam, Cambridge, 
MA, USA), Rabbit IgG-HRP (SC-2004; Santa 
Cruz Biotechnology, Dallas, TX, USA), and Mou- 
se IgG-HRP (SC-2005; Santa Cruz Biotech- 
nology, Dallas, TX, USA). Antibodies for EMT 
markers were used as previously described 
[25].

Virus isolation and infection

The SARS-CoV-2 strain used in this study was 
isolated from a COVID-19 patient in Taiwan 
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(TCDC#4) and passaged on Vero E6 cells grown 
in MEM supplemented with 2% FBS and incu-
bated at 37°C with 5 % CO2. For the in vitro 
infection study, target cells were infected at an 
MOI of 0.1 (2000 pfu/well) with SARS-CoV-2 for 
24-48 h. The cells were then fixed with 10% 
formaldehyde and permeabilized with 0.5% 
Triton X-100. All procedures followed the Taiwan 
Centers for Disease Control’s laboratory bio-
safety guidelines and were conducted in a bio-
safety level-3 facility in the IBMS, Academia 
Sinica.

Gene knockdown by recombinant lentivirus-
expressing shRNA

The lentiviral-based shRNA (pLKO plasmid) for 
the knockdown of Snail was purchased from 
the National RNAi Core Facility (Academia 
Sinica, Taipei, Taiwan). Transient transfection 
was performed by adding 2 μg/well of shRNA 
plasmids and 5 μl/well of Lipofectamine 2000 
into cell suspensions. Stable clones expressing 
the shRNA plasmids were selected in 2 μg/ml 
puromycin for ten days, and cell clones were 
stocked for further analysis. Target sequence 
of shSnail are shSnail-1: 5’-TACAGCTGCTTTG- 
AGCTACAG-3’ and shSnail-2: 5’-GCAAATACTGC- 
AACAAGGAAT-3’.

Human phospho-kinase array analysis

The human phospho-kinase antibody array  
contains 39 targets, 37 antibodies recognizing 
phosphorylation form, and two antibodies rec-
ognizing the total form (ARY003C, R&D System). 
The Caco2 were infected with SARS-CoV-2 for 
24 hrs, lysed with lysis buffer 6 (#895561, R&D 
System), and then incubated with the array 
overnight according to manufacturer protocols. 
The protein signal was detected by chemifluo-
rescence detection (Bio-Rad, Hercules, CA, 
USA). The relative intensity of specific protein 
expression was quantified by Image J soft- 
ware.

Real-time quantitative PCR (RT-qPCR)

Total RNA of MCF10A-ACE2 and HEK293 cells 
were isolated using Quick-RNA Miniprep Kit 
(R1055; ZYMO Research, Irvine, CA, USA). The 
cDNA was prepared using ToolsQuant II Fast  
RT Kit (KRT-BA06-2; Biotools, Taipei, Taiwan) 
according to the manufacture’s protocol with 1 
μg total RNA. All RT-qPCR reactions were per-

formed in a 10 μL mixture containing 1X iQ™ 
SYBR® Green supermix (1708880; Bio-Rad, 
Hercules, CA, USA), 0.5 μmol/L of each primer, 
and 100 ng of cDNA template. Primers used 
are as follows: E-cadherin_F: 5’-TGCCCAG- 
AAAATGAAAAAG-3’, E-cadherin_R: 5’-GTGTATG- 
TGGCAATGCGTT-3’, N-cadherin_F: 5’-ACAGTG- 
GCCACCTACAAAG-3’, N-cadherin_R: 5’-CCGAG- 
ATGGGGTTGATAAT-3’, Vimentin_F: 5’-GAGAA- 
CTTTGCCGTTGAAGC-3’, Vimentin_R: 5’-GCTT- 
CCTGTAGGTGGCAATC-3’, Fibronectin_F: 5’-CA- 
GTGGGAGACCTCGAGAAG-3’, Fibronectin_R: 5’- 
TCCCTCGGAACATCAGAAAC-3’, Twist1_F: 5’-GG- 
AGTCCGCAGTCTTACG-3’, Twist1_R: 5’-TCTGGA- 
GGACCTGGTAGA-3’, Snail_F: 5’-CCTCCCTGTCA- 
GATGAGG-3’, Snail_R: 5’-CCAGGCTGAGGTATT- 
CCT-3’, ZEB-1_F: 5’-GCACAACCAAGTGCAGAA- 
GA-3’, ZEB-1_R: 5’-TGCACTGAAATCTGTCCA- 
GC-3’, ZO-1_F: 5’-CGAAGGAGTTGAGCAGGAA- 
ATCT-3’, ZO-1_R: 5’-TCCACAGGCTTCAGGAAC- 
TTG-3’, E protein_F: 5’-ACAGGTACGTTAATAG- 
TTAATAGCGT-3’, E protein_R: 5’-ATATTGCAGCA- 
GTACGCACACA-3’.

Promoter assay

X-tremeGENE HP DNA Transfection Reagent 
(XTGHP-RO, Roche, Mannheim, Germany) was 
used to co-transfect the E-cadherin promoter 
construct [24] with various structural proteins 
in MCF7 cells. Luciferase activity was mea-
sured using the Dual-Luciferase Reporter Assay 
System kit (E1980, Promega, Madison, WI, 
USA).

Confocal microscopy

Immunofluorescence was performed as previ-
ously described [24]. Briefly, MCF10A-ACE2 
transfectants were seeded on Lab-Tek cham-
ber slides one day before the experiment and 
stained with the indicated antibodies. Slides 
were examined using a Zeiss Axiovert 200 
inverted microscope equipped with a cooled 
charge-coupled device camera (Carl Zeiss, 
Thornwood, NY). 

Sphere formation assay

For mammary tumor spheroid formation, cells 
were grown in serum-free conditions with 
growth factors in an ultra-low adherent plate as 
described earlier [25]. Briefly, 70~80% conflu-
ent cells were trypsinized and washed with 
PBS. Cells were then suspended into a single 
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cell suspension with complete MammoCultTM 
Medium (Stemcell Technologies, Vancouver, 
Canada) at the concentration of 1,000 cells/
ml. 2 ml of suspension was added to each well 
in a 6-well ultra-low adherent plate. Suspension 
cultures were incubated for five days. Ma- 
mmospheres with a size of more than 100 mm 
were counted and imaged.

In vitro cell migration and invasion assays

Invasion assays were performed using 
Transwell permeable supports (Corning-Costar, 
Cambridge, MA) with uncoated porous filters 
(8-μm pore size) as earlier described [25]. 
Briefly, the filters were precoated with Matrigel 
matrix (BD Biosciences, Bedford, MA) and air-
dried for 2 h. The cells were serum-starved 
overnight before the experiment. Approximately 
5,000 MCF7 cells were placed onto the upper 
chamber in 0.25 ml serum-free DMEM. After 
incubation for 2 days, cells that had migrated 
to the lower surface of the filters were fixed in 
4% paraformaldehyde, visualized with 1% crys-
tal violet, and counted. 

A mouse model for lung metastasis

Six weeks old female BALB/c mice were pur-
chased from the National Laboratory Animal 
Center (Taipei, Taiwan) and were housed at the 
Institute of Biomedical Sciences Animal Care 
Facility. The tumor metastasis assays were per-
formed using a breast cancer mouse model 
through intravenous injection. The mouse 
breast tumor cell line 4T1 was infected with 
lentivirus-based shRNA clones. 1×105 cells 
were injected into the lateral tail vein of BALB/c 
mice (5 mice per group). Ten days later, lung 
nodules were stained with India ink to deter-
mine the ability of metastasis. All animals were 
handled in compliance with the protocols 
approved by the Academia Sinica Institutional 
Animal Care and Utilization Committee. 

Statistical analysis 

The data from individual experiments are 
assessed by one-way or two-way ANOVA with 
Tukey’s post hoc test for multiple comparisons 
(GraphPad Prism Software Inc, San Diego, CA, 
USA) and presented as mean ± SD (standard 
deviation). A p-value < 0.05 was considered 
statistically significant. The relationships bet- 
ween Ace2/Tmprss2 and Snail in the TCGA 

breast cancer dataset retrieved from the TCGA 
database were analyzed by Pearson correlation 
analysis.

Results

EMT gene signature upregulated upon SARS-
CoV-2 infection

To identify SARS-CoV-2-mediated cancer cell 
signaling regulation, we performed a non-
biased screening on human lung cancer cell 
line A549 overexpressing the ACE2 receptor 
(Figure 1A). A549-ACE2 cells were infected 
with SARS-CoV-2 (MOI of 0.1) for 48 h. The copy 
number of virus E protein was firstly quantified 
by qPCR and converted with a DNA standard 
(Figure 1B). Immunofluorescence microscopy 
analysis further indicated that over 60% of the 
infected cells expressed the nucleocapsid of 
SARS-CoV-2 in the A549-ACE2 (Figure 1C, the 
anti-N protein signals in the cytoplasm). To 
identify the downstream signaling, SARS-CoV-2 
infected A549-ACE2 cells were harvested and 
subjected to examine the differential expres-
sion of 39 phospho-kinases using an antibody 
array (Figure 1D). Oncogenic signaling like 
pEGFR or pErK was upregulated concomitantly 
with the downregulation of tumor suppressor 
P53 signaling (Figure 1D). To further examine 
which oncogenic pathway affected by SARS-
CoV-2, we performed an IPA analysis based on 
our antibody array data. Nineteen canonical 
pathways related to cancer signaling were 
upregulated, including EGF signaling, regulation 
of EMT by growth factors pathway, and TGF-β 
signaling (Figure 1F). Among these pathways, 
EMT particularly caught our attention as virus-
induced metastasis has been found in many 
cancers [17]. 

SARS-CoV-2 induces EMT reprogramming in 
breast epithelial cells

To validate whether SARS-CoV-2 induces EMT, 
we stably transduced human ACE2 receptor in 
immortal human normal mammary epithelial 
cell lines (MCF10A and MCF12A). Upon SARS-
CoV-2 infection, the viral genome was effective-
ly replicated in the cells (data not shown). 
Western blot analysis indicated that the typical 
EMT markers, N-cadherin, fibronectin, and 
vimentin, are upregulated concomitantly with 
downregulation of E-cadherin (Figure 2A). 
Prolong the virus infection to 48 hours post 
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Figure 1. SARS-CoV-2 induces cancer cells to undergo EMT. A. Flowchart of the non-biased screening using a phos-
pho-antibody array. B. Virus loading of SARS-CoV-2 in A549-ACE2 cells. Copy number of the viral genome was de-
termined using a single strand DNA standard. C. Immunofluorescence microscopy of N protein expression in SARS-
CoV-2 infected A549-ACE2 cells. D. Representative image of antibody array result. E. Quantification results of the 
human phospho-kinase array. After infected by SARS-CoV-2 for 24 hours, some kinases were either up-regulated or 
down-regulated. Candidates down-regulated for 2-fold, including p53, STAT3, and c-Jun, were selected. Candidates 
up-regulated for 3-fold, including STAT2, PLC-γ1, PDGF Rβ, p38α, Lyn, Lck, JNK1/2/3, HSP27, EGFR, and CREB, 
were chosen. F. IPA analysis of several oncogenic pathways upon SARS-CoV-2 infection in A549-ACE2 cells.

Figure 2. SARS-CoV-2 induces EMT phenotypic changes in breast cancer cells. A. Western blot analysis of EMT 
markers in MCF10A-ACE2 and MCF12A-ACE2. B. Gene expression heatmap of E-cadherin, N-cadherin, Vimentin,  
Fibronectin, and EMT regulators in MCF10A-ACE2 cells. C. Morphological changes of MCF10A-ACE2 upon SARS-
CoV-2 infection. Expression of EMT markers was detected using anti-E-cadherin and anti-vimentin antibodies by con-
focal microscopy. Cell nuclei were stained with DAPI. D. Western blot analysis of several EMT markers. A dominant-
negative form of IκBα (IκBα-DN) was ectopically expressed in MCF10A-ACE2 cells. E. V. indicates an empty vector.
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injection (hpi), EMT markers exhibited enhanced 
expression, suggesting a positive correlation 
between virus load and EMT. Next, we com-
pared the mRNA expression of the EMT mark-
ers N-cadherin, Vimentin, Fibronectin, and sev-
eral EMT transcription regulators between 
SARS-CoV-2 infected and uninfected MCF10A-
ACE2 cells (Figure 2B) and confirmed that 
mRNA levels of these markers were increased 
in the infected cells. Immunofluorescence 
microscopy analysis of morphologic changes 
showed that E-cadherin and vimentin expres-
sion are significantly changed upon SARS-
CoV-2 infection (Figure 2C). SARS-CoV-2 induc-
es NF-κB activation for cytokine release, and 
NF-κB is also known to enhance EMT by induc-
ing Twist1 [25] and Snail [26]. We next overex-
pressed the dominant-negative form of IκBα 
(IκBα-DN) and found that inhibition of NF-κB 
reverts SARS-CoV-2-mediated EMT (Figure 2D). 
Taken together, these results indicate that 
SARS-CoV-2 contributes to cytoskeleton rear-
rangement and mesenchymal changes. 

Snail is positively associated with the expres-
sions of SARS-CoV-2 receptors in breast can-
cer cells

To elucidate the clinical relevance of SARS-
CoV-2 infection and EMT regulation, the mRNA 
expression of EMT regulators was examined by 
reanalyzing a public dataset generated from 
917 cancer cell lines (CCLE) [27]. Unsupervised 
hierarchical clustering analysis was performed 
based on the SARS-CoV-2 receptors and EMT 
regulators, including Snail, Foxc2, Twist1, Slug, 
and Zeb1 (Figure 3A). A strong correlation was 
found between Snail, Ace2, and Tmprss2 
expression. We next grouped 56 breast cancer 
cell lines into Ace2-/Tmprss2-, Ace2+/Tmprss2- 
and Ace2-/Tmprss2+, and Ace2+/Tmprss2+ 
subtypes based on the gene expression of 
Ace2 and Tmprss2. Snail and Foxc2 expression 
were positively correlated with Ace2 and 
Tmprss2 (Figure 3B). To further confirm our 
findings in human breast tumors, we investi-
gated the expression of Snail, Twist1, Foxc2, 
Zeb1, and Slug in 1,082 human primary breast 
tumor specimens using the TCGA dataset. 
Among these candidates, only Snail showed a 
positive association with Ace2 (Figure 3C) and 
Ace2+Tmprss2 (Figure 3D). To investigate 
which virus product has the potential to induce 
EMT progression in breast cancer cells, we 

transiently expressed the structural proteins of 
SARS-CoV-2, such as N, M, E, or S, in MCF7 
cells. Results from qPCR revealed that only S 
protein induces downregulation of E-cadherin 
and upregulation of N-cadherin and Snail 
(Figure 3E). Similarly, the expression of S in 
MCF7 cells repressed the E-cadherin promoter 
activity (Figure 3F), supporting the role of spike 
protein in facilitating breast cancer cell EMT.

Snail is required for spike-induced EMT pro-
gression

Upregulation of Snail by S protein prompts us to 
investigate if Snail is required for S protein-
induced EMT. To this end, we knocked down 
Snail expression in MCF10A-ACE2 cells and 
then examined the alternation of EMT markers 
by Western blot. Downregulation of Snail indeed 
impaired SARS-CoV-2-induced EMT (Figure 4A). 
To explore the functional significance, we 
expressed spike protein in MCF7 cells. We 
found that downregulation of Snail inhibits cell 
migration (Figure 4B), and invasion (Figure 4C), 
suggesting that Snail is required for spike-
induced EMT phenotype. Because EMT usually 
accompanies cancer cell stemness, we further 
investigate the tumorsphere formation ability 
of MCF7-spike cells (Figure 4D). While spike 
increases tumorsphere by two-fold, downregu-
lation of Snail compromised spike-mediated 
cancer stemness (Figure 4D). We next used a 
xenograft metastasis model to validate the ear-
lier results by overexpressing spike protein in 
4T1 cells (4T1-spike). Consistent with the in 
vitro results, knockdown of Snail antagonized 
spike-induced metastasis by measuring the 
number of lung nodules in mice (Figure 4E) 
(45% lower in shSnail versus shCTRL). Together 
with the data from cell migration, invasion 
assay, and stemness, a prerequisite role of 
Snail in SARS-CoV-2-mediated metastasis was 
identified (Figure 4F).

Discussion

With the ongoing pandemic of COVID-19, SARS-
CoV-2 not only causes severe pneumonia but 
exacerbates many pre-existing diseases, such 
as diabetes, stroke, and cancers. COVID-19 
patients with cancer have a higher mortality 
rate compared to those who do not have can-
cer [28]. A few observational studies have eval-
uated the positive association with adverse 
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prognosis in cancer patients compared with 
those without cancer [29, 30]. At the same 
time, the inflammatory factors triggered by the 
virus in the tumor microenvironment might 
implicate reactivating dormant breast cancer 
cells [31]. Thus, our present study could pro-
vide a strong scientific base to support a poten-
tial risk of cancer metastasis at the early stage 
of COVID-19 infection. Several lines of evidence 

suggest that SARS-CoV-2-mediated Snail ex- 
pression in breast cancer cells contributes to 
aggressive phenotype. First, we demonstrated 
that SARS-CoV-2 upregulates many oncogenic 
pathways, including EMT. Secondly, Ace2 
expression is positively correlated with Snail 
expression in breast cancer cells. Thirdly, many 
canonical modules in NF-κB signaling were 
known to induce Snail expression [26]. Lastly, 

Figure 3. Snail expression is correlated with ACE2 in breast cancer cells. A. Nonsupervised clustering of 56 breast 
cancer cell lines based on listed seven genes. Gene expression heatmap showing distinct expression patterns. 
Heatmap was generated using TreeView. B. Expression plots showing the average expression level of Snail, Foxc2, 
Twist1, Slug or Zeb1 in Ace2-/Tmprss2-, Ace2+/Tmprss2- and Ace2-/Tmprss2+, and Ace2+/Tmprss2+ subtypes. 
C. Correlation between Snail and Ace2 expression in TCGA breast cancer patient samples. D. Correlation between 
Snail and Ace2+Tmprss2 expression in TCGA breast cancer patient samples. E. qPCR analysis of E-cadherin, N-
cadherin, Snail, and Foxc2 in MCF7 cells expressing N, M, E, or S. Two-way ANOVA with Tukey’s post hoc test. ***P < 
0.001. F. Luciferase reporter assay of E-cadherin. MCF7 cells were transfected with the E-cadherin reporter together 
with SARS-CoV-2 structural protein N, M, E, or S. One-way ANOVA with Tukey’s post hoc test. **P < 0.01.

Figure 4. Snail is required for SARS-CoV-2 and spike-induced EMT. A. Western blot analysis of MCF10A-ACE2 cells 
upon SARS-CoV-2 infection. B. Quantification of migration activity of MCF7-spike cells. C. Quantification of invasion 
activity of MCF7-spike cells. D. Tumor initiation ability measured by mammosphere formation. MCF7 cells were 
transiently transfected with indicated plasmids. E. 4T1-spike cells with shSnail stable clones were injected into fe-
male BALB/c mice via the tail vein. Lung nodules were stained by India ink at the experimental endpoint. Error bars 
represent the mean ± SD of five mice. F. Proposed working model of this study. Statistic method: One-way ANOVA 
with Tukey’s Post Hoc Test. *P < 0.05, **P < 0.01, ***P < 0.001.
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Snail expression is required for the SARS-CoV-2 
or spike-mediated EMT changes. Although 
Snail contains a functional p65 binding motif 
on the promoter, we propose that SARS-CoV-2 
induced breast cancer EMT is coordinately 
through canonical NF-κB signaling involved in 
Snail. 

We found several phosphorylated proteins 
related to EMT by performing the human phos-
pho-kinase array analysis. p38α (Mitogen-
activated Protein Kinase 14, MAPK14) signal-
ing pathway plays important roles in the stress 
response. Moreover, inflammatory cytokines 
and variant non-stress stimuli can also trigger 
p38α signaling, leading to numerous critical 
cell processes [32]. Interruption of the p38α 
signaling pathway contributes to many human 
pathologies, and cancer is one of them. 
Previous studies showed that p38α is related 
to EMT, which is the initial stage of cancer 
metastasis [33-35]. In our result, we noticed 
both p38α and HSP27 are up-regulated after 
SARS-CoV-2 infection. A previous study con-
firmed that p38α phosphorylates HSP27 lead-
ing to actin polymerization and reorganization 
into stress fibers [36], an important EMT pro-
cess. Accumulation of evidence also suggests 
that p38 MAPK induces EMT in different types 
of cancers, including melanoma [37], breast 
cancer [38, 39], colon cancer [40], ovarian can-
cer [41], etc.

In addition to growth factors, microbes can also 
induce EMT. The patients with gastric cancer, 
which is caused by Helicobacter pylori, had 
been reported expression of Snail and Slug, 
two of the important EMT-related protein, in 
gastric epithelial cells [42]. The viruses also 
known to induce EMT. For example, the latent 
membrane protein 1 and 2A (LMPs) produced 
by the Epstein-Barr virus (EBV) hijack the host 
cell signaling and induce EMT [43]. SARS-
CoV-2, which belongs to the respiratory infec-
tious virus, was reported to induce EMT-like 
change through zinc finger E-box-binding 
homeobox 1 (ZEB1) in lung cancer [23]. 
However, this kind of change suppresses the 
viral receptor ACE2 expression, losing the ACE2 
protective effect of the acute respiratory dis-
tress syndrome (ARDS), the high-mortality com-
plication of COVID-19 [44]. As mentioned previ-
ously, p38α plays a key role in EMT. Mizutani et 
al. discovered SARS-CoV infection triggers the 

p38 MAPK phosphorylation, leading the down-
stream targets MAPKAPK-2, HSP27, CREB, and 
eIF4E phosphorylation in virus-infected cells 
[45]. Though the study suggested it may be 
related to cell apoptosis, it may also induce the 
infected cell to undergo EMT. This finding cor-
related SARS-CoV-2 infected cells with upregu-
lated phosphorylation of p38α, HSP27, and 
CREB. The virus infection may also trigger the 
p38 MAPK pathway to affect the cytoskeleton 
rearrangement and make EMT-like changes. 
Therefore, SARS-CoV-2 may lead to respiratory 
disease and cancer metastasis through p38 
MAPK activation.
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